CC7220-1
LA WEB DE DATOS
PRIMAVERA 2018

LECTURE 6: WEB ONTOLOGY LANGUAGE (OWL) [lII]

Aidan Hogan
aidhog@gmail.com

LAST TIME ...

DOMINO TILING PROBLEM (UNDECIDABLE!)

* Input: A set of Dominos (like D)
* Qutput:

— true if there exists a valid infinite tiling (like t)
— false otherwise

TODAY's TOPIC

REDUCE FROM TILING TO OWL ENTAILMENT?

O o
B I
L1
I
EREENE
Does D have an Does OWL ontology
infinite tiling? O entail O'?

How can we encode a Domino Tiling question into an
OWL ontology entailment question?

SOME DESCRIPTION LOGIC SYMBOLS

e [:sub-class/-property

e =:equivalent class/property

* Ll:union

* [1:intersection

e T: top (class of everything)

e |:bottom (empty class)

e :exists (someValuesFrom/hasValue)
e V:forall (allValuesFrom)

 —:not (complement, negation)

e — (superscript minus): inverse property
 {}: enumeration (owl:oneOf)

e Self, Trans, Dom, etc.: where symbols not available
e o:property chain

e (C(x): class membership
 P(xy):atriple (x,P,y)

DOMINO TILING PROBLEM (UNDECIDABLE!)

* Input: A set of Dominos (like D)
* Qutput:

— true if there exists a valid infinite tiling (like t)
— false otherwise

DOMINO TILING PROBLEM: SOME TERMINOLOGY

e Tile: A Piece

DOMINO TILING PROBLEM: SOME TERMINOLOGY

e Tile: A Piece
e Domino: Group of Tiles of same colour

CAN REDUCE FROM OWL ENTAILMENT TO TILING

1. Each tile must have a domino type

— Define tiles as a class T, a union of classes for each domino type:
T EE_l)l LJ_[)Q Ll .. .LJ_[)k__l LJ_[)k

:T owl:equivalentClass
[owl:unionOf (:D1 ... :Dk)] .

)
en,

CAN REDUCE FROM OWL ENTAILMENT TO TILING

Now what else do we need to encode?

CAN REDUCE FROM OWL ENTAILMENT TO TILING

2. Each tile can only be one domino type

How can we encode this in OWL?

CAN REDUCE FROM OWL ENTAILMENT TO TILING

2. Each tile can only be one domino type

— Define dominos types as pairwise disjoint:
Df,;|_|Dj EJ_(fOI'1§7J<]§]€)

:T owl:equivalentClass #covers 1 and 2!!
[owl:disjointUnionOf (:D1 ... :Dk)] .

ol

CAN REDUCE FROM OWL ENTAILMENT TO TILING

1. Each tile must have a domino type

2. Each tile can only be one domino type

Now what else do we need to encode?

CAN REDUCE FROM OWL ENTAILMENT TO TILING

3. Each tile must have a tile to the right and above

How can we encode this in OWL?

CAN REDUCE FROM OWL ENTAILMENT TO TILING

3. Each tile must have a tile to the right and above

— Define that a tile has some values from tile for right/above:
TC (Ir.71)N (da.T)

:T rdfs:subClass0f
[owl:intersectionOf (
[owl:someValuesFrom :T ; owl:onProperty :r]
[owl:someValuesFrom :T ; owl:onProperty :a]

) 1.

1
4

CAN REDUCE FROM OWL ENTAILMENT TO TILING

1. Eac
2. Eac
3. Eac

N i

N i

N i

e must have a domino type
e can only be one domino type

e must have a tile to the right and above

Are we there yet?

above

above T

above

CAN REDUCE FROM OWL ENTAILMENT TO TILING

4. Tiles to the right and tiles above must match colour

How can we encode this in OWL?

CAN REDUCE FROM OWL ENTAILMENT TO TILING

4. Tiles to the right and tiles above must match colour

Dy CVr.(|_| D) M Va.(|_| D" %@

D'€R(D;) D’'€A(D)

DyCvr.(|| D)nva(|| D
D’€R(Dy,) D’€A(Dy,)

Where:
R(D;) denotes all dominos that can be to the right of D;
A(D;) denotes all dominos that can be above D;

CAN REDUCE FROM OWL ENTAILMENT TO TILING

1. Each tile must have a domino type

Each tile can only be one domino type

Each tile must have a tile to the right and above

I

Tiles to the right and tiles above must match colour

for 1 >=n >= Kk
:Dn owl:equivalentClass
[owl:intersectionOf
([a owl:Restriction ;
owl:allValuesFrom [owl:unionOf |DnA|] ;
owl:onProperty :above]
[a owl:Restriction ;
owl:allValuesFrom [owl:unionOf |DnR|] ;
owl:onProperty :right 1)]
|[DnA| : list of dominos that can go above :Dn

|DnR| : list of dominos that can go right of :Dn

CAN REDUCE FROM OWL ENTAILMENT TO TILING

1. Each tile must have a domino type
Each tile can only be one domino type

2
3. Each tile must have a tile to the right and above
4

Tiles to the right and tiles above must match colour

Are we there yet?

right »

above T

above

CAN REDUCE FROM OWL ENTAILMENT TO TILING

1. Each tile must have a domino type

Each tile can only be one domino type

2
3. Each tile must have a tile to the right and above
4

Tiles to the right and tiles above must match colour

Are we there yet?

right ight »
right » -
above
above
@ e \B R

CAN REDUCE FROM OWL ENTAILMENT TO TILING

1.
2.
3.

