
CC7220-1
LA WEB DE DATOS
PRIMAVERA 2025

Lecture 8: Web Ontology Language (OWL) [III]

Aidan Hogan

aidhog@gmail.com

Last time …

Domino Tiling Problem (Undecidable!)

• Input: A set of Dominos (like D)

• Output:

– true if there exists a valid infinite tiling (like t)

– false otherwise

Today's Topic

Reduce from Tiling to OWL entailment?

Reduction

Does D have an
infinite tiling?

Does OWL ontology
O entail O′?

How can we encode a Domino Tiling question into an
OWL ontology entailment question?

Based on talk/proof by Uli Sattler:
http://www.cs.man.ac.uk/~sattler/teaching/COMP61132-slides5.pdf

http://www.cs.man.ac.uk/~sattler/teaching/COMP61132-slides5.pdf
http://www.cs.man.ac.uk/~sattler/teaching/COMP61132-slides5.pdf
http://www.cs.man.ac.uk/~sattler/teaching/COMP61132-slides5.pdf

Some Description Logic symbols

• ⊑: sub-class/-property
• ≡: equivalent class/property
• ⊔: union
• ⊓: intersection
• ⊤: top (class of everything)
• ⊥: bottom (empty class)
• ∃: exists (someValuesFrom/hasValue)
• ∀: for all (allValuesFrom)
• ¬: not (complement, negation)
• – (superscript minus): inverse property
• {}: enumeration (owl:oneOf)
• Self, Trans, Dom, etc.: where symbols not available
• ∘: property chain
• C(x): class membership
• P(x,y): a triple (x,P,y)

Domino Tiling Problem (Undecidable!)

• Input: A set of Dominos (like D)

• Output:

– true if there exists a valid infinite tiling (like t)

– false otherwise

Domino Tiling Problem: Some terminology

• Tile: A Piece

Domino Tiling Problem: Some terminology

• Tile: A Piece

• Domino: Group of Tiles of same colour

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type
– Define tiles as a class T, a union of classes for each domino type:

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

Now what else do we need to encode?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

How can we encode this in OWL?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type
– Define dominos types as pairwise disjoint:

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

Now what else do we need to encode?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

 How can we encode this in OWL?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above
– Define that a tile has some values from tile for right/above:

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

Are we there yet?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

 How can we encode this in OWL?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

 Are we there yet?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

 Are we there yet?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right

 How can we encode this in OWL?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right
– Define diagonal tile using two property chains (above-right/right-above)

– Declare functional (a tile can only have one such diagonal tile)

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right
– Define diagonal tile using two property chains (above-right/right-above)

– Declare functional (a tile can only have one such diagonal tile)

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right
Are we there yet?

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right
Are we there yet?

We could have “cyclic” models:

We could remove such models by defining a sub-
property of right/above to be transitive and

asymmetric …

But actually such “cyclic” models can be “unravelled”
into valid domino tilings so we don’t need to!

Can reduce from Tiling to Owl Entailment

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right
Are we there yet?

But what’s the entailment question?

???

What should we
put in O′?

Goal: Ontology O entails O′ if and only if D has no infinite tiling

But what’s the entailment question?

Goal: Ontology O entails O′ if and only if D has no infinite tiling
If T can have any member (a “tile”), it must have an infinite tiling!

If T can have no member, it must not have an infinite tiling.

Could also use satisfiability ...

Goal: Ontology O is satisfiable if and only if D has an infinite tiling
Here, x is an arbitrary fresh term

OWL entailment/satisfiability is undecidable!

Reduction
R

ed
u

ctio
n

Not just OWL is undecidable ...

Knowledge representation:
Tell machines stuff about the world in a formalism they can

(deductively) reason over using automated methods.

But if we tell them everything ...
Reasoning becomes undecidable!

OWL entailment/satisfiability is undecidable …

So what are we supposed to do now?

... choose two

OWL entailment/satisfiability is undecidable …

So what are we supposed to do now?

• Accept incomplete reasoners that halt

– Complete language, incomplete reasoning, halts

• Accept complete reasoners that may not halt

– Complete language, complete reasoning, may not halt

• Restrict OWL so reasoning becomes decidable

– Restricted language, complete reasoning, halts

Incomplete reasoners
 that halt

In the labs …

Data

Ontology

Entailments Reasoner
???

But what is the reasoner actually doing?

In the labs …

Data

Ontology

Entailments Reasoner
???

But what is the reasoner actually doing?

Incomplete materialisation using rules.

