
CC7220-1
LA WEB DE DATOS

PRIMAVERA 2018

Lecture 7: SPARQL [1.0]

Aidan Hogan

aidhog@gmail.com

Last time …

Semantic Web: Data → Rules → Query → Output*
* More or less

Today's Topic

Semantic Web: Data → Rules → Query → Output*
* More or less

First SPARQL (1.0)
Then SPARQL 1.1

SPARQL: Query Language for RDF

How to ask: “Who stars in ‘Sharknado’?”

SPARQL: Query Language for RDF

Query: Solutions:

SPARQL: Prefix declarations

SPARQL: prefix declarations

• Shortcuts for IRIs (exactly like in Turtle)

SPARQL: clause

SPARQL: clause

• Specifies what to match in the data

“Triple pattern”

(a triple with variables)

SPARQL: clause

Query: Solutions:

SPARQL: clause

How to ask: “What movies did the stars of ‘Sharknado’ also star in?”

SPARQL: Basic Graph Patterns

Query: Solutions:

SPARQL: Basic Graph Patterns

Query:

“Basic Graph Pattern”

(a set of triple patterns)

SPARQL: Join Variables

Query:

“Join Variable”

(a variable appearing multiple times)

SPARQL: Disjunction

How to ask: “What are the titles of the (first two) movies in the Sharknado series?”

SPARQL: Disjunction ()

Query: Solutions:

SPARQL: Left-join

How to ask: “Give me the titles of all movies and, if available, their first-aired date?”

SPARQL: Left-join ()

Query: Solutions:

“UNBOUND Variable”

(a variable without a binding in a solution)

SPARQL: Filtering results

How to ask: “What movies were first aired in 2014?”

SPARQL:

Query: Solutions:

“Empty Results”

Any problem here? … be careful comparing dates without time-zones!

… also missing the xsd: prefix ;)

SPARQL:

Query:

What happens in this case where ?date bound
in data to a string?

s (and other functions we see later) expect certain
types. If not given, a type error is given.

SPARQL: Boolean operators

• s evaluate as , or

• Only results evaluating as are returned

• Can apply AND () or OR ()

• Can also apply NOT ()

– →

SPARQL Operators

SPARQL Functions: Existence, equality, if ...

SPARQL Functions: Terms

SPARQL Functions: Strings

SPARQL Functions: Numerics

SPARQL Functions: Temporal

SPARQL Functions: Hashing

SPARQL: Casting between types

• Y: always allowed

• N: never allowed

• M: depends on value
– e.g., can be mapped to but cannot

SPARQL: clause example (i)

Query:

What solutions would this query return?

Solutions:

SPARQL: clause example (ii)

Query:

What solutions would this query return?

Solutions:

Can do a closed-world style of negation!

SPARQL: Query Types

SPARQL: with

Query: Solutions:

SPARQL: with projection

Query:
DEFAULT “Bag Semantics”

(number of results
returned must
correspond to

number of matches
in data)

Solutions:

SPARQL: with

Query:
DISTINCT: “Set Semantics”

(each result row
must be unique)

Solutions:

SPARQL: with

Query: Solutions:
OR

May (but do not need to)
return duplicates.

(This allows the engine do whatever is
most efficient.)

SPARQL:

Query: Solutions:

Returns if
there is a match,

otherwise.

SPARQL:

Query: Solutions:

Returns an RDF graph based on the
matching clause.

SPARQL: (non-normative feature)

Query: Solutions:

Returns an RDF graph “describing” the returned
results. This is an non-normative feature. What

should be returned is left open.

SPARQL: Solution Modifiers

Solution modifiers

•

– Can be used to order results

– By default ascending (), can specify descending ()

– Can order lexicographically on multiple items

•

– Return only results

•

– Skip the first results

How might we ask for the second and third most recently released movies?

Strictly speaking, by default, no ordering is applied.
Hence OFFSET means nothing without ORDER BY.

