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Last time …



Semantic Web: Data → Rules → Query → Output* 
* More or less





Family Relations in OWL



Today's Topic



An ontology is just some definitions …

… but what do they mean?
… and what can we do with ontologies?



Capture the main ideas of OWL

Fig 1. OWL according to the standard Fig 2. OWL according to this class



Defining OWL



( )

≡

How can we formally define what this means?



We could try with rules like:

→

( )

≡



( )

≡

How do we define a rule for this case?

We could try a rule like:

→



( )

≡

How do we define a rule for this case?

What if it's not the first element?

Have we considered all possible cases like this?



What if it's not the first element?

( )

≡

How do we define a rule for this case?

Have we considered all possible cases like this?
A finite set of rules may not be able to define everything we need in OWL!



( )

≡

Use set theory:
There is a set of individuals (like     , etc.).

There is a set of classes (like     , etc.)

Classes map to sets of individuals (like      ↦ {   ,     ,     })

Names map to individuals (like ↦ )

Other names map to classes (like ↦ )

How can we begin to formally define what classes mean?



Extend the set theory:
There is a set of individuals. Classes map to sets of individuals.

There is a set of properties (like     , etc.).

Properties map to sets of pairs of individuals (like     ↦ { (      ,      ) , ... })

Names map to individuals, classes and or properties (like ↦ )

How can we begin to formally define what properties mean?



The Universe





• Define the universe as a set:

– Set of everything: U

To Simplify matters



To Simplify matters

• Define the universe as a set:

– Set of everything: U

What about classes and properties?

Classes are (sub)sets of U
Properties are sets of pairs from U

{     ,     ,     ,     ,     ,     ,     ,     , ... }



Vocabulary / Data



Need to name/describe things in the universe

• Vocabulary (IRIs): V

• Triples (RDF): V × V × V

– For brevity, we skip literals and blank nodes

• Graph (RDF): 2V × V × V

How do we relate the data to the universe?



Interpretations



Interpretation of a vocabulary

• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

{     ,     ,     ,     ,     ,     ,     ,     , ... }



• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

I: Maps a vocabulary term v ∈ V to an element of U

(interpretation of Individuals)

Interpretation of a vocabulary

I( ) = 

I( ) = 

I( ) = 

I( ) = 
...

I( ) = 

I( ) = 



Interpretation of a vocabulary

• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

I: Maps a vocabulary term v ∈ V to an element of U

(interpretation of Individuals)

C: Maps a vocabulary term v ∈ V to a subset of U

(interpretation of Classes)

C( ) = 

C( ) = 

{     ,     ,     ,     ,     ,     , ... }

{     ,     ,     , ... }
...



Interpretation of a vocabulary

• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

I: Maps a vocabulary term v ∈ V to an element of U

(interpretation of Individuals)

C: Maps a vocabulary term v ∈ V to a subset of U

(interpretation of Classes)

P: Maps a vocabulary term v ∈ V to a set of pairs from U

(interpretation of Properties)

P( ) = 

P( ) = 
...

{ (     ,     ), (     ,     ), ... }

{ (     ,     ), (     ,     ), ... }



Interpretation of a vocabulary

• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

I: Maps a vocabulary term v ∈ V to an element of U

(interpretation of Individuals)

C: Maps a vocabulary term v ∈ V to a subset of U

(interpretation of Classes)

P: Maps a vocabulary term v ∈ V to a set of pairs from U

(interpretation of Properties)

How do we interpret data/graphs and not just terms?



Models



Models

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

How do we define the semantics of types?



Models (with classes/type/subclass)

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

How do we define the semantics of sub-class?



Models (with RDFS semantics)

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P( ) then C(s) ⊆ C(o)

How do we define the semantics of sub-property?



Models (with RDFS semantics)

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P( ) then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then P(s) ⊆ P(o)

How do we define the semantics of domain/range?



Models (with RDFS semantics)

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P( ) then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P( ) then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then π2(P(s)) ⊆ C(o)

(πn : project nth element)



Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P( ) then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P( ) then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then π2(P(s)) ⊆ C(o)

What about OWL semantics?

How do we define the semantics of same-as/different-from?



Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P( ) then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P( ) then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then I(s) = I(o)

– If (I(s), I(o)) ∈ P( ) then I(s) ≠ I(o)

How do we define inverse properties?



Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P( ) then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P( ) then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then I(s) = I(o)

– If (I(s), I(o)) ∈ P( ) then I(s) ≠ I(o)

– If (I(s), I(o)) ∈ P( ) then ∀x,y : (x,y) ∈ P(s) 

if and only if (y,x) ∈ P(o)

How do we define transitive properties?



Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P( ) then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P( ) then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then I(s) = I(o)

– If (I(s), I(o)) ∈ P( ) then I(s) ≠ I(o)

– If (I(s), I(o)) ∈ P( ) then ∀x,y : (x,y) ∈ P(s) 

if and only if (y,x) ∈ P(o)

– If I(s) ∈ C( ) then ∀x,y,z : (x,y) ∈ P(s) and 

(y,z) ∈ P(s) imply (x,z) ∈ P(s)

How do we define disjoint classes?



Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P( ) then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P( ) then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then I(s) = I(o)

– If (I(s), I(o)) ∈ P( ) then I(s) ≠ I(o)

– If (I(s), I(o)) ∈ P( ) then ∀x,y : (x,y) ∈ P(s) 

if and only if (y,x) ∈ P(o)

– If I(s) ∈ C( ) then ∀x,y,z : (x,y) ∈ P(s) and 

(y,z) ∈ P(s) imply (x,z) ∈ P(s)

– If (I(s), I(o)) ∈ P( ) then C(s) ∩ C(o) = Ø

... and so on.



If-then semantics

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P( ) then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P( ) then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P( ) then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P( ) then I(s) = I(o)

– If (I(s), I(o)) ∈ P( ) then I(s) ≠ I(o)

– If (I(s), I(o)) ∈ P( ) then ∀x,y : (x,y) ∈ P(s) 

if and only if (y,x) ∈ P(o)

– If I(s) ∈ C( ) then ∀x,y,z : (x,y) ∈ P(s) and 

(y,z) ∈ P(s) imply (x,z) ∈ P(s)

– If (I(s), I(o)) ∈ P( ) then C(s) ∩ C(o) = Ø

⇒ Some set conditionSome data condition



If-and-only-if semantics

• ℐ is a model of G if and only if:
– if (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– (I(s), I(o)) ∈ P( ) if and only if I(s) ∈ C(o)

– (I(s), I(o)) ∈ P( ) if and only if C(s) ⊆ C(o)

– (I(s), I(o)) ∈ P( ) if and only if P(s) ⊆ P(o)

– (I(s), I(o)) ∈ P( ) if and only if π1(P(s)) ⊆ C(o)

– (I(s), I(o)) ∈ P( ) if and only if π2(P(s)) ⊆ C(o)

– (I(s), I(o)) ∈ P( ) if and only if I(s) = I(o)

– (I(s), I(o)) ∈ P( ) if and only if I(s) ≠ I(o)

– (I(s), I(o)) ∈ P( ) if and only if ∀x,y : (x,y) ∈ P(s) 

if and only if (y,x) ∈ P(o)

– I(s) ∈ C( ) if and only if ∀x,y,z : (x,y) ∈ P(s) and 

(y,z) ∈ P(s) imply (x,z) ∈ P(s)

– (I(s), I(o)) ∈ P( ) if and only if C(s) ∩ C(o) = Ø

⇔ Some set conditionSome data condition



What's the difference?

If-then semantics

If-and-only-if semantics

G = {(x, ,y),(y, ,z)}

⇒ (I(x), I(y)) ∈ P( ) ⇒ C(x) ⊆ C(y) 

⇒ (I(y), I(z)) ∈ P( ) ⇒ C(y) ⊆ C(z) 

⇒ C(x) ⊆ C(z) 

⇒ (I(x), I(y)) ∈ P( ) ⇒ C(x) ⊆ C(y) 

⇒ (I(y), I(z)) ∈ P( ) ⇒ C(y) ⊆ C(z) 

⇒ C(x) ⊆ C(z) 

⇒ (I(x), I(z)) ∈ P( ) 



Models of graphs/ontologies

A model is any world that an ontology might describe

Is this a model of the ontology?

No, since      ( ) needs to be an       ( ) ( )



Models of ontologies

A model is any world that an ontology might describe

Now we have a model of the ontology (for the given semantics).