Recall rules for RDFS ...

Now we need rules to cover (some of) OWL ...

Standard set of OWL rules: OWL 2 RL/RDF

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/

In the labs …

Data

Ontology

Entailments Reasoner
???

But what is the reasoner actually doing?

Incomplete materialisation using RDFS & OWL 2 RL/RDF rules.

OWL 2 RL/RDF rule examples: Equality

???

???

OWL 2 RL/RDF rule examples: Equality

OWL 2 RL/RDF rule examples: Properties

???

???

???

OWL 2 RL/RDF rule examples: Properties

OWL 2 RL/RDF rule examples: Classes

???

???

???

OWL 2 RL/RDF rule examples: Classes

OWL 2 RL/RDF rule examples: Schema

???

???

???

OWL 2 RL/RDF rule examples: Missing

???

???
???

???
???
???
???

OWL 2 RL/RDF rule examples: Missing

Full list of OWL 2 RL/RDF rules (or see the book)

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/
https://www.w3.org/TR/owl2-profiles/

How is OWL2RL/RDF incomplete?

How is OWL2RL/RDF incomplete? Disjunction

:Vincent rdf:type :Person , :Godfather .

:Person owl:equivalentClass

 [owl:disjointUnionOf (:Criminal :Lawful)] .

:Godfather owl:disjointWith :Lawful .

⇒

:Vincent rdf:type :Criminal .

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Vincent is Criminal or Lawful!

How is OWL2RL/RDF incomplete? Negation

:Vincent rdf:type :Person , :Godfather .

:Person owl:equivalentClass

 [owl:disjointUnionOf (:Criminal :Lawful)] .

:Godfather owl:disjointWith :Lawful .

⇒

:Vincent rdf:type :Criminal .

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Vincent is Criminal or Lawful!

Also misses the information that Vincent is not Lawful!

How is OWL2RL/RDF incomplete?

How is OWL2RL/RDF incomplete? existentials

:Michael rdf:type :BiologicalParent .

:BiologicalParent owl:equivalentClass

 [owl:someValuesFrom :Person ; owl:onProperty :hasBiologicalChild]

:hasBiologicalChild rdfs:domain :Fertile .

⇒

:Michael rdf:type :Fertile .

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Michael has some child!

How is OWL2RL/RDF incomplete? existentials

:Michael rdf:type :BiologicalParent .

:BiologicalParent owl:equivalentClass

 [owl:someValuesFrom :Person ; owl:onProperty :hasBiologicalChild]

:hasBiologicalChild rdfs:domain :Fertile .

⇒

:Michael rdf:type :Fertile .

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Michael has some child!

Worst Example of the
Course Award

How is OWL2RL/RDF incomplete?

• Missing features
– owl:ReflexiveProperty, owl:hasSelf, owl:minCardinality …

• Problems with disjunction (OR cases)
– owl:unionOf, owl:oneOf, owl:maxCardinality, …

• Problems with existentials
– owl:someValuesFrom, owl:minCardinality, ...

• Problems with counting
– owl:minCardinality, owl:cardinality, …

• Problems with negation
– owl:disjointWith, owl:propertyDisjointWith, owl:complementOf …

• Incomplete “schema” inferences

What can we intuitively conclude about Zia?

Zia is also a Zebroid!

But not with OWL 2 RL/RDF 

Complete reasoners
 that may not halt

Complete reasoners that may not halt

• Only line of work on this I know of:

Complete reasoners that may not halt

• Cons:
– Erm … reasoner may never halt

• Pros:
– Avoid complicated decidability restrictions!

What might the “pros” be in this case?

Imagine restricting C or Java to be decidable
1. Don’t allow features like loops/recursion

• But not all programs with loops/recursion fail to halt!

2. Restrict how features like loops/recursion can be used

• More detailed restrictions allow more programmes but are more
complicated to understand 

Restrict OWL to
 guarantee decidability

Restrict OWL to guarantee decidability:
 How to guarantee decidability?

• We’ve seen how to prove that something is undecidable

How can we prove that something is decidable?

• Give an algorithm that halts …
• (Or something non-constructive)

Restrict OWL to guarantee decidability:
 Sublanguages of OWL 2

• Description Logic community

– Predates OWL

– Looks at decidable subsets of First Order Logic

– Results can be applied to OWL!

• OWL 2 Full: The unrestricted, undecidable language

• OWL 2 DL: A restricted, decidable version

Restrict OWL to guarantee decidability:
 Sublanguages of OWL 2

Any ideas what we should restrict to make OWL decidable?

