
CC7220-1
LA WEB DE DATOS

PRIMAVERA 2018

Lecture 6: Web Ontology Language (OWL) [III]

Aidan Hogan

aidhog@gmail.com

Last time …

Domino Tiling Problem (Undecidable!)

• Input: A set of Dominos (like D)

• Output:

– if there exists a valid infinite tiling (like t)

– otherwise

Today's Topic

Reduce from Tiling to OWL entailment?

Reduction

Does D have an
infinite tiling?

Does OWL ontology
O entail O′?

How can we encode a Domino Tiling question into an
OWL ontology entailment question?

Some Description Logic symbols

• ⊑: sub-class/-property
• ≡: equivalent class/property
• ⊔: union
• ⊓: intersection
• ⊤: top (class of everything)
• ⊥: bottom (empty class)
• ∃: exists (/)
• ∀: for all ()
• ¬: not (complement, negation)
• – (superscript minus): inverse property
• {}: enumeration ()
• Self, Trans, Dom, etc.: where symbols not available
• ∘: property chain
• C(x): class membership
• P(x,y): a triple

Domino Tiling Problem (Undecidable!)

• Input: A set of Dominos (like D)

• Output:

– if there exists a valid infinite tiling (like t)

– otherwise

Domino Tiling Problem: Some terminology

• Tile: A Piece

Domino Tiling Problem: Some terminology

• Tile: A Piece

• Domino: Group of Tiles of same colour

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type
– Define tiles as a class T, a union of classes for each domino type:

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

Now what else do we need to encode?

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

How can we encode this in OWL?

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type
– Define dominos types as pairwise disjoint:

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

Now what else do we need to encode?

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

How can we encode this in OWL?

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above
– Define that a tile has some values from tile for right/above:

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

Are we there yet?

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

How can we encode this in OWL?

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

Are we there yet?

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

Are we there yet?

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right

How can we encode this in OWL?

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right
– Define diagonal tile using two property chains (above-right/right-above)

– Declare functional (a tile can only have one such diagonal tile)

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right
– Define diagonal tile using two property chains (above-right/right-above)

– Declare functional (a tile can only have one such diagonal tile)

Can reduce from OWL entailment to Tiling

1. Each tile must have a domino type

2. Each tile can only be one domino type

3. Each tile must have a tile to the right and above

4. Tiles to the right and tiles above must match colour

5. Tile right then above = Tile above then right
Are we there yet?

But What’s the entailment question?

What should we
put in O′?

Goal: Ontology O entails O′ if and only if D has no infinite tiling

But What’s the entailment question?

Goal: Ontology O entails O′ if and only if D has no infinite tiling
If T can have any member (a “tile”), it must have an infinite tiling!

If T can have no member, it must not have an infinite tiling.

Could also use satisfiability ...

Goal: Ontology O is satisfiable if and only if D has an infinite tiling
Here, x is an arbitrary fresh term

OWL entailment/satisfiability is undecidable!

Reduction
R

ed
u

ctio
n

Not just OWL is undecidable ...

Knowledge representation:
Tell machines stuff about the world in a formalism they can

(deductively) reason over using automated methods.

But if we tell them everything ...
Reasoning becomes undecidable!

OWL entailment/satisfiability is undecidable …

Well great. What are we supposed to do now?

... choose two

OWL entailment/satisfiability is undecidable …

Well great. What are we supposed to do now?

• Accept incomplete reasoners that halt

– Complete language, incomplete reasoning, halts

• Accept complete reasoners that may not halt

– Complete language, complete reasoning, may not halt

• Restrict OWL so reasoning becomes decidable

– Restricted language, complete reasoning, halts

Incomplete reasoners
that halt

Options ...

• Accept incomplete reasoners that halt

– Complete language, incomplete reasoning, halts

In the labs …

Data

Ontology

EntailmentsReasoner
???

But what is the reasoner actually doing?

In the labs …

Data

Ontology

EntailmentsReasoner
???

But what is the reasoner actually doing?

Incomplete materialisation using rules.

Recall rules for RDFS ...

(Don’t worry about rdfD1, rdfs1, rdfs12, rdfs13)

Now we need rules to cover (some of) OWL ...

Standard set of OWL rules: OWL 2 RL/RDF

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

In the labs …

Data

Ontology

EntailmentsReasoner
???

But what is the reasoner actually doing?

Incomplete materialisation using RDFS & OWL 2 RL/RDF rules.

OWL 2 RL/RDF rule examples: Equality

???

???

