
CC7220-1
LA WEB DE DATOS

PRIMAVERA 2018

Lecture 5: Web Ontology Language (OWL) [II]

Aidan Hogan

aidhog@gmail.com

Last time …

Semantic Web: Data → Rules → Query → Output*
* More or less

Family Relations in OWL

Today's Topic

An ontology is just some definitions …

… but what do they mean?
… and what can we do with ontologies?

Capture the main ideas of OWL

Fig 1. OWL according to the standard Fig 2. OWL according to this class

Defining OWL

()

≡

How can we formally define what this means?

We could try with rules like:

→

()

≡

()

≡

How do we define a rule for this case?

We could try a rule like:

→

()

≡

How do we define a rule for this case?

What if it's not the first element?

Have we considered all possible cases like this?

What if it's not the first element?

()

≡

How do we define a rule for this case?

Have we considered all possible cases like this?
A finite set of rules may not be able to define everything we need in OWL!

()

≡

Use set theory:
There is a set of individuals (like , etc.).

There is a set of classes (like , etc.)

Classes map to sets of individuals (like ↦ { , , })

Names map to individuals (like ↦)

Other names map to classes (like ↦)

How can we begin to formally define what classes mean?

Extend the set theory:
There is a set of individuals. Classes map to sets of individuals.

There is a set of properties (like , etc.).

Properties map to sets of pairs of individuals (like ↦ { (,) , ... })

Names map to individuals, classes and or properties (like ↦)

How can we begin to formally define what properties mean?

The Universe

• Define the universe as a set:

– Set of everything: U

To Simplify matters

To Simplify matters

• Define the universe as a set:

– Set of everything: U

What about classes and properties?

Classes are (sub)sets of U
Properties are sets of pairs from U

{ , , , , , , , , ... }

Vocabulary / Data

Need to name/describe things in the universe

• Vocabulary (IRIs): V

• Triples (RDF): V × V × V

– For brevity, we skip literals and blank nodes

• Graph (RDF): 2V × V × V

How do we relate the data to the universe?

Interpretations

Interpretation of a vocabulary

• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

{ , , , , , , , , ... }

• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

I: Maps a vocabulary term v ∈ V to an element of U

(interpretation of Individuals)

Interpretation of a vocabulary

I() =

I() =

I() =

I() =
...

I() =

I() =

Interpretation of a vocabulary

• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

I: Maps a vocabulary term v ∈ V to an element of U

(interpretation of Individuals)

C: Maps a vocabulary term v ∈ V to a subset of U

(interpretation of Classes)

C() =

C() =

{ , , , , , , ... }

{ , , , ... }
...

Interpretation of a vocabulary

• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

I: Maps a vocabulary term v ∈ V to an element of U

(interpretation of Individuals)

C: Maps a vocabulary term v ∈ V to a subset of U

(interpretation of Classes)

P: Maps a vocabulary term v ∈ V to a set of pairs from U

(interpretation of Properties)

P() =

P() =
...

{ (,), (,), ... }

{ (,), (,), ... }

Interpretation of a vocabulary

• Interpretation ℐ of vocabulary V: ℐ(V) = (U,I,C,P)

U: Universe / Set of everything (in the interpretation)

I: Maps a vocabulary term v ∈ V to an element of U

(interpretation of Individuals)

C: Maps a vocabulary term v ∈ V to a subset of U

(interpretation of Classes)

P: Maps a vocabulary term v ∈ V to a set of pairs from U

(interpretation of Properties)

How do we interpret data/graphs and not just terms?

Models

Models

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

How do we define the semantics of types?

Models (with classes/type/subclass)

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

How do we define the semantics of sub-class?

Models (with RDFS semantics)

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P() then C(s) ⊆ C(o)

How do we define the semantics of sub-property?

Models (with RDFS semantics)

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P() then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then P(s) ⊆ P(o)

How do we define the semantics of domain/range?

Models (with RDFS semantics)

• Let G be an RDF graph using vocabulary V

• Let ℐ be an interpretation of vocabulary V:

– ℐ(V) = (U,I,C,P)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P() then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P() then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then π2(P(s)) ⊆ C(o)

(πn : project nth element)

Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P() then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P() then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then π2(P(s)) ⊆ C(o)

What about OWL semantics?

How do we define the semantics of same-as/different-from?

Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P() then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P() then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then I(s) = I(o)

– If (I(s), I(o)) ∈ P() then I(s) ≠ I(o)

How do we define inverse properties?

Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P() then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P() then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then I(s) = I(o)

– If (I(s), I(o)) ∈ P() then I(s) ≠ I(o)

– If (I(s), I(o)) ∈ P() then ∀x,y : (x,y) ∈ P(s)

if and only if (y,x) ∈ P(o)

How do we define transitive properties?

Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P() then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P() then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then I(s) = I(o)

– If (I(s), I(o)) ∈ P() then I(s) ≠ I(o)

– If (I(s), I(o)) ∈ P() then ∀x,y : (x,y) ∈ P(s)

if and only if (y,x) ∈ P(o)

– If I(s) ∈ C() then ∀x,y,z : (x,y) ∈ P(s) and

(y,z) ∈ P(s) imply (x,z) ∈ P(s)

How do we define disjoint classes?

Models (with OWL semantics)

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P() then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P() then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then I(s) = I(o)

– If (I(s), I(o)) ∈ P() then I(s) ≠ I(o)

– If (I(s), I(o)) ∈ P() then ∀x,y : (x,y) ∈ P(s)

if and only if (y,x) ∈ P(o)

– If I(s) ∈ C() then ∀x,y,z : (x,y) ∈ P(s) and

(y,z) ∈ P(s) imply (x,z) ∈ P(s)

– If (I(s), I(o)) ∈ P() then C(s) ∩ C(o) = Ø

... and so on.

If-then semantics

• ℐ is a model of G if and only if:
– If (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– If (I(s), I(o)) ∈ P() then I(s) ∈ C(o)

– If (I(s), I(o)) ∈ P() then C(s) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then P(s) ⊆ P(o)

– If (I(s), I(o)) ∈ P() then π1(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then π2(P(s)) ⊆ C(o)

– If (I(s), I(o)) ∈ P() then I(s) = I(o)

– If (I(s), I(o)) ∈ P() then I(s) ≠ I(o)

– If (I(s), I(o)) ∈ P() then ∀x,y : (x,y) ∈ P(s)

if and only if (y,x) ∈ P(o)

– If I(s) ∈ C() then ∀x,y,z : (x,y) ∈ P(s) and

(y,z) ∈ P(s) imply (x,z) ∈ P(s)

– If (I(s), I(o)) ∈ P() then C(s) ∩ C(o) = Ø

⇒ Some set conditionSome data condition

If-and-only-if semantics

• ℐ is a model of G if and only if:
– if (s,p,o) ∈ G then (I(s), I(o)) ∈ P(p)

– (I(s), I(o)) ∈ P() if and only if I(s) ∈ C(o)

– (I(s), I(o)) ∈ P() if and only if C(s) ⊆ C(o)

– (I(s), I(o)) ∈ P() if and only if P(s) ⊆ P(o)

– (I(s), I(o)) ∈ P() if and only if π1(P(s)) ⊆ C(o)

– (I(s), I(o)) ∈ P() if and only if π2(P(s)) ⊆ C(o)

– (I(s), I(o)) ∈ P() if and only if I(s) = I(o)

– (I(s), I(o)) ∈ P() if and only if I(s) ≠ I(o)

– (I(s), I(o)) ∈ P() if and only if ∀x,y : (x,y) ∈ P(s)

if and only if (y,x) ∈ P(o)

– I(s) ∈ C() if and only if ∀x,y,z : (x,y) ∈ P(s) and

(y,z) ∈ P(s) imply (x,z) ∈ P(s)

– (I(s), I(o)) ∈ P() if and only if C(s) ∩ C(o) = Ø

⇔ Some set conditionSome data condition

What's the difference?

If-then semantics

If-and-only-if semantics

G = {(x, ,y),(y, ,z)}

⇒ (I(x), I(y)) ∈ P() ⇒ C(x) ⊆ C(y)

⇒ (I(y), I(z)) ∈ P() ⇒ C(y) ⊆ C(z)

⇒ C(x) ⊆ C(z)

⇒ (I(x), I(y)) ∈ P() ⇒ C(x) ⊆ C(y)

⇒ (I(y), I(z)) ∈ P() ⇒ C(y) ⊆ C(z)

⇒ C(x) ⊆ C(z)

⇒ (I(x), I(z)) ∈ P()

Models of graphs/ontologies

A model is any world that an ontology might describe

Is this a model of the ontology?

