
CC7220-1
LA WEB DE DATOS
PRIMAVERA 2024

Lecture 6: Web Ontology Language (OWL) [I]

Aidan Hogan

aidhog@gmail.com

Last time …

Semantic Web: Logic

* More or less

RDF Schema: RDFS

Class c is a sub-class of Class d
If (x,rdf:type,c) then (x,rdf:type,d)

Property p is a sub-property of q
If (x,p,y) then (x,q,y)

Property p has domain class c
If (x,p,y) then (x,rdf:type,c)

Property p has range class c
If (x,p,y) then (y,rdf:type,c)

Today's topic ...

Semantic Web: Logic

* More or less

What can we intuitively conclude about Zia?

What can we intuitively conclude about Zia?

Zia is also a Zebroid!

What kind of reasoning are we using here?

Deductive (mostly)

Very specific to this example

What assumptions do we make to conclude that Zia is a Zebroid?

If x has same sire and dam as y and y is a Zebroid then x is a Zebroid!

What assumptions do we make to conclude that Zia is a Zebroid?

• sire is a sub-property of parent

• dam is a sub-property of parent

What assumptions do we make to conclude that Zia is a Zebroid?

• sire is a sub-property of parent

• dam is a sub-property of parent

• A Zebroid has exactly one parent a Zebra

• A Zebroid has exactly one parent a (¬Zebra and a Equine)

What assumptions do we make to conclude that Zia is a Zebroid?

• sire is a sub-property of parent

• dam is a sub-property of parent

• A Zebroid has exactly one parent a Zebra

• A Zebroid has exactly one parent a (¬Zebra and a Equine)

• A Zebroid is a sub-class of Equine

• An Equine has exactly two parents

What assumptions do we make to conclude that Zia is a Zebroid?

• sire is a sub-property of parent

• dam is a sub-property of parent

• A Zebroid has exactly one parent a Zebra

• A Zebroid has exactly one parent a (¬Zebra and a Equine)

• A Zebroid is a sub-class of Equine

• An Equine has exactly two parents

• Two things cannot be related by sire and dam at the same time

What assumptions do we make to conclude that Zia is a Zebroid?

• sire is a sub-property of parent

• dam is a sub-property of parent

• A Zebroid has exactly one parent a Zebra

• A Zebroid has exactly one parent a (¬Zebra and a Equine)

• A Zebroid is a sub-class of Equine

• An Equine has exactly two parents

• Two things cannot be related by sire and dam at the same time

Which are expressible in RDFS?

What assumptions do we make to conclude that Zia is a Zebroid?

• sire is a sub-property of parent

• dam is a sub-property of parent

• A Zebroid has exactly one parent a Zebra

• A Zebroid has exactly one parent a (¬Zebra and a Equine)

• A Zebroid is a sub-class of Equine

• An Equine has exactly two parents

• Two things cannot be related by sire and dam at the same time

Which are expressible in RDFS?

What assumptions do we make to conclude that Zia is a Zebroid?

• sire is a sub-property of parent

• dam is a sub-property of parent

• A Zebroid has exactly one parent a Zebra

• A Zebroid has exactly one parent a (¬Zebra and a Equine)

• A Zebroid is a sub-class of Equine

• An Equine has exactly two parents

• Two things cannot be related by sire and dam at the same time

Which are expressible in RDFS?

The rest we can express in OWL

Web Ontology Language: OWL

OWL (2): A Web Standard

 https://www.w3.org/TR/owl2-overview/

Formal Underpinnings: Description Logics

:Carmela :Vito

:Sonny :Connie :Fredo :Michael

:Vincent :Mary

For today: A running example

Logical Assumptions

:Vito

:Fredo :Michael

:Vito :hasChild :Connie , :Sonny , :Michael .

:Vito :hasChild :Fredo .

... ?

• Vito has 3 children?
• Vito has at least 3 children?

:Sonny :Connie

:hasChild

Open World Assumption (OWA)

How many children does

Vito have according

to this RDF graph?