Restrict OWL to guarantee decidability:
 Sublanguages of OWL 2

Any ideas what we should restrict to make OWL decidable?

For example, OWL 2 DL restricts functional properties to only be used on
"simple properties" (e.g., properties not used in chains)

Is this enough to guarantee decidability?

We don't know. We just know this undecidability proof won't work.
(In fact, there are other proofs not needing functional property chains.)

Restrict OWL to guarantee decidability:
 Sublanguages of OWL 2

Any ideas what we should restrict to make OWL decidable?

For example, OWL 2 DL restricts functional properties to only be used on
"simple properties" (e.g., properties not used in chains)

In that case how can we guarantee decidability?

Most common way: give a sound and complete algorithm!

Restrict OWL to guarantee decidability:
 Sublanguages of OWL 2

• OWL 2 DL restricts:
– functional properties to be “simple” (no chains, no

transitivity)

– likewise properties used with has-self, cardinalities, inverse
functionality, asymmetry and irreflexivity must be simple

– need to follow specific RDF syntax and explicitly declare
classes, object properties (with IRI values), datatype
properties (with literal values)

– … more (it’s really quite messy )

But in OWL 2 DL ...

But in OWL 2 Dl, we can get this entailment ...

:Vincent rdf:type :Person , :Godfather .

:Person owl:equivalentClass

 [owl:disjointUnionOf (:Criminal :Lawful)] .

:Godfather owl:disjointWith :Lawful .

⇒

:Vincent rdf:type :Criminal .

Any ideas of how we could implement this?

An algorithm for OWL 2 DL: Tableaux

• Tableaux Algorithm (sketch):
1. Add ¬O' to O

2. Expand knowledge using rules
• Infer low-level assertions

• Branch on all possibilities created by disjunction

• Postulate fresh individuals for existentials

• [...]

3. If (and only if) every branch is inconsistent: O ⊧ O′

An algorithm for OWL 2 DL: Tableaux

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Person owl:equivalentClass [owl:disjointUnionOf (:Lawful :Criminal)] .

¬ :Vincent rdf:type :Criminal .

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Lawful .

¬ :Vincent rdf:type :Criminal .

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Criminal .

¬ :Vincent rdf:type :Criminal .

Disjunction: Expand all possibilities

An algorithm for OWL 2 DL: Tableaux

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Person owl:equivalentClass [owl:disjointUnionOf (:Lawful :Criminal)] .

¬ :Vincent rdf:type :Criminal .

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Lawful .

¬ :Vincent rdf:type :Criminal .

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Criminal .

¬ :Vincent rdf:type :Criminal .

Disjunction: Expand all possibilities

:Vincent rdf:type :Person , :Godfather .

:Person owl:equivalentClass

 [owl:disjointUnionOf (:Criminal :Lawful)] .

:Godfather owl:disjointWith :Lawful .

⇒

:Vincent rdf:type :Criminal .

An algorithm for OWL 2 DL: Tableaux

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Person owl:equivalentClass [owl:disjointUnionOf (:Lawful :Criminal)] .

¬ :Vincent rdf:type :Criminal .

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Lawful .

¬ :Vincent rdf:type :Criminal .

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Criminal .

¬ :Vincent rdf:type :Criminal .

Disjunction: Expand all possibilities

:Vincent rdf:type :Person , :Godfather .

:Person owl:equivalentClass

 [owl:disjointUnionOf (:Criminal :Lawful)] .

:Godfather owl:disjointWith :Lawful .

⇒

:Vincent rdf:type :Lawful . # is it entailed ???

An algorithm for OWL 2 DL: Tableaux

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Person owl:equivalentClass [owl:disjointUnionOf (:Lawful :Criminal)] .

¬ :Vincent rdf:type :Lawful.

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Lawful .

¬ :Vincent rdf:type :Lawful .

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Criminal .

¬ :Vincent rdf:type :Lawful .

Disjunction: Expand all possibilities

An algorithm for OWL 2 DL: Tableaux

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Person owl:equivalentClass [owl:disjointUnionOf (:Lawful :Criminal)] .

¬ :Vincent rdf:type :Lawful.

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Lawful .

¬ :Vincent rdf:type :Lawful .

:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Lawful .

:Vincent rdf:type :Criminal .

¬ :Vincent rdf:type :Lawful .

Disjunction: Expand all possibilities

:Vincent rdf:type :Person , :Godfather .