Models of ontologies

A model is any world that an ontology might describe

Is this a model of the ontology?

This is also a model (given the Open World Assumption)!



Mapping of names to things part of model

A different mapping would mean a different model.



Entailment …



Ontology O entails O′ (O ⊧O′)

Any model of O is a model of O′ 
(O′ forms part of the models of O)

(O′ says nothing new over O)



Entailment symbol: ⊧



Ontology Entailment

Mary doesn’t like cake here

Does O entail O′ (O ⊧ O′)?

No! There are models of O that are not models of O′ …



Reasoning Tasks …



Materialisation: Write down entailments

Any problems with this?



Materialisation: Write down entailments

...



Materialisation: Write down entailments

...



Materialisation: Write down entailments

...



Ontology Satisfiability: Does O have a “model”?

Does O have any model?

YES! Ontology O is Satisfiable!



Ontology Satisfiability: 
Does O have a “model”?

So does O have a model now?

YES! Ontology O is still Satisfiable!



Ontology Satisfiability: 
Does O have a “model”?

What more would we have to add to O to make it Unsatisfiable?

OR

OR

OR

OR …



Ontology Satisfiability: 
Does O have a “model”?

What more would we have to add to O to make it Unsatisfiable?

OR

OR

OR

OR …

An unsatisfiable ontology cannot model any world!

It is inconsistent!



Entailment checking: Does O entail O′?

Alternatively: Are all models of O models of O′ too?



Reasoning …



How can we perform reasoning?

• Does Ontology O entail O′? 

• Could instead ask: is “O ∪ ¬O′” unsatisfiable?

Can reduce entailment to unsatisfiability!



So how do we test unsatisfiability then?



Undecidability …



A simple Java program …

Does this Java program terminate 

on all possible (positive) inputs?

In:

(end)



A simple Java program …

• Collatz conjecture: an unsolved problem in mathematics

• If we knew that this program terminates or does not terminate on all 

natural numbers (not just s), this problem would be solved!



Halting Problem

• Input: a program and an input to that program

• Output: 

– if the program halts on that input

– otherwise

• UNDECIDABLE: a general algorithm to solve 

the Halting Problem does not exist!

– It will not halt for all program–input pairs!

– It may halt for some program–input pairs



A quick sketch of Halting Problem proof



Problem: Consecutive ‘1’s in π

• Input: A natural number n

• Output: 

– if π contains n consecutive ‘1’s

– otherwise

Is this problem DECIDABLE or UNDECIDABLE?
… i.e., does there exist a program that halts (with the correct answer) for all n?

What if we knew the maximum sequence of consecutive ‘1’s in π?

≤

• there must exist a sequence of consecutive ‘1’s in π (even if it’s ∞)
∴ there must exist a correct program that halts (even if we don’t know its details)

∴ problem is DECIDABLE!



Problem: Collatz Halting Problem

• Input: [none]

• Output: 

– if Collatz program halts on all inputs

– otherwise

Is this problem DECIDABLE or UNDECIDABLE?

(P1)

• either (P1) or (P2) must be correct
∴ there must exist a correct program that halts (even if we don’t know it)

∴ problem is DECIDABLE!

Halting Problem UNDECIDABLE in the general case
(for all programs and inputs)

(P2)



Domino Tiling Problem

• Input: A set of Dominos (like D)

• Output: 

– if there exists a valid infinite tiling (like t)

– otherwise

Is this problem 
DECIDABLE or 

UNDECIDABLE?



Can reduce from Halting to Tiling

It has been shown that there exists a program that can reduce any 

Halting problem instance into a Domino Tiling problem instance

Reduction

Now is the Domino Tiling 
problem DECIDABLE or 

UNDECIDABLE?

• is DECIDABLE
∴ if were DECIDABLE, then would be DECIDABLE

• but is UNDECIDABLE
∴ must be UNDECIDABLE!

If we have a decidable reduction from an UNDECIDABLE problem A 
to another problem B, then B must be UNDECIDABLE



Reduce from Tiling to OWL entailment?

Reduction

Does D have an 
infinite tiling?

Does OWL ontology 
O entail O′?

How can we encode a Domino Tiling question into an 
OWL ontology entailment question?

Tune in next week!



Questions?


