CC7220-1
LA WEB DE DATOS
PRIMAVERA 2018

LECTURE 4: WEB ONTOLOGY LANGUAGE (OWL) [I]

Aidan Hogan
aidhog@gmail.com

LAST TIME ...

“MORE OR LESS

SEMANTIC WEB: DATA - RULES » QUERY = OUTPUT”

DATA:

Ireland .

(Ireland,partOf,Europe)
(Ireland,isA,Country)

Dublin .

(Ireland,capital,Dublin)

(Ireland,capital,Dublin) (Dublin,population,1000000)

RDF OFTEN DRAWN AS A (DIRECTED, LABELLED) GRAPH

subject

subject | predicate object
reland | partOf Europe
reland | a Country
reland | capital Dublin
Dublin | population | 1,000,000
predicate> object
a/
capltal\

population ——»

1000000

*“ MORE OR LESS

SEMANTIC WEB: DATA - RULES » QUERY = OUTPUT”

RULES: “(b,capital,a) — (a,partOf,b)”
“(a,partOf,b), (b,partOf,c) — (a,partOf,c)”

RDFSCHEMA: RDES

Class c is a sub-class of Class d
If (x,rdf:type,c) then (x,rdf:type,d)

Property p is a sub-property of g
If (x,p,y) then (x,q,y)

Property p has domain class c
If (x,p,y) then (x,rdf:type,c)

Property p has range class ¢
If (x,p,y) then (y, rdf:type,c)

TODAY'S TOPIC ...

*“ MORE OR LESS

SEMANTIC WEB: DATA - RULES » QUERY = OUTPUT”

RULES: “(b,capital,a) — (a,partOf,b)”
“(a,partOf,b), (b,partOf,c) — (a,partOf,c)”

: / \ .
:sire :sire
- / \
:Zl1la :Zach
:dam :dam
e Lea — 10 rdf :type
Y

| :Zebroid

What can we intuitively conclude about Zia?

. / \ ‘
:sire :sire
. / \
:Zlia :Zach
:dam :dam
e Lea — 18 rdf : type
Y
:Zebroid

rdf+type 3R 1AARL =

What can we intuitively conclude about Zia?
Ziais also a Zebroid!

What kind of reasoning are we using here?
Deductive

()

:sire

:dam

(Mezty),
\/ rdf :type

'
[:Zebroidj

tsire

:dam

rdf+type R 1RNN L ="

What assumptions do we make to conclude that Zia is a Zebroid?
If x has same sire and dam as y and y is a Zebroid then x is a Zebroid!

Very specific to this example

N 24

(x,:dam,z1), (z,:sire,zs),

(y,:dam,z1), (y,:sire,zs),

(y,rdf :type,:Zebroid)

— (x,rdf :type,:Zebroigd)

. / \ '
:S81re :81re
:Zia | :Zach
:dam :dam

(:Zebroid |
rdf :type \—//,/" E—

What assumptions do we make to conclude that Zia is a Zebroid?
* sireis a sub-property of parent
« damis a sub-property of parent

. / \ -
:sire :sire
- / \
:Zlia :Zach
— P = |
:dam :dam

N TLoa e rdf : type

Y
:Zebroid

rdf+type 3R 1AARL =

What assumptions do we make to conclude that Zia is a Zebroid?
sire is a sub-property of parent
dam is a sub-property of parent
A Zebroid has exactly one parent a Zebra
A Zebroid has exactly one parent a (-Zebra and a Equine)

. / \ ‘
:sire :sire
. / \
:Zlia :Zach
:dam :dam
e Lea — 18 rdf : type
Y
:Zebroid

rdf+type 3R 1AARL =

What assumptions do we make to conclude that Zia is a Zebroid?
sire is a sub-property of parent
dam is a sub-property of parent
A Zebroid has exactly one parent a Zebra
A Zebroid has exactly one parent a (-Zebra and a Equine)
A Zebroid is a sub-class of Equine
An Equine has exactly two parents