Eac
Eac

Eac

N i

N i

N i

e must have a domino type

e can only be one domino type

e must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right

How can we encode this in OWL?

above above

CAN REDUCE FROM OWL ENTAILMENT TO TILING

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above
4. Tiles to the right and tiles above must match colour
5. Tile right then above = Tile above then right

— Define diagonal tile using two property chains (above-right/right-above)
— Declare functional (a tile can only have one such diagonal tile)

| |

above above

CAN REDUCE FROM OWL ENTAILMENT TO TILING

5. Tile right then above = Tile above then right
— Define diagonal tile using two property chains (above-right/right-above)
— Declare functional (a tile can only have one such diagonal tile)

dCaor, dCroa, Func(d) %%

T [— right —»] | — Tight »

:d owl:propertyChainAxiom (:a :r)
:d owl:propertyChainAxiom (:r :a)
:d a owl:FunctionalProperty .

CAN REDUCE FROM OWL ENTAILMENT TO TILING

Are we there yet?

YES, FINALLY!

BUT WHAT'S THE ENTAILMENT QUESTION?

TED1|_|D2|_|...

T C (Ir.T) M

D1 L VT‘(
D’'eR(D;)

D’'eR(Dy,)
dC ro

dC aor,

DZ'|_|D]' EJ_(fOI' 1§Z<]§/€)
(a.T)

|_| D) MVa.(

| | D)nva(

L Dy_q1 U Dy

fit
L])

D’'€A(Dy)

]

D)

What should we
putin ?

D'€A(Dy,)

Func(d)

a,

277

Goal: Ontology O entails

if and only if D has no infinite tiling

BUT WHAT'S THE ENTAILMENT QUESTION?

TED1|_|D2|_|...

T C (Ir.T) M
D1 L VT‘(

(a.T)
D’'€R(D»)

D’'eR(Dy,)

dCaor, dCroa,

L Dy_q1 U Dy
DZHD]EJ_(fOI'ISZ<]Sk)

|_| D) MVa.(

| | D)nva(

fit
L])

D’'€A(Dy)

]

D’e A(Dy)
Func(d)

D)

T=1

Goal: Ontology O entails
If T can have any member (a

if and only if D has no infinite tiling

“tile”), it must have an infinite tiling!

If T can have no member, it must not have an infinite tiling.

COULD ALSO USE SATISFIABILITY ...

T=D;UDy ... Dy_1U D T@;
D;MD; C1L(for1<i:<j<k)

T C (Ir.T) M (Ja.T)

Dicvr(|| D)nvae(|| D)

D'€R(D1) D'€A(Dy)

DyCvr.(|| DHnve(|| D)
D’GR(Dk) D’EA(Dk)
dCaor, dCroa, Func(d)

T(x)

Goal: Ontology O is satisfiable if and only if D has an infinite tiling

Here, x is an arbitrary fresh term

OWL ENTAILMENT/SATISFIABILITY IS UNDECIDABLE!

FANTASTIC

uononpay

NOTJUST OWL ISUNDECIDABLE ...

Knowledge representation:
Tell machines stuff about the world in a formalism they can
(deductively) reason over using automated methods.

¢ Sagqstte
: f)
4 /
$ HB : " LY

:

o o
NS o
34 :

bibes 3

e M

Nty
\ ateail ™

[aterdisell

d eI 4 1

§ it T H+

0'.~ Aot EYay

= HHodrin e

%+ A B

4 cmas anl b on d

b rp b ++

I L o LAAL m
O N

B H

. et T

! o b

b

s g
-

b iE I e

But if we tell them everything ...
Reasoning becomes undecidable!

OWLENTAILMENT/SATISFIABILITY IS UNDECIDABLE ...

| \Wellgeat Whararewesupposedtodonow? |

... CHOOSE TWO

Accepts
any ontology

OWL ENTAILMENT/SATISFIABILITY IS UNDECIDABLE ...

Well great. What are we supposed to do now?

* Accept incomplete reasoners that halt

— Complete language, incomplete reasoning, halts

* Accept complete reasoners that may not halt

— Complete language, complete reasoning, may not halt

e Restrict OWL so reasoning becomes decidable

— Restricted language, complete reasoning, halts

INCOMPLETE REASONERS
THAT HALT

OPTIONS ...

* Accept incomplete reasoners that halt

— Complete language, incomplete reasoning, halts

IN THE LABS ...

Reasoner Entailments
777

Ontology

But what is the reasoner actually doing?

IN THE LABS ...

Reasoner ntailments
??7?

Ontology

But what is the reasoner actually doing?

Incomplete materialisation using rules.

RECALL RULES FOR RDFS ...

1D if ¢ matches then G RDFSp-entails
rdfD2 ?7x 7p 7y . 7p a rdf:Property .

rdfs2 ?p rdfs:domain 7?c . 7x 7p 7y . ?X a 7cC .

rdfs3 ?p rdfs:range ?c . 7x 7p 7y . ?y a ?c .

rdfsqga ?x 7p 7y . ?X a rdfs:Resource .

rdfsgb ?x 7p 7y . 7y a rdfs:Resource .

rdfs5 7p rdfs:subPropertyOf 7q . 7x 7p 7y . ?X 7q 7Y .

rdfs6 ?p a rdf:Property . 7p rdfs:subPropertyOf 7p .
rdfs7 7p rdfs:subPropertyOf 7q . 7q rdfs:subPropertyOf ?r . 7p rdfs:subPropertyOf 7r .
rdfs8 ?c a rdfs:Class . ?c rdfs:subClassOf rdfs:Resource .
rdfsg ?c rdfs:subClassOf ?d . ?7x a 7c . ?Xx a ?d .

rdfsio ?c a rdfs:Class . ?c rdfs:subClassOf 7c .

rdfsi1

?¢ rdfs:subClassQOf ?d . ?d rdfs:subClassOf e . ?¢ rdfs:subClassOf 7e .