Open World Assumption

• RDF(S) and OWL:

– Take an Open World Assumption (OWA):

• Anything not known is not assumed to be false,

simply unknown

• Without further information, Vito may have children

that we don’t know about!

Why might this assumption be important for the Web?

OWA: Assuming Web data to be complete a Bad Idea®.

:Vito

:Fredo :Michael

:Vito :hasChild :Connie , :Sonny , :Michael .

:Vito :hasChild :Fredo .

... ?

• Vito has 3 children?
• Vito has at least 3 children?
• Vito has at least one child!

:Sonny :Connie

:hasChild

No Unique Name Assumption (No UNA)

How many children does

Vito have according

to this RDF graph?

No Unique Name Assumption (No UNA)

• RDF(S) and OWL:

– Do not take a Unique Name Assumption:

• Two or more IRIs may refer to the same thing!

• Without further information, the IRIs we know to be

Vito’s children may refer to one real-world thing!

Why might this assumption be important for the Web?

No UNA: Assuming strict naming agreement on the Web a Bad Idea®.

Let’s start with some RDFS …

rdfs:subPropertyOf

:Carmela :Vito

:husbandOf

:wifeOf

:spouse

:spouse

:Vito :husbandOf :Carmela .

:husbandOf rdfs:subPropertyOf :spouse .

⇒ :Vito :spouse :Carmela .

:Carmela :wifeOf :Vito .

:wifeOf rdfs:subPropertyOf :spouse .

⇒ :Carmela :spouse :Vito .

rdfs:subClassOf

:Mary

rdf:type

rdf:type

:Woman

:Person

:Mary rdf:type :Woman .

:Woman rdfs:subClassOf :Person .

⇒ :Mary rdf:type :Person .

rdfs:domain

:Carmela

:motherOf

:Carmela :motherOf :Fredo .

:motherOf rdfs:domain :Female.

⇒ :Carmela rdf:type :Female .

:Fredo

:Female

rdf:type

rdfs:range

:Carmela

:hasSon

:Carmela :hasSon :Fredo .

:hasSon rdfs:range :Male .

⇒ :Fredo rdf:type :Male .

:Fredo

:Male

rdf:type

(In)Equality in OWL …

:VitoYoung

owl:sameAs

:VitoOld

owl:sameAs

:VitoOld owl:sameAs :VitoYoung .

owl:sameAs

:VitoOld
:VitoYoung

:Mary :Vincent

:hasGrandson :granddaughterOf
:hasGrandson :granddaughterOf

:Vito

:Fredo :Michael

:Vito :hasChild :Connie, :Sonny, :Michael, :Fredo .

:Connie owl:differentFrom :Sonny, :Michael, :Fredo .

• Vito has at least two children!

:Sonny :Connie

:hasChild

owl:differentFrom

owl:differentFrom

How many children does

Vito have according

to this RDF graph?

Inconsistency in OWL …

:VitoYoung :VitoOld

owl:sameAs

owl:differentFrom

:VitoOld owl:sameAs :VitoYoung .

:VitoOld owl:differentFrom :VitoYoung .

⇒ FALSE

Property Axioms in OWL …

:Vito :parentOf :Michael .

:Michael :hasChild :Mary .

:parentOf owl:equivalentProperty :hasChild .

⇒ :Vito :hasChild :Michael .

⇒ :Michael :parentOf :Mary .

owl:equivalentProperty

:Vito :Mary :Michael

:parentOf :hasChild

:hasChild :parentOf

:Carmela :parentOf :Sonny .

:Vincent :childOf :Sonny .

:parentOf owl:inverseOf :childOf .

⇒ :Sonny :parentOf :Vincent .

⇒ :Sonny :childOf :Carmela .

owl:inverseOf

:Vincent :Sonny

:parentOf :childOf

:parentOf

:Carmela

:childOf

owl:SymmetricProperty

:Connie

:sibling

:Connie :sibling :Fredo .

:sibling rdf:type owl:SymmetricProperty .

⇒ :Fredo :sibling :Connie .

:sibling

:Fredo

:Carmela

owl:TransitiveProperty

:Carmela :ancestorOf :Michael .