. / \ ‘
:sire :sire
:Zlia :Zach
:dam :dam
N Lea e rdf : type
Y
:Zebroid

rdf+type 3R 1AARL =

What assumptions do we make to conclude that Zia is a Zebroid?
sire is a sub-property of parent
dam is a sub-property of parent
A Zebroid has exactly one parent a Zebra
A Zebroid has exactly one parent a (-Zebra and a Equine)
A Zebroid is a sub-class of Equine
An Equine has exactly two parents
Two things cannot be related by sire and dam at the same time

. / \ ‘
:sire :sire
- / \
:Zlia :Zach
— P =5 |
:dam :dam

e Lea «— 10 rdf : type

Y
:Zebroid

rdf+type 3R 1AARL =

What assumptions do we make to conclude that Zia is a Zebroid?

sire is a sub-property of parent Which are expressible in RDFS?

dam is a sub-property of parent

A Zebroid has exactly one parent a Zebra

A Zebroid has exactly one parent a (-Zebra and a Equine)

A Zebroid is a sub-class of Equine

An Equine has exactly two parents

Two things cannot be related by sire and dam at the same time

:8ire sire
W:Zia%’fff#f hhhﬁh“ﬁigach
HH““EE; Lea 4#*”’{ rdf :type
| :Zebroid |

rdf : type _/// S

What assumptions do we make to conclude that Zia is a Zebroid?

sire is a sub-property of parent Which are expressible in RDFS?

dam is a sub-property of parent

A Zebroid has exactly one parent a Zebra

A Zebroid has exactly one parent a (-Zebra and a Equine)

A Zebroid is a sub-class of Equine

An Equine has exactly two parents

Two things cannot be related by sire and dam at the same time

(),

tsire :sire

:dam :dam

\-/ rdf : type
:Lea
iLea, |

[:Zebroid]

rdf+type 3R 1AARL =

What assumptions do we make to conclude that Zia is a Zebroid?

sire is a sub-property of parent ’ Which are expressible in RDFS?
dam is a sub-property of parent The rest we can express in OWL
A Zebroid has exactly one parent a Zebra

A Zebroid has exactly one parent a (-Zebra and a Equine)

A Zebroid is a sub-class of Equine

An Equine has exactly two parents

Two things cannot be related by sire and dam at the same time

WEB ONTOLOGY LANGUAGE: OWL

OWL (2): AWEB STANDARD

https://www.w3.0org/TR/owl2-overview/

W3C

OWL 2 Web Ontology Language
Document Overview (Second Edition)

-
lg
=
']
p-
=
@
£
£
O
o
@
ol
9,
2

W3C Recommendation 11 December 2012

This version:
http:/Mww.w3.0rg/TR/2012/REC-owl2-overview-20121211/
Latest version (series 2):
http:/Mww.w3.org/TR/owl2-overview/
Latest Recommendation:
http:/Mww.w3.org/TR/owl-overview
Previous version:
http:/AMww.w3.0rg/TR/2012/PER-owl2-overview-20121018/
Editors:
W3C OWL Working Group (see Acknowledgements)

Please refer to the errata for this document, which may include some normative corrections.

A color-coded version of this document showing changes made since the previous version is also
available.

FORMAL UNDERPINNINGS: DESCRIPTION LOGICS

Name Syntax OWL key-term DL
Concepr DEFINITIONS
Atomic Concept A owl:Class ALC
Top Concept T owl:Thing ALC
Bottom Concept L owl:Nothing ALC
Concept Negation - owl:complementODf ALC
Concept Intersection cnp owl:intersectionOf ALC
Concept Union cuD owl :unionOf ALC
Nominal {at, o tn} owl:oneOf o
Existential Restriction AR.C owl:someValuesFrom ALC
Universal Restriction VR.C owl:allValuesFrom ALC
Self Restriction 3R.Self ovwl:hasSelf R
Number Restriction <nl.z2nl,=nk owl:*cardinality N
Qualified Number Restriction < nR.C, 2n R.C, =nR.(C owl:xqualifiedCardinality Q
Concrrr Axioms [T-Box)
Concept Inclusion CCD rdfs:subClass0f ALC
RoOLE DEFINTTIONS
Role R owl:*Property ALC
Inverse Role R~ owl:inverseOf z
Universal RRole U owl:top*Property R
RoLE Axioms (R-Box)
Role Inclusion RCS rdfs:subProperty0f H
Complex Role Inclusion Rioc..o R, C S owl:propertyChainAxiom R
Transitive Roles Trans(R) owl:TransitiveProperty Y
Functional Roles Func(R) owl:FunctionalProperty F
Rellexive Roles Ref(1?) owl:ReflexiveProperty R
Irreflexive Roles Irref(R) owl:IrreflexiveProperty R
Symmetric Roles Sym(R) owl:SymmetricProperty z
Asymmetric Roles Asym(R) owl:AsymmetricProperty R
Disjoint Roles Disj(R, S) owl:disjointPropertyWith R
ASSERTIONAL DEFINITIONS
(Named) Individual @ (RDF IRI or Literal) ALC
ASSERTIONAT AX10MS (A-Box)
Role Assertion Ra,b) (RDF triple) ALC
Negative Role Assertion -R(a,b) owl:NegativePropertyAssertion ALC
Concept Assertion Cla) rdf :type ALC
Equality a="4 owl:samels ALC
Inequality a#b owl:differentFrom ALC