OWL 2 RL/RDF rule examples: Equality

OWL 2 RL/RDF rule examples: Properties

???

???

???

???

OWL 2 RL/RDF rule examples: Properties

OWL 2 RL/RDF rule examples: Classes

???

???

???

???

???

OWL 2 RL/RDF rule examples: Classes

OWL 2 RL/RDF rule examples: Schema

???

???

???

???

???

OWL 2 RL/RDF rule examples: Missing

???

???
???

???
???
???
???

OWL 2 RL/RDF rule examples: Missing

Full list of OWL 2 RL/RDF rules (or see the book)

https://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

How is OWL2RL/RDF incomplete?

How is OWL2RL/RDF incomplete? Disjunction

⇒

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Vincent is Criminal or Lawful!

How is OWL2RL/RDF incomplete? Negation

⇒

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Vincent is not Lawful!

How is OWL2RL/RDF incomplete?

How is OWL2RL/RDF incomplete? existentials

⇒

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Michael has some child!

How is OWL2RL/RDF incomplete? existentials

⇒

OWL 2 RL/RDF rules will miss this valid inference ...
Misses the information that Michael has some child!

Worst Example of the
Course Award

How is OWL2RL/RDF incomplete?

• Missing features
– , , …

• Problems with disjunction (OR cases)
– , , , …

• Problems with existentials
– , , ...

• Problems with counting
– , …

• Problems with negation
– , ,

• Incomplete “schema” inferences

What can we intuitively conclude about ?

is also a !

But not with OWL 2 RL/RDF 

Complete reasoners
that may not halt

Options ...

• Accept incomplete reasoners that halt

– Complete language, incomplete reasoning, halts

• Accept complete reasoners that may not halt

– Complete language, complete reasoning, may not halt

Complete reasoners that may not halt:
Quite Practical!

• Cons:
– Erm … reasoner may never halt

• Pros:
– Avoid complicated decidability restrictions!

What might the “pros” be in this case?

Imagine restricting C or Java to be decidable
1. Don’t allow features like loops/recursion

• But not all programs with loops/recursion fail to halt!

2. Restrict how features like loops/recursion can be used

• More detailed restrictions allow more programmes but are more
complicated to understand 

Complete reasoners that may not halt:
Rare in practice

• Only line of work on this I know of:

Restrict OWL to
guarantee decidability

Options ...

• Accept incomplete reasoners that halt

– Complete language, incomplete reasoning, halts

• Accept complete reasoners that may not halt

– Complete language, complete reasoning, may not halt

• Restrict OWL so reasoning becomes decidable

– Restricted language, complete reasoning, halts

Restrict OWL to guarantee decidability:
How to guarantee decidability?

• We’ve seen how to prove that something is undecidable

How can we prove that something is decidable?

• Give an algorithm that halts …
• Decidable/computable reduction to something decidable ...
• ...

Restrict OWL to guarantee decidability:
Sublanguages of OWL 2

• Description Logic community

– Predates OWL

– Looks at decidable subsets of First Order Logic

– Results can be applied to OWL!

• OWL 2 Full: The unrestricted, undecidable language

• OWL 2 DL: A restricted, decidable version

Restrict OWL to guarantee decidability:
Sublanguages of OWL 2

Any ideas what we should restrict to make OWL decidable?

Restrict OWL to guarantee decidability:
Sublanguages of OWL 2

Any ideas what we should restrict to make OWL decidable?

For example, OWL 2 DL restricts functional properties to only be used on
"simple properties" (e.g., properties not used in chains)

Is this enough to guarantee decidability?

We don't know. We just know this undecidability proof won't work.
(In fact, there are other proofs not needing functional property chains.)

Restrict OWL to guarantee decidability:
Sublanguages of OWL 2

Any ideas what we should restrict to make OWL decidable?

For example, OWL 2 DL restricts functional properties to only be used on
"simple properties" (e.g., properties not used in chains)

In that case how can we guarantee decidability?

Most common way: give a sound and complete algorithm!

Restrict OWL to guarantee decidability:
Sublanguages of OWL 2

• OWL 2 DL restricts:
– functional properties to be “simple” (no chains, no

transitivity)

– likewise properties used with has-self, cardinalities, inverse
functionality, asymmetry and irreflexivity must be simple

– need to follow specific RDF syntax and explicitly declare
classes, object properties (with IRI values), datatype
properties (with literal values)

– … more (it’s really quite messy )

But in OWL 2 DL ...

But in OWL 2 Dl, we can get this entailment ...

⇒

Any ideas of how we could implement this?