:Michael :ancestorOf :Mary .

:ancestorOf rdf:type owl:TransitiveProperty .

⇒ :Carmela :ancestorOf :Mary .

:Mary :Michael

:ancestorOf :ancestorOf

:ancestorOf

:Sonny

owl:propertyChainAxiom

:Sonny :brotherOf :Michael .

:Michael :parentOf :Mary .

:uncleOf owl:propertyChainAxiom (:brotherOf :parentOf) .

⇒ :Sonny :uncleOf :Mary .

:Michael

:brotherOf :parentOf

:uncleOf

:Mary

:similarTo rdf:type owl:ReflexiveProperty .

⇒ :Connie :similarTo :Connie .

 :Fredo :similarTo :Fredo .

 # everything :similarTo itself

owl:ReflexiveProperty

:Connie :Fredo

:similarTo :similarTo

:VitoYoung :VitoOld
:VitoYoung

owl:FunctionalProperty

:VitoOld

:Fredo :hasBioFather :VitoOld .

:Fredo :hasBioFather :VitoYoung .

:hasBioFather rdf:type owl:FunctionalProperty .

⇒ :VitoOld owl:sameAs :VitoYoung .

:Fredo

:hasBioFather

Aside …

• Tom Hagen, the adopted son of Vito

– Maybe he has two fathers?

What if we said :hasFather was functional?

:VitoYoung :Connie

owl:InverseFunctionalProperty

:VitoOld

:VitoOld :bioFatherOf :Connie .

:VitoYoung :bioFatherOf :Connie .

:bioFatherOf rdf:type owl:InverseFunctionalProperty .

⇒ :VitoOld owl:sameAs :VitoYoung .

:bioFatherOf

:VitoOld
:VitoYoung

owl:hasKey

:Connie a :Singleton ; :hasBioMother :Carmela ; :born “1922-04-16”^^xsd:date .

:Constanza a :Singleton ; :hasBioMother :Carmela ; :born “1922-04-16”^^xsd:date .

:Singleton owl:hasKey (:hasBioMother :born) .

⇒ :Connie owl:sameAs :Constanza .

:Constanza

:Carmela

:Singleton

1922-04-16

:born

rdf:type

:Connie

:hasBioMother

owl:IrreflexiveProperty

:Fredo :hasBrother :Fredo .

:hasBrother rdf:type owl:IrreflexiveProperty .

⇒ FALSE

:Fredo

:hasBrother

:VitoYoung

owl:AsymmetricProperty

:Fredo

:hasFather

:hasFather

:Fredo :hasFather :VitoYoung .

:VitoYoung :hasFather :Fredo .

:hasFather rdf:type owl:AsymmetricProperty .

⇒ FALSE

:Sonny :VitoYoung

owl:propertyDisjointWith

:hasFather

:hasSon

:Sonny :hasFather :VitoYoung .

:Sonny :hasSon :VitoYoung .

:hasSon owl:propertyDisjointWith :hasFather .

⇒ FALSE

:Connie

Negative property assertions

:Fredo

¬:hasMother

:hasMother

[] owl:sourceIndividual :Fredo ;
owl:assertionProperty :hasMother ;
owl:targetIndividual :Connie .

:Fredo :hasMother :Connie .

⇒ FALSE

Class Axioms in OWL

:Vincent

owl:equivalentClass

rdf:type

rdf:type

:Vincent rdf:type :Human .

:Mary rdf:type :Person .

:Human owl:equivalentClass :Person .

⇒ :Vincent rdf:type :Person .

 :Mary rdf:type :Human .

:Human

:Person

:Mary

rdf:type

rdf:type

owl:disjointWith

:Lawful

rdf:type

:Vincent rdf:type :MafiaBoss , :Lawful .

:MafiaBoss owl:disjointWith :Lawful .

⇒ FALSE

:MafiaBoss

:Vincent

rdf:type

owl:disjointWith (ii)

:Lawful

rdf:type

:Vincent rdf:type :MafiaBoss .

:Mary rdf:type :Lawful .