FOR TODAY: A RUNNING EXAMPLE a

:Connie :Michael

%

The - q
Godfather

:Vincent

LOGICAL ASSUMPTIONS

OPEN WORLD ASSUMPTION (OWA)

* \ito-has3-chidren?

How many children does _ _
 Vito has at least 3 children?

Vito have according
to this RDF graph?

:Fredo :Michael

:Connie

:Vito :hasChild :Connie , :Sonny , :Michael .

:Vito :hasChild :Fredo .
.2

OPEN WORLD ASSUMPTION

 RDF(S) and OWL:
— Take an Open World Assumption (OWA):

« Anything not known is not assumed to be false,
simply unknown

» Without further information, Vito may have children
that we don't know about!

Why might this assumption be important for the Web?
OWA: Assuming Web data to be complete a bad idea

NO UNIQUE NAME ASSUMPTION (No UNA)

How many children does
Vito have according

to this RDF graph? * \ito has at least one child!

:Fredo :Michael

:Connie

:Vito :hasChild :Connie , :Sonny , :Michael .

:Vito :hasChild :Fredo .
.2

NO UNIQUE NAME ASSUMPTION (No UNA)

 RDF(S) and OWL:

— Do not take a Unique Name Assumption:
« Two or more IRIs may refer to the same thing!

« Without further information, the IRIs we know to be
Vito's children may refer to one real-world thing!

Why might this assumption be important for the Web?
No UNA: Assuming strict naming agreement on the Web a bad idea

. / \ ‘
:sire :sire
. / \
:Zlia :Zach
— o4 |
:dam :dam

N TLoa e rdf : type

Y
:Zebroid

rdf+type 3R 1AARL =

Which assumptions are needed under the Open World Assumption?

sire is a sub-property of parent

dam is a sub-property of parent

A Zebroid has exactly one parent a Zebra

A Zebroid has exactly one parent a (-Zebra and a Equine)

A Zebroid is a sub-class of Equine

An Equine has exactly two parents

Two things cannot be related by sire and dam at the same time

. / \ '
cS81re :81re
:Zia | :Zach
:dam :dam

(:Zebroid |
rdf:type \—//,/" .

Which assumptions are needed under the Open World Assumption?

sire is a sub-property of parent

dam is a sub-property of parent

A Zebroid has exactly one parent a Zebra

A Zebroid has exactly one parent a (-Zebra and a Equine)

A Zebroid is a sub-class of Equine

An Equine has exactly two parents

Two things cannot be related by sire and dam at the same time

. / \ ‘
:sire :sire
. / \
:Zlia :Zach
:dam :dam
e Lea — 18 rdf : type
Y
:Zebroid

rdf+type 3R 1AARL =

Which assumptions are needed without a

sire is a sub-property of parent

dam is a sub-property of parent

A Zebroid has exactly one parent a Zebra

A Zebroid has exactly one parent a (-Zebra and a Equine)

A Zebroid is a sub-class of Equine

An Equine has exactly two parents

Two things cannot be related by sire and dam at the same time

:Zia |

(:Zebroidj

rdf+type 3R 1AARL =

Which assumptions are needed without a Unique Name Assumption?