:Person owl:equivalentClass

 [owl:disjointUnionOf (:Criminal :Lawful)] .

:Godfather owl:disjointWith :Lawful .

⇒

:Vincent rdf:type :Lawful . # it is not entailed

An algorithm for OWL 2 DL: Tableaux

:Michael rdf:type :BiologicalParent .

:BiologicalParent owl:equivalentClass

 [owl:someValuesFrom :Person ; owl:onProperty :hasBiologicalChild]

:hasBiologicalChild rdfs:domain :Fertile .

⇒

:Michael rdf:type :Fertile .

An algorithm for OWL 2 DL: Tableaux

:Michael rdf:type :BiologicalParent .

:BiologicalParent owl:equivalentClass

 [owl:someValuesFrom :Person ; owl:onProperty :hasBiologicalChild]

:hasBiologicalChild rdfs:domain :Fertile .

¬ :Michael rdf:type :Fertile .

:Michael rdf:type :BiologicalParent .

:Michael :hasBiologicalChild :X .

:X rdf:type :Person .

:Michael rdf:type :Fertile .

¬ :Michael rdf:type :Fertile .

Existentials: Try create fresh individuals

An algorithm for OWL 2 DL: Tableaux

:Michael rdf:type :Parent .

:Parent owl:equivalentClass

 [owl:someValuesFrom :Person ; owl:onProperty :hasChild]

:hasChild rdfs:domain :Fertile .

¬ :Michael rdf:type :Fertile .

:Michael rdf:type :Parent .

:Michael :hasChild :X .

:X rdf:type :Person .

:Michael rdf:type :Fertile .

¬ :Michael rdf:type :Fertile .

Existentials: Try create fresh individuals

:Michael rdf:type :BiologicalParent .

:BiologicalParent owl:equivalentClass

 [owl:someValuesFrom :Person ; owl:onProperty :hasBiologicalChild]

:hasBiologicalChild rdfs:domain :Fertile .

⇒

:Michael rdf:type :Fertile .

An algorithm for OWL 2 DL: Tableaux

• Tableaux Algorithm (sketch):
1. Add ¬O' to O

2. Expand knowledge using rules
• Infer low-level assertions

• Branch on all possibilities created by disjunction

• Postulate fresh individuals for existentials

• [...]

3. If (and only if) every branch is inconsistent: O ⊧ O′

Tableaux algorithm is just "brute force" checking models of the ontologies.
But optimisations and tricks possible for specific logics (like OWL).

An algorithm for OWL 2 DL: Tableaux

• Tableaux Algorithm (sketch):
1. Add ¬O' to O

2. Expand knowledge using rules
• Infer low-level assertions

• Branch on all possibilities created by disjunction

• Postulate fresh individuals for existentials

• [...]

3. If (and only if) every branch is inconsistent: O ⊧ O′

To ensure that the tableaux algorithm (with additional tricks) terminates.

Why do we need to restrict OWL in that case?

An algorithm for OWL 2 DL: Tableaux

• Tableaux Algorithm

– We have a complete entailment algorithm that
supports a lot of OWL features and terminates

What can we intuitively conclude about Zia?

Zia is also a Zebroid!

And we can entail this OWL 2 DL! 

So, any problems here?

OWL 2 DL: Practical problems

• A few practical problems:

– We have to give the entailments to check

• Cannot just ask to compute the entailments

– Restrictions are complicated

• Very complicated

• And often are broken by real-world ontologies

– Tableaux entailment checks are really expensive

• Branch for every disjunction suggests exponential

• If fact, it's N2EXPTIME-complete (!!?!!!)
– on a non-deterministic machine

N2EXPTIME-Complete (OWL 2 DL’s small print) …

• Checking entailment is guaranteed to halt for
OWL 2 DL restricted ontologies*

 * halt may not occur before heat death of the universe

OWL 2 Profiles (briefly)

• More efficient sublanguages of OWL 2 DL

– More restrictions to allow complete reasoning with
more efficient algorithms

• OWL 2 RL: A restriction of OWL 2 DL such that OWL 2

RL/RDF rules provide complete reasoning

• OWL 2 EL: Tractable algorithm for classifying ontologies

• OWL 2 QL: Tractable algorithm rewriting SQL queries

Impressions …

Theory Practice

Division between Theory and Practice

Knowledge Representation on the Web:
 An open research problem

Use-cases: Bioinformatics people love OWL

End of OWL classes (labs to come)

Moving on to shapes next

Questions?