:MafiaBoss owl:disjointWith :Lawful .

⇒ :Vincent owl:differentFrom :Mary

:MafiaBoss

:Vincent

rdf:type

:Mary

owl:differentFrom

Class Definitions in OWL

Description Logics

:Parent

⊓
:Mother

owl:intersectionOf (⊓) [i]

:Female

:Carmela

rdf:type rdf:type

:Carmela rdf:type :Mother .

:Mother rdfs:subClassOf [owl:intersectionOf (:Female :Parent)]

⇒ :Carmela rdf:type :Female , :Parent .

rdf:type

⊑

:Parent

owl:intersectionOf (⊓) [ii]

:Female

:Carmela

rdf:type rdf:type rdf:type

:Mother

≡ ⊓

:Carmela rdf:type :Female , :Parent .

:Mother owl:equivalentClass [owl:intersectionOf (:Female :Parent)]

⇒ :Carmela rdf:type :Mother .

:Vincent rdf:type :Lawful .

:Person owl:equivalentClass [owl:unionOf (:Criminal :Lawful)]

⇒ :Vincent rdf:type :Person .

owl:unionOf (⊔) [i]

:Criminal :Person

⊔

:Vincent

rdf:type rdf:type

≡
:Lawful

:Vincent

rdf:type

owl:unionOf (⊔) [ii]

:Vincent rdf:type :Person .

:Person owl:equivalentClass [owl:unionOf (:Criminal :Lawful)]

⇒ # :Vincent must be either :Lawful or :Criminal (or both)

:Criminal :Person

⊔ ≡
:Lawful

:Vincent

rdf:type

owl:disjointUnionOf (⊔D)

:Criminal :Person

≡
:Lawful

⊔D

:Vincent rdf:type :Person .

:Person owl:equivalentClass

 [owl:disjointUnionOf (:Criminal :Lawful)]

⇒ # :Vincent must be either :Lawful or :Criminal (not both)

:Mary rdf:type :Alive .

:Dead owl:equivalentClass [owl:complementOf :Alive]

⇒ [] owl:sourceIndividual :Mary ; owl:targetProperty rdf:type ;
 owl:targetIndividual :Dead .

:Mary

:Alive

owl:complementOf (¬) [i]

rdf:type ¬rdf:type

:Dead

≡ ¬

:Vito rdf:type :Dead .

:Dead owl:equivalentClass [owl:complementOf :Alive]

⇒ [] owl:sourceIndividual :Vito ; owl:targetProperty rdf:type ;
 owl:targetIndividual :Alive .

:Alive

owl:complementOf (¬) [ii]

rdf:type

:Dead

≡ ¬

:Vito

¬ rdf:type

,

owl:oneOf ({})

{

:Godfather owl:equivalentClass

 [owl:oneOf (:Vito :Michael :Vincent)]

⇒ :Vito rdf:type :Godfather .

⇒ :Michael rdf:type :Godfather .

⇒ :Vincent rdf:type :Godfather .

:Godfather

}
:Vito :Michael :Vincent
,

rdf:type rdf:type rdf:type

≡

owl:allValuesFrom (∀) [i]

:Person

∀

rdf:type

:Person

:hasParent. ⊑

:Mary rdf:type :Person ; :hasParent :Michael .

:Person rdfs:subClassOf

 [owl:allValuesFrom :Person ; owl:onProperty :hasParent]

⇒ :Michael rdf:type :Person .

:Michael :Mary

:hasParent

rdf:type

owl:allValuesFrom (∀) [ii]

:Person

∀

rdf:type

:Person

:hasParent. ≡

:Choppy

rdf:type

:Lawnmower

⊑¬∃ :hasParent

Need to be careful using ≡ with owl:allValuesFrom!

If all of X’s parents are :Persons, X is a :Person.

But :Choppy does not have parents, so all its parents are trivially anything!

Thus :Choppy must be a :Person!

owl:someValuesFrom (∃) [i]

:Parent

rdf:type

:Person

:Michael :hasChild :Mary . :Mary rdf:type :Person .