sire is a sub-property of parent

dam is a sub-property of parent

A Zebroid has exactly one parent a Zebra

A Zebroid has exactly one parent a (-Zebra and a Equine)

A Zebroid is a sub-class of Equine

An Equine has exactly two parents

Two things cannot be related by sire and dam at the same time

LET’S START WITH SOME RDFS ...

rdf's: subPropertyOf

:husbandOf
ji?' ————————— :spouse--------
- :wifeOf
<--------:spouse---------

:Carmela

:Vito :husbandOf :Carmela .
:husbandOf rdfs:subPropertyOf :spouse .

= :Vito :spouse :Carmela .

:Carmela :wifeOf :Vito .
:wifeOf rdfs:subPropertyOf :spouse .

= :Carmela :spouse :Vito .

rdfs:subClassOf E‘]

rdf: type

:Mary rdf:type :Woman .
:Woman rdfs:subClassOf :Person .

= :Mary rdf:type :Person .

rdf's:domain

:motherOf

:Fredo

:Carmela :motherOf :Fredo .

:motherOf rdfs:domain :Female.

=

:Carmela rdf:type :Female .

rdfs:range

:Carmela

:Carmela :hasSon :Fredo .

-hasSon rdfs:range :Male .

=

:Fredo rdf:type :Male .

:hasSon

(IN)EQUALITY IN OWL ...

owl : sameAs a

owl : sameAs

“““ owl:sameAs = —-----
:VitoOld
I :VitoYoung
I |
:hasGrandson :granddaugtherOf
Grangson :granddaugtherOf

| |
I |

:Vincent

:VitoOld owl:sameAs :VitoYoung .

owl:differentFrom

How many children does
Vito have according
to this RDF graph?

* V\ito has at least two children!

:Connie

*

owl:differentFrom

:Vito :hasChild :Connie, :Sonny, :Michael, :Fredo .
:Connie owl:differentFrom :Sonny, :Michael, :Fredo .

INCONSISTENCY IN OWL ...

owl : sameAs

owl:differentFrom

:VitoOld :VitoYoung

:VitoOld owl:sameAs :VitoYoung .
:VitoOld owl:differentFrom :VitoYoung .
= FALSE

PROPERTY AXIOMS IN OWL ...

owl :equivalentProperty

——:parentOf—— ——:hasChild——

---:hasChild--—+ ---:parentOf-- -

:Michael

:Vito :parentOf :Michael .

:Michael :hasChild :Mary .

:parentOf owl:equivalentProperty :hasChild .
= :Vito :hasChild :Michael .

= :Michael :parentOf :Mary .

owl :inverseOf

. ——:parentOf——

- <---:childof---

:Carmela

:Carmela :parentOf :Sonny .
:Vincent :childOf :Sonny .

:parentOf owl:inverseOf :childOf .

= :Sonny :parentOf :Vincent .
= :Sonny :childOf :Carmela .

:Vincent

owl :SymmetricProperty

:sibling

:Connie

:Connie :sibling :Fredo .

:sibling rdf:type owl:SymmetricProperty .

=

:Fredo

:Fredo :sibling :Connie .

owl:TransitiveProperty

:ancestorOf—

:Carmela :ancestorOf :Michael .
:Michael :ancestorOf :Mary .
:ancestorOf rdf:type owl:TransitiveProperty .

= :Carmela :ancestorOf :Mary .

2
owl :propertyChainAxiom NmmmrmwtoCWMLvaﬁ&:gEr—_izf

:Sonny :brotherOf :Michael .
:Michael :parentOf :Mary .
:uncleOf owl:propertyChainAxiom (:brotherOf :parentOf) .

= :Sonny :uncleOf :Mary .

owl :ReflexiveProperty

:Fredo

:similarTo rdf:type owl:ReflexiveProperty .

= :Connie :similarTo :Connie .

:Freddie :similarTo :Freddie .

everything :similarTo itself

owl :FunctionalProperty

:hasBioFather

:VitoOld
:VitoYoung

:Fredo :hasBioFather :VitoOld .
:Fredo :hasBioFather :VitoYoung .

