
CC7220-1
LA WEB DE DATOS
PRIMAVERA 2025

Lecture 3: RDF Schema (RDFS) and Semantics

Aidan Hogan

aidhog@gmail.com

Last time …

Semantic Web: Data

* More or less

RDF often drawn as a (directed, labelled) graph

RDF Properties

• RDF Terms used as predicate

– rdf:type, ex:firstMovie, ex:stars, etc.

RDF Classes

• Used to conceptually group resources

– ex:Movie, ex:Actor, ex:Series, etc.

– Uses predicate rdf:type to type a resource

Today's topic ...

Semantic Web: Logic

* More or less

How to capture logic?

How should we capture logic on the

Semantic Web?

Semantic Web Answer: Schema/Ontologies

• Instead of rules, we can use RDF!

• Define relationships between classes and properties

What sorts of relationships might be useful to define

between the following classes and properties?

Class hierarchy

• Class c is a sub-class of Class d
– If (x,rdf:type,c) then (x,rdf:type,d),

 Example: if ex:CapitalCity sub-class of ex:City
and if (ex:Dublin,rdf:type,ex:CapitalCity)

then (ex:Dublin,rdf:type,ex:City)

Which classes would be sub-classes of each other?

Property hierarchy

• Property p is a sub-property of q
– If (x,p,y) then (x,q,y)

Example: if ex:hasCapitalCity sub-property of ex:hasCity
and if (ex:Ireland,ex:hasCapitalCity,ex:Dublin)

then (ex:Ireland,ex:hasCity,ex:Dublin)

Which properties would be sub-properties of each other?

Domain of properties

• Property p has domain class c
– If (x,p,y) then (x,rdf:type,c)

Example: if foaf:familyName has domain foaf:Person
and if (ex:Aidan,foaf:familyName,"Hogan")

then (ex:Aidan,rdf:type,foaf:Person)

Which properties would have which classes as domain?

Range of properties

• Property p has range class c
– If (x,p,y) then (y,rdf:type,c)

Example: if ex:hasCity has range ex:City
and if (ex:Ireland,ex:hasCity,ex:Dublin)

then (ex:Dublin,rdf:type,ex:City)

Which properties would have which classes as range?

Example: ex:hasCapitalCity has domain ex:Country

Trade-off: More Specific / Less Reusable

• More specific → more conclusions

• Less specific → more reusable

PRO: Know that anything that has a capital city is a country

CON: Cannot use for capitals of states, regions, etc.

Trade-off: More Specific / Less Reusable

• Another example:

– ex:Mayor sub-class of foaf:Person

Bosco the dog
Mayor of Sunol, California
1981–1994
R.I.P.

Trade-off: More Specific / Less Reusable

• Another example:

– ex:spouse has domain/range foaf:Person

Erika Eiffel
Married Eiffel Tower in 2007

...

Beware of “hidden” definitions!

Any potential problems here?

Choose names of properties/classes carefully!

(ex:Dublin,foaf:img,ex:Dublin_night.jpg)

RDFS: RDF Schema

RDFS (1.1): A Web Standard

 http://www.w3.org/TR/rdf-schema/

RDFS: Describe “schema” in RDF

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

• Sub-class
– ex:CapitalCity rdfs:subClassOf ex:City .

• Sub-property
– ex:hasCapitalCity rdfs:subPropertyOf ex:hasCity .

• Domain
– foaf:familyName rdfs:domain foaf:Person .

• Range
– ex:hasCapitalCity rdfs:range ex:CapitalCity .
– foaf:familyName rdfs:range xsd:string .

Note: Why called “domain” and “range”?

f : X → Y

• X : domain of the function

• Y : co-domain of the function

• { f(x) | x ∈ X }: image or range of the function

Any guesses why RDFS calls these "domain" and "range"?

So let’s build an RDF Schema …

(an example)

Let’s model an RDF Schema for movies, including different types of

movies (horror, comedy, action), some different types of people

involved (actor, producer, director), and how they are related.

But what, e.g., is the domain of … ?

But what, e.g., is the domain of … ?

• rdfs:Resource the class of everything!