Al

(Don’t worry about rdfD1, rdfs1, rdfs12, rdfs13)

Now we need rules to cover (some of) OWL ...

STANDARD SET OF OWL RULES: OWL 2 RL/RDF

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_ Rules

OWL 2 Web Ontology Language
Profiles (Second Edition)

W3C Recommendation 11 December 2012

c
O
]
@
0
c
)
£
£
O
v
)
o
U
g

This version:
htip:/Amww.w3.org/TR/2012/REC-owl2-profiles-20121211/
Latest version (series 2):
http:./AMmww.w3.org/TR/owl2-profiles/
Latest Recommendation:
http./AMmww.w3.org/TR/owl-profiles
Previous version:
http:/mww.w3.0rg/TR/2012/PER-owl2-profiles-20121018/

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

IN THE LABS ...

Reasoner ntailments
??7?

Ontology

But what is the reasoner actually doing?

Incomplete materialisation using RDFS & OWL 2 RL/RDF rules.

OWL 2 RL/RDF RULE EXAMPLES: EQUALITY

ID if G matches then ¢ OWL-entails
?7s owl:sameAs ?s .
EQ-REF ?s ?7p 70 . ?7p owl:sameAs 7p .
70 owl :sameAs ?0 .
EQ-SYM ?7x owl:sameAs ?y . 7y owl:sameAs ?x .
EQ-TRANS 7x owl:sameAs ?y . ?y owl:sameAs 7z . ?x owl:sameAs ?z .
EQ-REP-S ?s owl:sameAs ?s’ . ?s ?p 70 . | . e
EQ-REP-P ?p owl:sameAs ?p’ . ?s ?p 70 . ?s ?p’ 70 .
EQ-REP-O 7?0 owl:sameAs 20’ . ?s 7p 70 . ?7s ?p 20" .
EQ-DIFF1 ?x owl:sameAs ?y ; owl:differentFrom ?y . | 27?2

OWL 2 RL/RDF RULE EXAMPLES: EQUALITY

ID if ¢ matches then ¢ OWL-entails
?7s owl:sameAs ?s .
EQ-REF ?s ?7p 70 . ?7p owl:sameAs 7p .
70 owl :sameAs ?0 .
EQ-SYM ?7x owl:sameAs ?y . 7y owl:sameAs ?x .
EQ-TRANS 7x owl:sameAs ?y . ?y owl:sameAs 7z . ?x owl:sameAs ?z .
EQ-REP-S ?s owl:sameAs ?s’ . ?s ?p 70 . ?s’ 7p 70 .
EQ-REP-P ?p owl:sameAs ?p’ . ?s ?p 70 . ?s ?p’ 70 .
EQ-REP-O 7?0 owl:sameAs 20’ . ?s 7p 70 . ?7s ?p 20" .
EQ-DIFF1 7?x owl:sameAs ?y ; owl:differentFrom ?y . FALSE

OWL 2 RL/RDF RULE EXAMPLES: PROPERTIES

1D if ¢ matches then ¢ OWL-entails
PRP-DOM ?p rdfs:domain ?c . ?x 7p ?y . ?x a?c .
PRP-RNG ?prdfs:range ?7c . ?7x 7p ?y . 7y a ?c .
PRP-FP ?p a owl:FunctionalProperty . ?x ?2p ?y; . ?x ?p ?y2 . | 27?2
PRP-IFP ?7p a owl:InverseFunctionalProperty . ?x1 7p ?y . ?xo 7p ?y . 77Xy owl:sameAs 7?xs .
PRP-IRP ?p a owl:IrreflexiveProperty . ?7x 7p ?x . FALSE
PRP-SYMP 7p a owl:SymmetricProperty . ?x ?p ?y . | 277
PRP-ASYP 7p a owl:AsymmetricProperty . ?x ?7p ?y . ?y 7p ?x . FALSE
PRP-TRP 7?p aowl:TransitiveProperty . ?x ?7p ?y . 7y ?p ?z . | 277
PRP-SPO1 7?p; rdfs:subPropertyOf ?ps . 7x ?py ?y . X ?p1 ?z .
PRP-SPO2 zp owl :propertyChainAxiom (?p1 ... 7p,) . 241 20 Eniy -
‘a; ?pp ?a2 Ay, "pn Taptl -
PRP-EQP1 7?p; owl:equivalentProperty ?ps . ?x 7p; ?y . X ?po ?y .
PRP-EQP2 7p; owl:equivalentProperty ?ps . 7x ?p2 ?y . ?X ?p1 ?y .
PRP-PDW ?pj owl:propertyDisjointWith ?ps . ?x ?p1 ?y . 72X ?pg ?y . FALSE
PRP-INV1 ?p; owl:inverseOf ?py . 7x ?p; ?y . | 2?7
PRP-INV2 7?p; owl:inverseOf ?ps . ?y ?pa 7x . ?X ?p1 ?y .
7c owl:hasKey (?p1 ... 7pn) .
PRP-KEY 77X a?c; ?p1 ?z1; ... ; 7pn ?Z, . ?7x owl:sameAs ?y .
vyarc; 1?21 ... o 2, .