:hasBioFather rdf:type owl:FunctionalProperty .

= :VitoOld owl:sameAs :VitoYoung .

ASIDE ...

Why do we say :hasBioFather and not just :hasFather?

« Tom Hagen, the adopted son of Vito
— Maybe he has two fathers?
— Hence :hasBioFather (has biological father)

owl:InverseFunctionalProperty

:bioFatherOf

:VitoOld
:VitoYoung

:VitoOld :bioFatherOf :Connie .
:VitoYoung :bioFatherOf :Connie .

:VitoOld

:bioFatherOf rdf:type owl:InverseFunctionalProperty .

= :VitoOld owl:sameAs :VitoYoung .

owl : hasKey

_:hasBioMother

:Carmela

J
6?‘:“\:\) <—rdf: type

:Singleton

‘born——

:Constanza 1922-04-16

:Connie a :Singleton ; :hasBioMother :Carmela ; :born “1922-04-16"”"*xsd:date .
:Constanza a :Singleton ; :hasBioMother :Carmela ; :born “1922-04-16"""xsd:date .
:Singleton owl:hasKey (:hasBioMother :born) .

= :Connie owl:sameAs :Constanza .

owl:IrreflexiveProperty

:hasBrother

:Fredo :hasBrother :Fredo .
:hasBrother rdf:type owl:IrreflexiveProperty .
= FALSE

owl : AsymmetricProperty a

-hasFather

:hasFather

:Fredo :hasFather :VitoYoung .

:VitoYoung :hasFather :Fredo .

:hasFather rdf:type owl:AsymmetricProperty .
= FALSE

owl:disjointPropertyWith

:hasFather

:hasSon

:Sonny :hasFather :VitoYoung .
:VitoYoung :hasSon :Sonny .

:hasSon owl:disjointPropertyWith :hasFather .

= FALSE

NECATIVE PROPERTY ASSERTIONS

-:hasMother

:hasMother

:Fredo

[] owl:sourcelndividual :Fredo ;
owl:assertionProperty :hasMother ;
owl:targetlindividual :Connie .

:Fredo :hasMother :Connie .
= FALSE

RECAP OWL PROPERTY AXIOMS

What would be the owl: inverseOf the property : father0f?

Name an owl:SymmetricProperty for family relations?

Name an owl:TransitiveProperty for family relations?

Give an owl :propertyChainAxiom for :hasNiece?

Name an owl:AsymmetricProperty for family relations?

Name an owl : FunctionalProperty for family relations?

CLASS AXIOMS IN OWL

owl:equivalentClass

rdf: type—

< - --rdf:type--

rdf:type----»

:Vincent

:Person

:Vincent rdf:type :Human .
:Mary rdf:type :Person .

:Human owl:equivalentClass :Person .

= :Vincent rdf:type :Person .

:Mary rdf:type :Human .

owl:disjointWith

.

Godfather

:MafiaBoss
A

rdf:type

9

Aa
»r

T

:Lawful

A

rdf:type

:Vincent

:Vincent rdf:type :MafiaBoss , :Lawful .

:MafiaBoss owl:disjointWith :Lawful .
= FALSE

owl:disjointWith (i)

)

The %
Godfather

:MafiaBoss

rdf:

:Vincent

:Vincent rdf:type :MafiaBoss .
:Mary rdf:type :Lawful .
:MafiaBoss owl:disjointWith : Lawful .