No, since () needs to be an () ()

Models of ontologies

A model is any world that an ontology might describe

Now we have a model of the ontology (for the given semantics).

Models of ontologies

A model is any world that an ontology might describe

Is this a model of the ontology?

This is also a model (given the Open World Assumption)!

Mapping of names to things part of model

A different mapping would mean a different model.

Entailment …

Ontology O entails O′ (O ⊧O′)

Any model of O is a model of O′
(O′ forms part of the models of O)

(O′ says nothing new over O)

Entailment symbol: ⊧

Ontology Entailment

Mary doesn’t like cake here

Does O entail O′ (O ⊧ O′)?

No! There are models of O that are not models of O′ …

Reasoning Tasks …

Materialisation: Write down entailments

Any problems with this?

Materialisation: Write down entailments

...

Materialisation: Write down entailments

...

Materialisation: Write down entailments

...

Ontology Satisfiability: Does O have a “model”?

Does O have any model?

YES! Ontology O is Satisfiable!

Ontology Satisfiability:
Does O have a “model”?

So does O have a model now?

YES! Ontology O is still Satisfiable!

Ontology Satisfiability:
Does O have a “model”?

What more would we have to add to O to make it Unsatisfiable?

OR

OR

OR

OR …

Ontology Satisfiability:
Does O have a “model”?

What more would we have to add to O to make it Unsatisfiable?

OR

OR

OR

OR …

An unsatisfiable ontology cannot model any world!

It is inconsistent!

Entailment checking: Does O entail O′?

Alternatively: Are all models of O models of O′ too?

Reasoning …

How can we perform reasoning?

• Does Ontology O entail O′?

• Could instead ask: is “O ∪ ¬O′” unsatisfiable?

Can reduce entailment to unsatisfiability!

So how do we test unsatisfiability then?

Undecidability …

A simple Java program …

Does this Java program terminate

on all possible (positive) inputs?

In:

(end)

A simple Java program …

• Collatz conjecture: an unsolved problem in mathematics

• If we knew that this program terminates or does not terminate on all

natural numbers (not just s), this problem would be solved!

Halting Problem

• Input: a program and an input to that program

• Output:

– if the program halts on that input

– otherwise

• UNDECIDABLE: a general algorithm to solve

the Halting Problem does not exist!

– It will not halt for all program–input pairs!

– It may halt for some program–input pairs

A quick sketch of Halting Problem proof

Problem: Consecutive ‘1’s in π

• Input: A natural number n

• Output:

– if π contains n consecutive ‘1’s

– otherwise

Is this problem DECIDABLE or UNDECIDABLE?
… i.e., does there exist a program that halts (with the correct answer) for all n?

What if we knew the maximum sequence of consecutive ‘1’s in π?

≤

• there must exist a sequence of consecutive ‘1’s in π (even if it’s ∞)
∴ there must exist a correct program that halts (even if we don’t know its details)

∴ problem is DECIDABLE!

Problem: Collatz Halting Problem

• Input: [none]

• Output:

– if Collatz program halts on all inputs

– otherwise

Is this problem DECIDABLE or UNDECIDABLE?

(P1)

• either (P1) or (P2) must be correct
∴ there must exist a correct program that halts (even if we don’t know it)

∴ problem is DECIDABLE!

Halting Problem UNDECIDABLE in the general case
(for all programs and inputs)

(P2)

Domino Tiling Problem

• Input: A set of Dominos (like D)

• Output:

– if there exists a valid infinite tiling (like t)

– otherwise

Is this problem
DECIDABLE or

UNDECIDABLE?

Can reduce from Halting to Tiling

It has been shown that there exists a program that can reduce any

Halting problem instance into a Domino Tiling problem instance

Reduction

Now is the Domino Tiling
problem DECIDABLE or

UNDECIDABLE?

• is DECIDABLE
∴ if were DECIDABLE, then would be DECIDABLE

• but is UNDECIDABLE
∴ must be UNDECIDABLE!

If we have a decidable reduction from an UNDECIDABLE problem A
to another problem B, then B must be UNDECIDABLE

Reduce from Tiling to OWL entailment?

Reduction

Does D have an
infinite tiling?

Does OWL ontology
O entail O′?

How can we encode a Domino Tiling question into an
OWL ontology entailment question?

Tune in next week!

Questions?