OWL 2 RL/RDF RULE EXAMPLES: PROPERTIES

1D if ¢ matches then ¢ OWL-entails
PRP-DOM ?p rdfs:domain ?c . ?x 7p ?y . ?x a?c .
PRP-RNG ?prdfs:range ?7c . ?7x 7p ?y . 7y a ?c .
PRP-FP 7p a owl:FunctionalProperty . ?x ?p ?y1 . ?X 7p ?ys . ?y1 owl:sameAs ?y, .
PRP-IFP ?7p a owl:InverseFunctionalProperty . ?x1 7p ?y . ?Xxo 7p ?y . 77Xy owl:sameAs ?xs .
PRP-IRP ?p a owl:IrreflexiveProperty . ?7x 7p ?x . FALSE
PRP-SYMP 7p a owl:SymmetricProperty . ?x ?p ?y . Yy p ?x .
PRP-ASYP 7p a owl:AsymmetricProperty . ?x ?7p ?y . ?y 7p ?x . FALSE
PRP-TRP 7?p aowl:TransitiveProperty . ?x ?7p ?y . 7y ?p ?z . X p ?z .
PRP-SPO1 7?p; rdfs:subPropertyOf ?ps . 7x ?py ?y . X ?p1 ?z .
PRP-SPO2 zp owl :propertyChainAxiom (?p1 ... 7p,) . 241 20 Eniy -
‘a; ?pp ?a2 Ay, "pn Taptl -
PRP-EQP1 7?p; owl:equivalentProperty ?ps . ?x 7p; ?y . X ?po ?y .
PRP-EQP2 7p; owl:equivalentProperty ?ps . 7x ?p2 ?y . ?X ?p1 ?y .
PRP-PDW ?pj owl:propertyDisjointWith ?ps . ?x ?p1 ?y . 72X ?pg ?y . FALSE
PRP-INV1 ?p; owl:inverseOf ?py . 7x ?p; ?y . 7y p2 ?x .
PRP-INV2 7?p; owl:inverseOf ?ps . ?y ?pa 7x . ?X p1 ?y .
7c owl:hasKey (?p1 ... 7pn) .
PRP-KEY 77X a?c; ?p1 ?z1; ... ; 7pn ?Z, . ?7x owl:sameAs ?y .
vyarc; 1?21 ... o 2, .

OWL 2 RL/RDF RULE EXAMPLES: CLASSES

1D if G matches then G OWL-entails
CAX-SCO ?cq rdfs:subClassOf 7cy . ?x a ?cy . ?x a 7cy .
CAX-EQC1 ?cq owl:equivalentClass ?co . ?x a 7¢q . ?x alcy .
CAX-EQC2 ?¢cy owl:equivalentClass 7co . ?x a 7¢o . ?7x a?q .
CAX-DW ?c; owl:disjointWith ?co . ?7x a ?¢y , ?¢co . FALSE
CLS-INT1 ?c owl:intersectionOf (?cy ... ?¢c,) . ?ya?cy, ..., ?c, . | ?P7
CLS-INT2 ?c owl:intersectionOf (?¢q ... ?¢,) . ?ya?c. valc, ..., ¢, .
CLS-UNI ?c owl:unionOf (?¢cy ... ?¢c,) . ?ya?c . (1<i<n) | ??2?
CLS-COM ?7cqy owl:complementOf ?c2 . ?x a ?cy, ?csy . FALSE
?x owl:someValuesFrom ?y ; owl:onProperty 7p .
OLS-SVF1 prle)
u?p?v. valy.
?x owl :someValuesFrom owl:Thing ; owl:onProperty ?p .
CLS-SVF2 S ¢ PEFEY <P 7ua ?x .
u?p ?v.
?x owl:allValuesFrom ?y ; owl:onProperty ?p .
CLS-AVF ?77?
u?p?v;oa?x.
CLS-HV1 ?x owl:hasValue ?y ; owl:onProperty 7p . ?ua ?x . Upy .
CLS-HV2 ?x owl:hasValue ?y ; owl:onProperty 7p . 7u?p ?y . ua?x.
?x owl:maxCardinality @ ; owl:onProperty 7p . ,
CLS-MAXC1 FALSE
ua?x; 7p?y.
?x owl:maxCardinality 1 ; owl:onProperty ?p .
CLS-MAXC2 . ', ., , o 277
fUa X ; Py, ¥z .
?7x owl:maxQualifiedCardinality @ ; owl:onProperty 7p ;
CLS-MAXQC1 FALSE

CLS-MAXQC3

CL5-00

owl:onClass 7c . 7ua?x ; 7p?y . ?yac.
?x owl:maxQualifiedCardinality 1 ; owl:onProperty ?p ;

owl:onClass ?c . 2ua?x; ?7p?y1, ?ya2 . ?y1a?c . ?ypa?c.

7c owl:oneOf (?y1 ... ?y,) .

7y, owl:sameAs ?yo .

?yvialc. ...?%y,a’.

OWL 2 RL/RDF RULE EXAMPLES: CLASSES

1D if G matches then G OWL-entails
CAX-SCO ?cq rdfs:subClassOf 7cy . ?x a ?cy . ?x a 7cy .
CAX-EQC1 ?cq owl:equivalentClass ?co . ?x a 7¢q . ?x alcy .
CAX-EQC2 ?¢cy owl:equivalentClass 7co . ?x a 7¢o . ?7x a?q .
CAX-DW ?c; owl:disjointWith ?co . ?7x a ?¢y , ?¢co . FALSE
CLS-INT1 ?c owl:intersectionOf (?cy ... ?¢c,) . ?ya?cy, ..., ?c, . ?ya’lc.
CLS-INT2 ?c owl:intersectionOf (?¢q ... ?¢,) . ?ya?c. valc, ..., ¢, .
CLS-UNI ?¢ owl:unionOf (?¢y ... ?¢,) . ?ya?c . (1<i<n) 7y alc.
CLS-COM ?7cqy owl:complementOf ?c2 . ?x a ?cy, ?csy . FALSE
?x owl:someValuesFrom ?y ; owl:onProperty 7p .
CLS-SVF1 Y perty «p ua ?x .
u?p?v. valy.
?x owl:someValuesFrom owl:Thing ; owl:onProperty ?p .
CLS-SVF2 B PEFEY <P ua ?x.
up v
?x owl:allValuesFrom ?y ; owl:onProperty ?p .
CLS-AVF Y perty p ?2valy.
u?p?v;oa?x.
CLS-HV1 ?x owl:hasValue ?y ; owl:onProperty 7p . ?ua ?x . upy .
CLS-HV2 ?x owl:hasValue ?y ; owl:onProperty 7p . 7u?p ?y . ua?x.
?x owl:maxCardinality @ ; owl:onProperty 7p . ,
CLS-MAXC1 FALSE
ua?x; 7p?y.
?x owl:maxCardinality 1 ; owl:onProperty ?p .
CLS-MAXC2 y s perty p ?y1 owl:sameAs ?ys .