= :Vincent owl:differentFrom :Mary

ph4
O

:Lawful

A

rdf:type

CLASS DEFINITIONS IN OWL

DESCRIPTION LOGICS

Name Syntax OWL key-term DL
Concepr DEFINITIONS
Atomic Concept A owl:Class ALC
Top Concept T owl:Thing ALC
Bottom Concept L owl:Nothing ALC
Concept Negation - owl:complementODf ALC
Concept Intersection cnp owl:intersectionOf ALC
Concept Union cuD owl :unionOf ALC
Nominal {at, o tn} owl:oneOf o
Existential Restriction AR.C owl:someValuesFrom ALC
Universal Restriction VR.C owl:allValuesFrom ALC
Self Restriction 3R.Self ovwl:hasSelf R
Number Restriction <nl.z2nl,=nk owl:*cardinality N
Qualified Number Restriction < nR.C, 2n R.C, =nR.(C owl:xqualifiedCardinality Q
Concrrr Axioms [T-Box)
Concept Inclusion CCD rdfs:subClass0f ALC
RoOLE DEFINTTIONS
Role R owl:*Property ALC
Inverse Role R~ owl:inverseOf z
Universal Role U owl:top*Property R
RoLE Axioms (R-Box)
Role Inclusion RCS rdfs:subProperty0f H
Complex Role Inclusion Rioc..o R, C S owl:propertyChainAxiom R
Transitive Roles Trans(R) owl:TransitiveProperty Y
Functional Roles Func(R) owl:FunctionalProperty F
Rellexive Roles Ref(1?) owl:ReflexiveProperty R
Irreflexive Roles Irref(R) owl:IrreflexiveProperty R
Symmetric Roles Sym(R) owl:SymmetricProperty z
Asymmetric Roles Asym(R) owl:AsymmetricProperty R
Disjoint Roles Disj(R, S) owl:disjointPropertyWith R
ASSERTIONAL DEFINITIONS
(Named) Individual @ (RDF IRI or Literal) ALC
ASSERTIONAT AX10MS (A-Box)
Role Assertion Ra,b) (RDF triple) ALC
Negative Role Assertion -R(a,b) owl:NegativePropertyAssertion ALC
Concept Assertion Cla) rdf :type ALC
Equality a="4 owl:samels ALC
Inequality a#b owl:differentFrom ALC

owl:intersectionOf (M) [i]

:Carmela

:Carmela rdf:type :Mother .
:Mother rdfs:subClassOf [owl:intersectionOf (:Female :Parent)]
= :Carmela rdf:type :Female , :Parent .

owl:intersectionOf (M) [11]

:Female

:Carmela rdf:type :Female , :Parent .

:Parent

:Carmela

rdf: type

:Mother owl:equivalentClass [owl:intersectionOf (:Female :Parent)]

= :Carmela rdf:type :Mother .

owl :unionOf (1) [I]

pA4
S

:Lawful

:Vincent

:Vincent rdf:type :Lawful .
:Person owl:equivalentClass [owl:unionOf (:Criminal :Lawful)]

= :Vincent rdf:type :Person .

owl :unionOf (L) [I1]

:Person
A

rdf: type

:Vincent

:Vincent rdf:type :Person .
:Person owl:equivalentClass [owl:unionOf (:Criminal :Lawful)]
= # :Vincent must be either :Lawful or :Criminal (or both)

owl:disjointUnionOf (Up)

b— =

\ :Lawful !

:Person
A

rdf: type

:Vincent

:Vincent rdf:type :Person .
:Person owl:equivalentClass
[owl:disjointUnionOf (:Criminal :Lawful)]
= # :Vincent must be either :Lawful or :Criminal (not both)

owl : complementOf (=) [I]

:Mary rdf:type :Alive .
:Dead owl:equivalentClass [owl:complementOf :Alive]

= [] owl:sourcelndividual :Mary ; owl:targetProperty rdf:type ;
owl:targetIndividual :Dead .

rdf:

owl : complementOf (=) [I1]

I
1A
il S Tl el o Tl W Rl S

: :Alive |

I—————I —————

- rdf{type
I

:Vito rdf:type :Dead .
:Dead owl:equivalentClass [owl:complementOf :Alive]

= [] owl:sourcelndividual :Vito ; owl:targetProperty rdf:type ;
owl:targetIndividual :Alive .

owl :oneOf ({ })

)

e 4z
Godfather

:Godfather

*

:Godfather owl:equivalentClass
[owl:oneOf (:Vito :Michael :Vincent)]
= :Vito rdf:type :Godfather .
= :Michael rdf:type :Godfather .
= :Vincent rdf:type :Godfather .

owl:allValuesFrom (V)

: v :hasParent.

:Person

f

rdf: type

:hasParent

:Michael

:Mary rdf:type :Person ; :hasParent :Michael .
:Person rdfs:subClassOf
[owl:allValuesFrom :Person ; owl:onProperty :hasParent]

= :Michael rdf:type :Person .

owl : someValuesFrom (3) [I]

— 3 :hasChild.

