
CC6202-1
LA WEB DE DATOS

PRIMAVERA 2016

Lecture 7: SPARQL (1.0)

Aidan Hogan

aidhog@gmail.com

(1) Data, (2) Rules/Ontologies, (3) Query

First SPARQL (1.0)
Then SPARQL 1.1

SPARQL: Query Language for RDF

How to ask: “Who stars in ‘Sharknado’?”

SPARQL: Query Language for RDF

Query: Solutions:

SPARQL: PREFIX DECLARATIONS

SPARQL: prefix declarations

• Shortcuts for IRIs (exactly like in Turtle)

SPARQL: WHERE CLAUSE

SPARQL: WHERE clause

• Where the magic happens

• Specifies what to match in the data

“Triple pattern”

(a triple with variables)

SPARQL: WHERE clause

Query: Solutions:

SPARQL: WHERE clause

How to ask: “What movies did the stars of ‘Sharknado’ also star in?”

SPARQL: Basic Graph Patterns

Query: Solutions:

SPARQL: Basic Graph Patterns

Query:

“Basic Graph Pattern”

(a set of triple patterns)

SPARQL: Join Variables

Query:

“Join Variable”

(a variable appearing multiple times)

SPARQL: Disjunction

How to ask: “What are the titles of the (first two) movies in the Sharknado series?”

SPARQL: Disjunction (UNION)

Query: Solutions:

SPARQL: Left-join

How to ask: “Give me the titles of all movies and, if available, their first-aired date?”

SPARQL: Left-join (OPTIONAL)

Query: Solutions:

“UNBOUND Variable”

(a variable without a binding in a solution)

SPARQL: Filtering results

How to ask: “What movies were first aired in 2014?”

SPARQL: FILTER

Query: Solutions:

“Empty Results”

Any problem here? … be careful comparing dates without time-zones!

… also missing the xsd: prefix ;)

SPARQL: FILTER

Query:

What happens in this case where ?date bound in data to a string?

FILTERS (and other functions we see later) expect certain
types. If not given, a type error is given.

SPARQL: Boolean FILTER operators

• FILTERs evaluate as true, false or error

• Only results evaluating as true are returned

• Can apply AND (&&) or OR (||)

• Can also apply NOT (!)

– !E → E

SPARQL: RDF term FILTER operators

• ISIRI(A), ISURI(A), ISBLANK(A),
ISLITERAL(A)

– checks the type of RDF term

– ISIRI and ISURI are synonymous

• BOUND(A)

– checks if the variable is bound

SPARQL: (In)equality FILTER operators

• =, !=, SAMETERM(A,B)

– = and != test value (in)equality

– SAMETERM tests term equality
• e.g., “2.0”^^decimal = “2”^^xsd:int gives true

SAMETERM(“2.0”^^decimal,“2”^^xsd:int) gives false

• >, <, >=, <=

– can only compare “compatible” types
• e.g., “2.0”^^decimal > “2”^^xsd:int okay, “2.0”^^decimal > “2” an

error

SPARQL: Numeric FILTER operators

• +A, –A, A+B, A–B, A*B, A/B (numeric)

– input numeric, output numeric

SPARQL: Literal/string FILTER operators

• STR(A), LANG(A), DATATYPE(A)
– STR returns string of RDF term (literal or IRI)
– LANG returns language tag of literal
– DATATYPE returns datatype of literal
– All return xsd:string

• LANGMATCHES(A,B)tests (sub-)language
– e.g.:

• LANGMATCHES(“en“,“en“) gives true
• LANGMATCHES(“en-US“,“en“) gives true
• LANGMATCHES(“en“,“en-US“) gives false

• REGEX(A,B,C) tests a regular expression
– C sets some optional tags like case insensitivity
– e.g.:

• REGEX(“blah“,”^B”) gives false
• REGEX(“blah“,“^B“,“i“) gives true

SPARQL: Casting between types

• Y: always allowed

• N: never allowed

• M: depends on value
– e.g., “2”^^xsd:string can be mapped to xsd:int but “P”^^xsd:string cannot

SPARQL: Extensible/User-defined Functions

• A SPARQL implementation can choose to implement custom
functions
– e.g., ex:isOddNumber(A)

• A common example in practice is for free-text search

• The SPARQL syntax allows it but the engine must interpret the
function (or throw an error if not supported)

SPARQL: WHERE clause example (i)

Query:

What solutions would this query return?