CLS-MAXQC1

CLS-MAXQC3

CL5-00

2ua ?x; 7p ?y1, ?yo .

?7x owl:maxQualifiedCardinality @ ; owl:onProperty 7p ;
owl:onClass 7c . 7ua?x ; 7p?y . ?yac.

?x owl:maxQualifiedCardinality 1 ; owl:onProperty ?p ;
owl:onClass ?c . 2ua?x; ?7p?y1, ?ya2 . ?y; a?c.

7c owl:oneOf (?y1 ... ?y,) .

?ys a ?c .

FALSE

7y, owl:sameAs ?yo .

?y1 a ?c .

.?yna?c.

OWL 2 RL/RDF RULE EXAMPLES: SCHEMA

ID

if ¢ matches

then G OWL-entails

SCM-8CO
SCM-EQC1
SCM-EQC?2
SCM-SPO
SCM-EQP1
SCM-EQP2
SCM-DOM1
SCM-DOM2Z2
SCM-RNG1

SCM-RNG2
SCM-INT

SCM-UNI

?7¢y rdfs:subClassOf 7co . ?7cs rdfs:subClassOf 7cs3 .
?cy owl:equivalentClass ?cy .

?¢y rdfs:subClassOf ?cy . ?¢o rdfs:subClassOf ?¢p .

?p1 rdfs:subProperty0f ?pa . ?ps rdfs:subPropertyQf ?p;3 .

7p1 owl:equivalentProperty ?p> .

?py rdfs:subPropertyQf ?ps . ?pg rdfs:subProperty0f ?p; .

?p rdfs:domain ?¢; . ?¢q rdfs:subClassOf ?¢cy .
?ps rdfs:domain ?c . ?p; rdfs:subProperty0f 7ps .
?p rdfs:range ?cy . ?¢; rdfs:subClassOf 7co .

p2 rdfs:range ?c . ?p1 rdfs:subProperty0f ?ps .
?c owl:intersectionOf (?¢cy ... ?¢,) .

?c owl:unionOf (?¢y ... ?¢,) .

27?7

?cy rdfs:
?co rdfs:

subClassOf ?cy .
subClassOf ?¢cy .

27?

?py rdfs:
?p1 rdfs:
?ps rdfs:

subProperty0f ?ps3 .
subProperty0f ?ps .
subPropertyOf ?py .

?p; owl:equivalentProperty 7p; .

277

701 rdfs:

range 7c .

?p rdfs:domain ?co .

7p1 rdfs:

range 7¢ .

[e

277

OWL 2 RL/RDF RULE EXAMPLES: MISSING

ID if G matches then ¢ OWL-entails

?p a owl:ReflexiveProperty . ?x a owl:Thing . | FXE
— ?x owl:hasSelf true ; owl:onProperty ?p . ?ua 7?x . ?7?
— ?x owl:hasSelf true ; owl:onProperty ?p . 2u ?p ?u . ?7?
— ?x owl:inverseOf ?x . 277
— ?x owl:inverseOf ?y . ?y owl:inverseOf ?z . 277
— ?x owl:inverseOf ?y . ?y a owl:FunctionalProperty . 207

?x owl:complementOf ?y , ?z . 220

OWL 2 RL/RDF RULE EXAMPLES:

MISSING

ID

if G matches

then G OWL-entails

?p a owl:ReflexiveProperty . ?x a owl:Thing .

X
?X

owl:
owl:

owl:
owl:
owl:
owl:

hasSelf true ; owl:onProperty ?p . ?2ua 7x .
hasSelf true ; owl:onProperty ?p . ?u ?p ?u .

inverseOf ?x .

inverseOf ?y . ?y owl:inverseOf ?z .
inverseOf ?y . ?y a owl:FunctionalProperty .
complementOf ?y , 7z .

X 7p ?x .

u?p ?u.
ua ?x .

?x a owl:SymmetricProperty .

?x owl:equivalentProperty ?z .
?x a owl:InverseFunctionalProperty .
7y owl:equivalentClass 7z .

FULL LIST OF OWL 2 RL/RDF RULES (OR SEE THE BOOK)

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_ Rules

OWL 2 Web Ontology Language
Profiles (Second Edition)

W3C Recommendation 11 December 2012

c
O
]
@
0
c
)
£
£
O
v
)
o
U
g

This version:
htip:/Amww.w3.org/TR/2012/REC-owl2-profiles-20121211/
Latest version (series 2):
http:./AMmww.w3.org/TR/owl2-profiles/
Latest Recommendation:
http./AMmww.w3.org/TR/owl-profiles
Previous version:
http:/mww.w3.0rg/TR/2012/PER-owl2-profiles-20121018/

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

How IS OWL2RL/RDF INCOMPLETE?