F—————— —— —

:Parent : :Person

f

rdf: type

:hasChild

:Michael

:Michael :hasChild :Mary . :Mary rdf:type :Person .
:Parent owl:equivalentClass
[owl:someValuesFrom :Person ; owl:onProperty :hasChild]

= :Michael rdf:type :Parent .

owl : someValuesFrom (3) [11]

— 3 :hasChild.

:Parent

f

rdf:type

:Michael

:Michael rdf:type :Parent .
:Parent owl:equivalentClass
[owl:someValuesFrom :Person ; owl:onProperty :hasChild]

= :Michael :hasChild _:someone . _:someone rdf:type :Person .

owl : hasValue (3P.{x}) [I]

I 3 . speciles.
:Person :H.Sapiens !

f o

rdf: type

:Mary rdf:type :Person .
:Person rdfs:subClassOf
[owl:hasValue :H.Sapiens ; owl:onProperty :species]

= :Mary :species :H.Sapiens .

owl : hasValue (3P.{x}) [I]

— 3 :specles.

:H.Sapiens

A

:species

:Mary :species :H.Sapiens .
:Person owl:equivalentClass
[owl:hasValue :H.Sapiens ; owl:onProperty :species]

= :Mary rdf:type :Person .

owl : hasSelf (Self) [i]

],%[I?E [Self(:loves)

:Narcissist

:Michael

:Michael rdf:type :Narcissist .

:Narcissist rdfs:subClassOf

=

[owl:hasSelf true ; owl:onProperty :loves]

:Michael :loves :Michael .

2
owl :hasSelf (Self) [11] a

— Self(:1loves)

P o ———————— ——l

| :Narcissist!

:Michael

:Michael :loves :Michael .
:Narcissist owl:equivalentClass
[owl:hasSelf true ; owl:onProperty :loves]

= :Michael rdf:type Narcissist .

CARDINALITY RESTRICTIONS (>, <,=)

 Define a class with a given number of values
for a property:
— Exact: :Person C = 2 (:hasBioParent)

:Person rdfs:subClassOf [owl:cardinality 2 ;
owl:onProperty :hasBioParent] .

— Max: :Monogamist & < 1 (:currentSpouse)

:Monogamist rdfs:subClassOf [owl:maxCardinality 1 ;

owl:onProperty :currentSpouse] .

— Min: :Parent = > 1 (:hasChild)

:Parent owl:equivalentClass [owl:minCardinality 1 ;
owl:onProperty :hasChild] .

QUALIFIED CARDINALITY RESTRICTIONS (>, <,=)

 Define a class with a given number of values
from a given class for a property:

— Exact: :Person = =2 (:hasParent.Person)

:Person owl:equivalentClass [owl:qualifiedCardinality 2 ;
owl :onProperty :hasParent ;
owl:onClass :Person] .

* Now the values in question must be people!

— Analogous versions of Max and Min.

]

RECAP OWL CLASS AXIOMS/DEFINITIONS

A class :HumanParent

might be equivalent to

the owl : unionOf which
classes?

What is the difference/relation between
owl : complementOf and
owl:disjointWith?

AC (BN 3pr.C)?

Give an example use of
owl:allValuesFrom
for family relations

Give an example use of owl : someValuesFrom for :Uncle.

How might we codify the semantics of a class :OnlyChild in OWL?

SLIDES ARE EXAMPLES, NOT DEFINITIONS a

)

e %=
bodfather ==
:Godfather

A

rdf: type

= :VitoYoung must be owl:sameAs :Vito or :Michael or :Vincent

:VitoYoung

. / \ ‘
:sire :sire
. / \
:Zlia :Zach
:dam :dam
e Lea — 18 rdf : type
Y
:Zebroid

rdf+type 3R 1AARL =

sire is a sub-property of parent

dam is a sub-property of parent

A Zebroid has exactly one parent a Zebra

A Zebroid has exactly one parent a (-Zebra and a Equine)

A Zebroid is a sub-class of Equine

An Equine has exactly two parents

Two things cannot be related by sire and dam at the same time

QUESTIONS?