Solutions:

SPARQL: WHERE clause example (ii)

Query:

What solutions would this query return?

Solutions:

Can do a closed-world style of negation!

SPARQL: QUERY TYPES

SPARQL: SELECT with *

Query: Solutions:

SPARQL: SELECT with projection

Query:
DEFAULT “Bag Semantics”

(number of results
returned must
correspond to

number of
matches in data)

Solutions:

SPARQL: SELECT with DISTINCT

Query:
DISTINCT: “Set Semantics”

(each result row
must be unique)

Solutions:

SPARQL: SELECT with REDUCED

Query: Solutions:
OR

May (but do not need to)
return duplicates.

(This allows the engine do whatever is
most efficient.)

SPARQL: ASK

Query: Solutions:

Returns true if
there is a match,
false otherwise.

SPARQL: CONSTRUCT

Query: Solutions:

Returns an RDF graph based on the
matching CONSTRUCT clause.

SPARQL: DESCRIBE (optional feature)

Query: Solutions:

Returns an RDF graph “describing” the returned
results. This is an optional feature. What should be

returned is left open.

SPARQL: SOLUTION MODIFIERS

Solution modifiers

• ORDER BY (DESC)
– Can be used to order results

– By default ascending (ASC), can specify descending (DESC)

– Can order lexicographically on multiple items

• LIMIT n
– Return only n results

• OFFSET n
– Skip the first n results

How might we ask for the second and third most recently released movies?

Strictly speaking, by default, no ordering
is applied. Hence OFFSET means nothing

without ORDER BY. However, some
engines support a default ordering (e.g.,

the order of computation of results).

SPARQL: NAMED GRAPHS

SPARQL defined over a Dataset

Core idea: SPARQL can support multiple RDF graphs, not just one.
When using SPARQL, you can partition your data into multiple graphs.

The default graph is chosen if you don’t specify a graph.
Otherwise you can explicitly select a named graph using it’s IRI name.

An example dataset

Creating a dataset for a query

• FROM
– Used to define a default graph for the query using graph names

– If multiple graphs are specified, they are RDF-merged

• FROM NAMED
– Used to select the active named graphs to be used for the query

• Using either feature clears the index dataset

Querying the named graphs in a dataset

• We can query parts of the dataset using …

• GRAPH: specifies the URI of a named graph
from which results or a variable that ranges
over all named graphs

– Does not access the default graph!

– If not specified, default graph is accessed

An example query

Query:

What solutions would this query return?

Solutions:

No GRAPH clause so answers
come from default graph only

Using FROM

Query:

What solutions would this query return?

Solutions:

No GRAPH clause so answers come from default graph
defined by FROM (existing default graph cleared)

Using FROM NAMED

Query:

What solutions would this query return?

Solutions:

No GRAPH clause so answers come from default graph,
which is empty (since existing default graph cleared)!

Using GRAPH with variable

Query:

What solutions would this query return?

Solutions:

GRAPH clause only ranges over the named graphs.

Using GRAPH with a name

Query:

What solutions would this query return?

Solutions:

Using GRAPH with FROM

Query:

What solutions would this query return?

Solutions:

No named graphs specified!

Using GRAPH with FROM NAMED

Query:

What solutions would this query return?

Solutions:

GRAPH accesses the one and only named graph

Using GRAPH with FROM and FROM NAMED

Query:

What solutions would this query return?

Solutions:

RECAP

Parts of a SPARQL query (i)

• Prefix declarations

• WHERE clause
– Joins / Basic Graph Patterns

– UNION

– OPTIONAL

– FILTER

• Solution modifiers
– ORDER BY

– LIMIT

– OFFSET

Parts of a SPARQL query (ii)

• Types of queries:
– SELECT (DISTINCT/REDUCED)

– ASK

– CONSTRUCT

– DESCRIBE

• Dataset selection / querying
– FROM

– FROM NAMED

– GRAPH

Questions?