However, some engines support a default ordering
(e.g., the order of computation of results).

Solution modifiers

How might we ask for the second and third most recently released movies?

The order of execution is always:
ORDER→ OFFSET → LIMIT

Changing the order of LIMIT/OFFSET makes no
difference to the query solutions.

ORDER BY must come before LIMIT/OFFSET
according to the query syntax

SPARQL: Named Graphs

but first: context

Context ...

Importance of context

Without context

With context

With context

With context

With context

With context

With context

Data needs "context"?

Data needs context?

Data needs context?

Data needs context?

Is this context? Or is this data?

Data needs context?

Is this context? Or is this data?

DATA CONTEXT

With context

Without context

Without context

Without context

Without context

*
But how to represent as a graph?

Context as graph data:
Representation

Wikidata

Wikidata: Qualifiers

Qualified Statements: Quins

Qualified Statements: Quins

Qualified Statements: Quins

Qualified Statements: Sextuples

Qualified Statements: Sextuples

Qualified Statements: Sextuples

Qualified Statements: Quads + Triples

Qualified Statements: Quads + Triples

Qualified Statements: Quads + Triples

How to represent this as a graph?

Property Graph

How to represent this as a graph?

RDF*

How to represent this as a graph?

[Hartig 17]

RDF*

How to represent this as a graph?

[Hartig 17]

Named Graphs

How to represent this as a graph?

RDF Reification

How to represent this as a graph?

n-ary Relations

How to represent this as a graph?

Singleton Properties

How to represent this as a graph?

[Nguyen et al. 14]

Hoganification

How to represent this as a graph?

[Hogan 18]

Qualified Statements (quads + triples)

• Beyond RDF graphs

– Property graphs ✓

– RDF* ✓

– Named Graphs ✓

• Good ol' RDF graphs

– Reification ✗

– n-ary relations ✗

– Singleton properties✗

– Hoganification ✗

Qualified Statements (quads + triples)

• Beyond RDF graphs

– Property graphs ✓

– RDF* ✓

– Named Graphs ✓

• Good ol' RDF graphs

– Reification ✗

– n-ary relations ✗

– Singleton properties✗

– Hoganification ✗

SPARQL: Named Graphs

SPARQL defined over a Dataset

Core idea: SPARQL can support multiple RDF graphs, not just one.
When using SPARQL, you can partition your data into multiple graphs.

The default graph is chosen if you don’t specify a graph.
Otherwise you can explicitly select a named graph using it’s IRI name.

An example dataset

Creating a dataset for a query

•

– Used to define a default graph for the query using graph names

– If multiple graphs are specified, they are RDF-merged

•

– Used to select the active named graphs to be used for the query

Using either feature clears the index dataset

Creating a dataset for a query

Creating a dataset for a query

Creating a dataset for a query

RDF merge: A quick reminder

How should we combine these two RDF graphs?

RDF Merge: A quick reminder

How should we combine these two RDF graphs?

Creating a dataset for a query

Querying the named graphs in a dataset

• We can query parts of the dataset using …

• : specifies the URI of a named graph from
which results or a variable that ranges over all
named graphs

– Does not access the default graph!

– If not specified, default graph is accessed

An example query

Query:

What solutions would this query return?

Solutions:

No clause so answers
come from default graph only

Using

Query:

What solutions would this query return?

Solutions:

No clause so answers come from default graph
defined by (old default graph cleared)

Using

Query:

What solutions would this query return?

Solutions:

No clause so answers come from default graph,
which is empty (since old default graph cleared)!

Using with a variable

Query:

What solutions would this query return?

Solutions:

clause only ranges over the named graphs.

Using with a name

Query:

What solutions would this query return?

Solutions:

Using with

Query:

What solutions would this query return?

Solutions:

No named graphs specified!

Using with

Query:

What solutions would this query return?

Solutions:

accesses the one and only named graph

Using with and

Query:

What solutions would this query return?

Solutions:

Questions?