:Person

rdf:type

:Vincent

:Vincent rdf:type :Person .
:Person owl:equivalentClass
[owl:disjointUnionOf (:Criminal :Lawful)]

How IS OWL2RL/RDF INCOMPLETE? DISJUNCTION

:Vincent rdf:type :Person , :Godfather .
:Person owl:equivalentClass
[owl:disjointUnionOf (:Criminal :Lawful)] .
:Godfather owl:disjointWith :Lawful .
=

:Vincent rdf:type :Criminal .

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Vincent is Criminal or Lawful!

How IS OWL2RL/RDF INCOMPLETE? NEGATION

:Vincent rdf:type :Person , :Godfather .
:Person owl:equivalentClass
[owl:disjointUnionOf (:Criminal :Lawful)] .
:Godfather owl:disjointWith :Lawful .
=

:Vincent rdf:type :Criminal .

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Vincent is NOT Lawful!

How IS OWL2RL/RDF INCOMPLETE?

E owl:someValuesFrom (3) [i]

= 3 :hasChild.é

‘Parent !

rhasChild

E ex:Michael rdf:type :Parent .
: :Parent owl:equivalentClass
[owl:someValuesFrom :Person ; owl:onProperty :thasChild]
= ex:Michael :rhasChild _:someone . _:someone rdf:type :!Person .

How IS OWL2RL/RDF INCOMPLETE? EXISTENTIALS

:Michael rdf:type :Parent .
:Parent owl:equivalentClass
[owl:someValuesFrom :Person ; owl:onProperty :hasChild]
:hasChild rdfs:domain :Fertile .
=

:Michael rdf:type :Fertile .

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Michael has soME child!

How IS OWL2RL/RDF INCOMPLETE? EXISTENTIALS

:Michael rdf:type :Parent .
:Parent owl:equivalentClass

“ _‘-r 4.
[owl:someValuesFrom :Person ; owl:onProperty .ha

. —1"‘! ’Eﬂ!
:hasChild rdfs:domain :Fertile . ‘f1r f"\'
: \ ‘ . ' ! \ . . b}

:Michael rdf:type :Fertile .

WORST EXAMPLE OF THE
COURSE AWARD

OWL 2 RL/RDF rules will miss this valiq
Misses the information that Michael has sOME child!

How IS OWL2RL/RDF INCOMPLETE?

* Missing features

— owl:ReflexiveProperty, owl:hasSelf, owl:minCardinality ...

* Problems with disjunction (OR cases)

— owl:unionOf, owl:oneOf, owl:maxCardinality, ...

* Problems with existentials

— owl:someValuesFrom, owl:minCardinality, ...

* Problems with counting

— owl:minCardinality, ...

* Problems with negation

— owl:disjointWith, owl:propertyDisjointWith, owl:complementOf ..

* Incomplete “schema” inferences

(),

:sire :sire

:dam :dam
— rdf :type
¢
[:Zebroidj

rdf-:type il SEERIE 8 RNy =

What can we intuitively conclude about Zia?

Ziais also a Zebroid!

But not with OWL 2 RL/RDF ®

COMPLETE REASONERS
THAT MAY NOT HALT

OPTIONS ...

* Accept incomplete reasoners that halt

— Complete language, incomplete reasoning, halts

* Accept complete reasoners that may not halt

— Complete language, complete reasoning, may not halt

COMPLETE REASONERS THAT MAY NOT HALT:
QUITE PRACTICAL!

* Cons:
— Erm ... reasoner may never halt

What might the “pros” be in this case?

* Pros:
— Avoid complicated decidability restrictions!

Imagine restricting C or Java to be decidable

1. Don’t allow features like loops/recursion
* But not all programs with loops/recursion fail to halt!
2. Restrict how features like loops/recursion can be used

* More detailed restrictions allow more programmes but are more
complicated to understand ®

COMPLETE REASONERS THAT MAY NOT HALT:
RARE IN PRACTICE

* Only line of work on this | know of:

Reasoning in the OWL 2 Full Ontology Language
using First-Order Automated Theorem Proving

Michael Schneider'* and Geoff Sutcliffe?

! FZI Research Center for Information Technology. Germany
? University of Miami, USA

Abstract. OWL 2 has been standardized by the World Wide Web Con-
sortium (W3C) as a family of ontology languages for the Semantic Web.
The most expressive of these languages is OWL 2 Full, but to date no
reasoner has been implemented for this language. Consistency and en-
tailment checking are known to be undecidable for OWL 2 Full. We
have translated a large fragment of the OWL 2 Full semantics into first-
order logic, and used automated theorem proving systems to do reasoning
based on this theory. The results are promising, and indicate that this
approach can be applied in practice for effective OWL reasoning, beyond
the capabilities of current Semantic Web reasoners.

This is an extended version of a paper with the same title that has
been published at CADE 2011, LNAI 6803, pp. 446—160. The extended
version provides appendices with additional resources that were used in
the reported evaluation.

Key words: Semantic Web, OWL, First-order logic, ATP

1 Introduction

The Web Ontology Language OWL 2 [16] has been standardized by the World
Wide Web Consortium (W3C) as a family of ontology languages for the Semantic
Web. OWL 2 includes OWL 2 DL [10], the OWL 2 RL/RDF rules [9], as well as
OWTL 2 Full [12]. The focus of this work is on reasoning in OWL 2 Full. the most

RESTRICTOWLTO
GUARANTEE DECIDABILITY

OPTIONS ...

* Accept incomplete reasoners that halt

— Complete language, incomplete reasoning, halts

* Accept complete reasoners that may not halt

— Complete language, complete reasoning, may not halt

e Restrict OWL so reasoning becomes decidable

— Restricted language, complete reasoning, halts

RESTRICT OWL TO CUARANTEE DECIDABILITY:
HOW TO GUARANTEE DECIDABILITY?

 We've seen how to prove that something is undecidable

How can we prove that something is decidable?