– Yes, even itself!

• (rdfs:Resource,rdf:type,rdfs:Resource)

(Giving domain/range/sub-class as rdfs:Resource says nothing new!)

Some meta-classes …

• rdf:Property: class of all properties

– (ex:hasCity,rdf:type,rdf:Property)

• rdfs:Class: class of all classes

– (ex:City,rdf:type,rdfs:Class)

Classes can also "act" as instances: no strong distinction

Note: Class or instance?

Would you define ex:Oak ("roble"@es)
as a class or an instance?

rdf:type is akin to ∈, rdfs:subClassOf is akin to ⊆ *

Which is transitive: rdf:type or rdfs:subClassOf? rdfs:subClassOf

* Slight but useful simplification for now as classes are not quite sets; we will return to this topic later.

Reasoning with RDFS

What is “Reasoning”?

What general kinds of logical reasoning can we consider?

What is “Reasoning”?

All movie directors are human.
Anthony C. Ferrante is a movie director.
∴ Anthony C. Ferrante must be human.

Deductive Reasoning: Make logical conclusion from rules/premises

What is “Reasoning”?

Inductive Reasoning: Learn approximate rule(s) from premises

The first three Sharknado movies were great.
∴ Sharknado 4 will probably be great too.

What is “Reasoning”?

Abductive Reasoning: Guess a premise/explanation

Fred saw a movie with sharks in tornados.
All Sharknado movies have sharks in tornados.
∴ Fred may have seen a Sharknado movie.

Reasoning: Summary

(1) If (x,rdf:type,ex:SharknadoMovie) then (x,ex:depicts,ex:SharksInTornados)

(2) (ex:ItsAboutTime,rdf:type,ex:SharknadoMovie)

(3) (ex:ItsAboutTime,ex:depicts,ex:SharksInTornados)

Deductive Reasoning: Given (1,2), conclude (3).

Inductive Reasoning: Given (2,3) (and similar such examples), propose (1).

Abductive Reasoning: Given (1,3), propose (2).

???

???

Reasoning: Summary

(1) If (x,rdf:type,ex:SharknadoMovie) then (x,ex:depicts,ex:SharksInTornados)

(2) (ex:ItsAboutTime,rdf:type,ex:SharknadoMovie)

(3) (ex:ItsAboutTime,ex:depicts,ex:SharksInTornados)

Deductive Reasoning: Given (1,2), conclude (3).

Inductive Reasoning: Given (2,3) (and similar such examples), propose (1).

Abductive Reasoning: Given (1,3), propose (2).

... the only form of reasoning here that is "certain"

RDFS reasoning is deductive ...

Given the above schema, what can we deduce from ...

What conclusions can we deduce?

Some of the conclusions …

• Not shown (for the sake of my/our sanity):

– Everything is of type rdfs:Resource

– All classes are sub-class of rdfs:Resource

– RDF/RDFS properties are of type rdf:Property

Sharktopus just one movie …

Given the above schema, what can we deduce from ...

RDFS definitions apply to any movie ...

RDFS definitions apply to any movie ...

• Not shown (for the sake of my/our sanity):

– Everything is of type rdfs:Resource

– All classes are sub-class of rdfs:Resource

– RDF/RDFS properties are of type rdf:Property

Apply RDFS reasoning using “rules”

 (Don’t worry about rdfD1, rdfs1, rdfs12, rdfs13)

???

???

???

Apply RDFS reasoning using “rules”

 (Don’t worry about rdfD1, rdfs1, rdfs12, rdfs13)

Axiomatic triples: Always true in RDFS

(Don’t worry about greyed-out triples)

Reasoning in RDFS over RDF graph G

1. Add axiomatic triples to G

2. Apply rules exhaustively, adding conclusions
to G, until nothing new found

Will this always finish? Or can it run forever?

So long as we do not “invent” new terms, and axiomatic
triples are finite, the process must end once G has all

possible combinations of terms as triples (or before).

Semantic Web: Logic

* More or less

RDFS (1.1): A Web Standard

 http://www.w3.org/TR/rdf-schema/

Questions?