:Parent owl:equivalentClass

 [owl:someValuesFrom :Person ; owl:onProperty :hasChild]

⇒ :Michael rdf:type :Parent .

:Mary :Michael

:hasChild

rdf:type

∃
:hasChild. ≡

?

owl:someValuesFrom (∃) [ii]

:Parent

rdf:type

:Person

:Michael rdf:type :Parent .

:Parent owl:equivalentClass

 [owl:someValuesFrom :Person ; owl:onProperty :hasChild]

⇒ :Michael :hasChild _:someone . _:someone rdf:type :Person .

? :Michael

:hasChild

rdf:type

∃
:hasChild. ≡

owl:hasValue (∃P.{x}) [i]

∃
:species.

:species

⊑ { }

:Mary rdf:type :Person .

:Person rdfs:subClassOf

 [owl:hasValue :H.Sapiens ; owl:onProperty :species]

⇒ :Mary :species :H.Sapiens .

:H.Sapiens

:Mary

:Person

rdf:type

owl:hasValue (∃P.{x}) [i]

∃
:species.

:species

{ }

:Mary :species :H.Sapiens .

:Person owl:equivalentClass

 [owl:hasValue :H.Sapiens ; owl:onProperty :species]

⇒ :Mary rdf:type :Person .

:H.Sapiens

:Mary

:Person

rdf:type

≡

owl:hasSelf (Self) [i]

Self(:loves) ⊑

:loves

:Michael rdf:type :Narcissist .

:Narcissist rdfs:subClassOf

 [owl:hasSelf true ; owl:onProperty :loves]

⇒ :Michael :loves :Michael .

:Michael

rdf:type

:Narcissist

owl:hasSelf (Self) [ii]

Self(:loves)

:loves

:Michael :loves :Michael .

:Narcissist owl:equivalentClass

 [owl:hasSelf true ; owl:onProperty :loves]

⇒ :Michael rdf:type Narcissist .

:Michael

rdf:type

:Narcissist

≡

Cardinality restrictions (≥, ≤,=)

• Define a class with a given number of values

for a property:

– Exact: :Person ⊑ = 2 (:hasBioParent)

– Max: :Monogamist ⊑ ≤ 1 (:hasCurrentSpouse)

– Min: :Parent ≡ ≥ 1 (:hasChild)

:Person rdfs:subClassOf [owl:cardinality 2 ;
 owl:onProperty :hasBioParent] .

:Monogamist rdfs:subClassOf [owl:maxCardinality 1 ;
 owl:onProperty :hasCurrentSpouse] .

:Parent owl:equivalentClass [owl:minCardinality 1 ;
 owl:onProperty :hasChild] .

Qualified cardinality restrictions (≥, ≤,=)

• Define a class with a given number of values

from a given class for a property:

– Exact: :Biped ≡ =2 (:hasLimb.Leg)

– Max: :Mafia ⊑ ≤ 1 (:hasCurrentMember.Godfather)

– Min: :Twin ⊑ ≥ 1 (:sibling.Twin)

:Twin rdfs:subClassOf [owl:minQualifiedCardinality 1 ;
 owl:onProperty :sibling ;
 owl:onClass :Twin] .

:Biped owl:equivalentClass [owl:qualifiedCardinality 2 ;
 owl:onProperty :hasLimb ;
 owl:onClass :Leg] .

:Mafia rdfs:subClassOf [owl:maxQualifiedCardinality 1 ;
 owl:onProperty :hasCurrentMember ;
 owl:onClass :Godfather] .

, {

⇒ :VitoYoung must be owl:sameAs :Vito or :Michael or :Vincent

:Godfather

}
:Vito :Michael :Vincent
, ≡

Slides are examples, not definitions

:VitoYoung

rdf:type

• sire is a sub-property of parent

• dam is a sub-property of parent

• A Zebroid has exactly one parent a Zebra

• A Zebroid has exactly one parent a (¬Zebra and a Equine)

• A Zebroid is a sub-class of Equine

• An Equine has exactly two parents

• Two things cannot be related by sire and dam at the same time

Questions?