* Give an algorithm that halts ...
* Decidable/computable reduction to something decidable ...

RESTRICT OWL TO CUARANTEE DECIDABILITY:
SUBLANGUAGES OF OWL 2

* Description Logic community

— Predates OWL
— Looks at decidable subsets of First Order Logic
— Results can be applied to OWL!

e OWL 2 Full: The unrestricted, undecidable language
e OWL 2 DL: A restricted, decidable version

RESTRICT OWLTO CUARANTEE DECIDABILITY:
SUBLANGUAGES OF OWL 2

Any ideas what we should restrict to make OWL decidable?

BUTWHATS THEENTAILMENT QUEST ON?

[T=DyuDsU...uD_; LID, _Eﬂ_
D;ND;C L{for 1<i<j<k) L
T C (3.T) N (3a.T) _ _
Dicve(|| Dynva(|| DY < Must restrict something here

D'ER(Dy) PreAlD) (fOI’ example)

D.Cvr(|| D)nva(|| D)
D'eR(Dy) D e A{Dy)
dCacr, dCroca, Func(d)

Goal: Ontology O entails ' if and only if D has no infinite tiling
If T can have any member {3 “tile¥), it must have an infinite tiling!
If Tcan haye g mEmtser, 1T mMust not have an infirire [|I||'|E

RESTRICT OWL TO CUARANTEE DECIDABILITY:
SUBLANGUAGES OF OWL 2

Any ideas what we should restrict to make OWL decidable?

BUT WHAT'S THE ENTAILMENT QUESTION?

1

1

1

1

1

|

: T=DiuDyU...UD_ UDy Y
1 L]
: DN, Cl{for1<i<j<k)

I I :Il"l- " ¥
, T C (F3r.T) N (3a.T)
1
1
1
1
1
1
1
1
1
1

pev(|| Dynva(|| D) < Must restrict something here
FeER{D) PeEA{D) (fOI’ example)

DiCyr(|| DYynva(|| D i

For example, OWL 2 DL restricts functional properties to only be used on
"simple properties" (e.g., properties not used in chains)

s this enough to guarantee decidability?

We don't know. We just know this undecidability proof won't work.
(In fact, there are other proofs not needing functional property chains.)

RESTRICT OWL TO CUARANTEE DECIDABILITY:
SUBLANGUAGES OF OWL 2

Any ideas what we should restrict to make OWL decidable?

BUT WHAT'S THE ENTAILMENT QUESTION?

1

1

1

1

1

|

: T=DiuDyU...UD_ UDy Y
1 L]
: DN, Cl{for1<i<j<k)

I I :Il"l- " ¥
, T C (F3r.T) N (3a.T)
1
1
1
1
1
1
1
1
1
1

pev(|| Dynva(|| D) < Must restrict something here
FeER{D) PeEA{D) (fOI’ example)

piCyr(|| Dynva(|] D) i

For example, OWL 2 DL restricts functlonal properties to only be used on
"simple properties" (e.g., properties not used in chains)

In that case how can we guarantee decidability?

Most common way: glve a sound and complete algorlthml

RESTRICT OWLTO CUARANTEE DECIDABILITY:
SUBLANGUAGES OF OWL 2

* OWL 2 DL restricts:

— functional properties to be “simple” (no chains, no
transitivity)

— likewise properties used with has-self, cardinalities, inverse
functionality, asymmetry and irreflexivity must be simple

— need to follow specific RDF syntax and explicitly declare
classes, object properties (with IRl values), datatype
properties (with literal values)

— ... more (it’s really quite messy ®)

BUT INOWL2DL ...

So long as O and O’ follow the OWL 2 DL restrictions,
you are guaranteed a correct answer to O = O'!

40] M
Biise, i i
% -
. ‘ '.““n." g B
e . b Sttt , ™ -

!

-
235

r 4
.S e

BUTIN OWL 2 DL, WE CAN GET THIS ENTAILMENT ...

:Vincent rdf:type :Person , :Godfather .
:Person owl:equivalentClass
[owl:disjointUnionOf (:Criminal :Lawful)] .
:Godfather owl:disjointWith :Lawful .
=

:Vincent rdf:type :Criminal .

Any ideas of how we could implement this?

So long as O and O’ follow the OWL 2 DL restrictions,

you are guaranteed a correct answer to O = O'!

e Tableaux Algorithm (sketch):

1. Add-O'to O
2. Expand knowledge using rules

. Infer low-level assertions
. Branch on all possibilities created by disjunction
. Postulate fresh individuals for existentials

. L
3. If (and only if) every branch is inconsistent: O k£ O’

Disjunction: Expand all possibilities

:Vincent rdf:type :Person , :Godfather . Unsatisﬂable?
:Godfather owl:disjointWith :Lawful .

- :Vincent rdf:type :Criminal .

s

l[" Branch for OR [&
:Vincent rdf:type :Person , :Godfather . :Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Lawful . :Godfather owl:disjointWith :Lawful .
- :Vincent rdf:type :Criminal . - :Vincent rdf:type :Criminal .

Unsatisfiable in all branches — O U =O’ unsatisfiable — O = O’

AN ALGORITHM FOR OWL 2 DL: TABLEAUX

:Vincent rdf:type :Person , :Godfather .
:Person owl:equivalentClass
[owl:disjointUnionOf (:Criminal :Lawful)] .
:Godfather owl:disjointWith :Lawful .
=

:Vincent rdf:type :Criminal .

AN ALGORITHM FOR OWL 2 DL: TABLEAUX

:Vincent rdf:type :Person , :Godfather .
:Person owl:equivalentClass
[owl:disjointUnionOf (:Criminal :Lawful)] .
:Godfather owl:disjointWith :Lawful .
=

:Vincent rdf:type :Lawful . # is it entailed ?7??