An algorithm for OWL 2 DL: Tableaux

• Tableaux Algorithm (sketch):
1. Add ¬O' to O

2. Expand knowledge using rules
• Infer low-level assertions

• Branch on all possibilities created by disjunction

• Postulate fresh individuals for existentials

• [...]

3. If (and only if) every branch is inconsistent: O ⊧ O′

An algorithm for OWL 2 DL: Tableaux

¬

¬ ¬

Disjunction: Expand all possibilities

An algorithm for OWL 2 DL: Tableaux

¬

¬ ¬

Disjunction: Expand all possibilities

⇒

An algorithm for OWL 2 DL: Tableaux

¬

¬ ¬

Disjunction: Expand all possibilities

⇒

An algorithm for OWL 2 DL: Tableaux

¬

¬ ¬

Disjunction: Expand all possibilities

An algorithm for OWL 2 DL: Tableaux

¬

¬ ¬

Disjunction: Expand all possibilities

⇒

An algorithm for OWL 2 DL: Tableaux

⇒

An algorithm for OWL 2 DL: Tableaux

¬

Existentials: Try create fresh individuals

An algorithm for OWL 2 DL: Tableaux

¬

Existentials: Try create fresh individuals

⇒

An algorithm for OWL 2 DL: Tableaux

• Tableaux Algorithm (sketch):
1. Add ¬O' to O

2. Expand knowledge using rules
• Infer low-level assertions

• Branch on all possibilities created by disjunction

• Postulate fresh individuals for existentials

• [...]

3. If (and only if) every branch is inconsistent: O ⊧ O′

Tableaux algorithm is just "brute force" checking models of the ontologies.
But optimisations and tricks possible for specific logics (like OWL).

An algorithm for OWL 2 DL: Tableaux

• Tableaux Algorithm (sketch):
1. Add ¬O' to O

2. Expand knowledge using rules
• Infer low-level assertions

• Branch on all possibilities created by disjunction

• Postulate fresh individuals for existentials

• [...]

3. If (and only if) every branch is inconsistent: O ⊧ O′

To ensure that the tableaux algorithm (with additional tricks) terminates.

Why do we need to restrict OWL in that case?

An algorithm for OWL 2 DL: Tableaux

• Tableaux Algorithm

– We have a complete entailment algorithm that
supports a lot of OWL features and terminates

What can we intuitively conclude about ?

is also a !

And we can entail this OWL 2 DL! 

So, any problems here?

OWL 2 DL: Practical problems

• A few practical problems:

– We have to give the entailments to check

• Cannot just ask to compute the entailments

– Restrictions are complicated

• Very complicated

• And often are broken by real-world ontologies

– Tableaux entailment checks are really expensive

• Branch for every disjunction suggests exponential

• If fact, it's N2EXPTIME-complete (!!?!!!)
– on a non-deterministic machine

N2EXPTIME-Complete (OWL 2 DL’s small print) …

• Checking entailment is guaranteed to halt for
OWL 2 DL restricted ontologies*

* halt may not occur before heat death of the universe

OWL 2 DL performance considerations

• Not all OWL 2 DL ontologies will run into worst-cases

• Entailments will work fine for most small ontologies

• Scalability still a real issue in practice

• Not all OWL 2 Full ontologies will be undecidable

OWL 2 Profiles (briefly)

• More efficient sublanguages of OWL 2 DL

– More restrictions to allow complete reasoning with
more efficient algorithms

• OWL 2 RL: A restriction of OWL 2 DL such that OWL 2

RL/RDF rules provide complete reasoning

• OWL 2 EL: Tractable algorithm for classifying ontologies

• OWL 2 QL: Tractable algorithm rewriting SQL queries

Impressions …

Theory Practice

Division between Theory and Practice

Part of the reason why you see things like …

Is OWL good for the Semantic Web?

• It provides formal foundations for semantics

• Indicates what’s possible, what’s not with respect to machine-readable
semantics

– What’s efficient, what’s not

– Highlights fundamental limits of Knowledge Representation

• Offers options: OWL 2 RL/EL/QL/DL/Full

What do you think?

• Hard to learn/understand
– Practical motivations muddled

– Difficult cases most difficult to motivate
• Do we need existentials for example?

• Can also be messy in theory

• Makes lots of naive assumptions for the Web
– Not scalable / hard to implement

– Strict in what it accepts

– Blindly accepting / hard to understand

Knowledge Representation on the Web:
An open research problem

End of OWL classes (labs to come)

Moving on to SPARQL next

Questions?