Disjunction: Expand all possibilities

:Vincent rdf:type :Person , :Godfather . Unsatisﬂable?
:Godfather owl:disjointWith :Lawful .

- :Vincent rdf:type :Lawful.

s

**" Branch for OR
:Vincent rdf:type :Person , :Godfather . :Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Lawful . :Godfather owl:disjointWith :Lawful .
- :Vincent rdf:type :Lawful . - :Vincent rdf:type :Lawful .

Satisfiable in a branch — O U -0’ satisfiable — O = O’

AN ALGORITHM FOR OWL 2 DL: TABLEAUX

:Vincent rdf:type :Person , :Godfather .
:Person owl:equivalentClass
[owl:disjointUnionOf (:Criminal :Lawful)] .
:Godfather owl:disjointWith :Lawful .
=

Vineent—rdftype—tawful— # 1t 1s not entailed

AN ALGORITHM FOR OWL 2 DL: TABLEAUX

:Michael rdf:type :Parent .
:Parent owl:equivalentClass
[owl:someValuesFrom :Person ; owl:onProperty :hasChild]
:hasChild rdfs:domain :Fertile .
=

:Michael rdf:type :Fertile .

Existentials: Try create fresh individuals

:Michael rdf:type :Parent . Unsatisfiable?

- :Michael rdf:type :Fertile .

Propose a hypothetical child

:Michael rdf:type :Parent .

- :Michael rdf:type :Fertile .

Unsatisfiable in all branches — O U =O’ unsatisfiable — O = O’

AN ALGORITHM FOR OWL 2 DL: TABLEAUX

:Michael rdf:type :Parent .
:Parent owl:equivalentClass
[owl:someValuesFrom :Person ; owl:onProperty :hasChild]
:hasChild rdfs:domain :Fertile .
=

:Michael rdf:type :Fertile .

So long as O and O’ follow the OWL 2 DL restrictions,

you are guaranteed a correct answer to O = O'!

e Tableaux Algorithm (sketch):

1. Add-O'to O
2. Expand knowledge using rules

. Infer low-level assertions
. Branch on all possibilities created by disjunction
. Postulate fresh individuals for existentials

. L
3. If (and only if) every branch is inconsistent: O k£ O’

Tableaux algorithm is just "brute force" checking models of the ontologies.
But optimisations and tricks possible for specific logics (like OWL).

So long as O and O’ follow the OWL 2 DL restrictions,

you are guaranteed a correct answer to O = O'!

* Tableaux Algorithm (sketch):

1. Add-O'to O
2. Expand knowledge using rules

. Infer low-level assertions
. Branch on all possibilities created by disjunction
. Postulate fresh individuals for existentials

. L
3. If (and only if) every branch is inconsistent: O k£ O’

Why do we need to restrict OWL in that case?

To ensure that the tableaux algorithm (with additional tricks) terminates.

So long as O and O’ follow the OWL 2 DL restrictions,

you are guaranteed a correct answer to O = O'!

e Tableaux Algorithm

— We have a complete entailment algorithm that
supports a lot of OWL features and terminates

\ / ‘!\ ‘
S1re tSl1lre
Zla"fff{’ :Zach
— £ |
:dam :dam
= Lea +— N rdf :type
e
:Zebroid_

rdf-:type il SEERIE 8 RNy =

What can we intuitively conclude about Zia?

Ziais also a Zebroid!

And we can entail this OWL 2 DL! ©

So, any problems here?

OWL 2 DL: PRACTICAL PROBLEMS

e Afew practical problems:
— We have to give the entailments to check

* Cannot just ask to compute the entailments

— Restrictions are complicated
* Very complicated
* And often are broken by real-world ontologies

— Tableaux entailment checks are really expensive

* Branch for every disjunction suggests exponential

— 0(22n) on a non-deterministic machine

N2EXPTIME-CoOMPLETE (OWL 2 DL'S SMALL PRINT) ...

* Checking entailment is guaranteed to halt for
OWL 2 DL restricted ontologies™

* halt may not occur before heat death of the universe

OWL 2 DL PERFORMANCE CONSIDERATIONS

* Not all OWL 2 DL ontologies will run into worst-cases

OWL 2 PROFILES (BRIEFLY)

* More efficient sublanguages of OWL 2 DL

— More restrictions to allow complete reasoning with
more efficient algorithms

OWL 2 RL: A restriction of OWL 2 DL such that OWL 2
RL/RDF rules provide complete reasoning

OWL 2 EL: Tractable algorithm for classifying ontologies

OWL 2 QL: Tractable algorithm rewriting SQL queries

IMPRESSIONS ...

DIVISION BETWEEN THEORY AND PRACTICE

PART OF THE REASON WHY YOU SEE THINGS LIKE ...

IS OWL COOD FOR THE SEMANTIC WEB?

* |t provides formal foundations for semantics
* Indicates what’s possible, what’s not with respect to machine-readable
semantics
— What's efficient, what’s not
— Highlights fundamental limits of Knowledge Representation

e Offers options: OWL 2 RL/EL/QL/DL/Full

e Hardto learn/understand
— Practical motivations muddled
— Difficult cases most difficult to motivate
* Do we need existentials for example?

 (Can also be messy in theory

* Makes lots of naive assumptions for the Web
— Not scalable / hard to implement
— Strict in what it accepts
— Blindly accepting / hard to understand

What do you think?

KNOWLEDGE REPRESENTATION ON THE WEB:
AN OPEN RESEARCH PROBLEM

END OF OWL CLASSES (LABS TO COME)

MOVING ON TO SPARQL NEXT

QUESTIONS?

