CC6202-1
LA WEB DE DATOS
PRIMAVERA 2016

Lecture 6: Web Ontology Language (lil)

Aidan Hogan
aidhog@gmail.com

PREVIOUSLY ON
“LA WEB DE DATOS”

Modelling family relations with OWL % a

ex:Connie ex:Fredo

ex:Sonny

The 'é‘;'
Godfather

ex:Mary

Materialisation:

Write down entailments

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person] .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Person] .
:FirstPerson a :Person ,
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Ape] .

So does have a model?

:hasParent /

(ex : FirstPerson]< rdf :type

:hasParent \

e rdf :type —»

YES! Ontology (' is Satisfiable!

Entailment checking:
Does O entail O'?

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;
rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

Alternatively: Are all models of ' models of O’ too?

OWL satisfiability/entailment is

oowerful
I
1
I
EREEny

OWL satisfiability/entailment checking also undecidable!

Otherwise could be used to solve Domino Tiling problem ...

... and the Halting problem ...
... and (given enough time), the Collatz conjecture ...
... and a bunch of other stuff

uolldNpay

TODAY’S TOPIC ...

Options ...

Well great. What are we supposed to do now?

* Accept incomplete reasoners that halt
— You may not get all the entailments ... so what entailments
do you get?
* Accept complete reasoners that may not halt

— Java is a language that lets you write programmes that may
not halt

e Restrict OWL so reasoning tasks become decidable

— Main problem tackled in Description Logics field: find
decidable sublanguages of OWL without turning off too
many features (and allowing efficient algorithms)

More next week ...

In the labs ...

Reasoner Entailments
???
Ontology

* But what is the reasoner actually doing? ...

INCOMPLETE REASONERS
THAT HALT

Incomplete reasoners that halt:

Works for materialisation

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person] .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

Incomplete reasoners that halt:
for Entailment/Satisfiability Checking?

Ontology Satisfiability:
Does

:Person owl:equivalentClass

have a “model”?

[owl:gualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Person] .
:FirstPerson a :Person .

L owl:gqualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Ape] .

So does have a model?

bl rdf :type | P
T -

hasParent — T
(e ———— - "
ex:FirstPerson = rdf :type -
o -

hasP: - —

'A.(_ - N .
\u} — rdf :type {: Apej

YES! Ontology O is Satisfiable!

Entailmentchecking:
Does O entail O'?

:hasDaughter rdfs:subProperty0f :hasChild .

:hasChild rdf:tyvpe owl:AsymmetricPropertv : owl:inverse(f :-hasParent ;
rdfs:subProperty0f -ancestor0f .

-ancestor(0f rdf-type owl:TransitiveProperty -

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .

ex:Carmela -ancestor(f ex:Mary .

Alternatively: Are all models of © models of O’ too?

Why can’t we have incomplete satisfiability/entailment checkers?

Both are decision problems

What would an incomplete answer be?

In the labs ...

Reasoner Entailments
???
Ontology

* The reasoner is doing (incomplete) materialisation!

Recall: RDFS reasoning using “rules”

1D if G matches then G RDFSp-entails

rdfD1 ?x 7p 71 . (71 a literal with datatype IRI dt(71) € D) X 7p b . _badt(?) .

rdfD2 ?7x 7p 7y . 7p a rdf:Property .

rdfsts 7ue D 7u a rdfs:Datatype .

rdfs2 ?p rdfs:domain 7c . 7x 7?p 7y . ?X a 7c .

rdfs3 ?p rdfs:range 7c . 7x 7p 7y . 7y a ?c .

rdfsqga ?x 7p 7y . ?x a rdfs:Resource .

rdfsgb ?x 7p 7y . 7y a rdfs:Resource .

rdfsy ?p rdfs:subPropertyOf 7q . 7x 7p ?y . ?X 7q 7Y .

rdfs6 ?p a rdf:Property . ?p rdfs:subPropertyOf 7p .

rdfs7 ?p rdfs:subPropertyOf 7q . 7q rdfs:subPropertyOf 7r . 7p rdfs:subPropertyOf 7r .

rdfs8 ?c a rdfs:Class . 7c¢ rdfs:subClassOf rdfs:Resource .
rdfsg ?c rdfs:subClassOf ?d . 7x a 7c . ?x a ?d .

rdfsio ?c a rdfs:Class . 7c rdfs:subClassOf 7c .

rdfsi1 ?c rdfs:subClassOf 7d . 7d rdfs:subClassOf 7e . ?c rdfs:subClassOf 7e .

rdfsi2 ?p a rdfs:ContainerMembershipProperty . ?p rdfs:subPropertyOf rdfs:member .
rdfs13 ?7d a rdfs:Datatype . 7d rdfs:subClassOf rdf:Literal .

(Don’t worry about rdfD1, rdfs1, rdfs12, rdfs13)

In the labs ...

Reasoner Entailments
???
Ontology

* The reasoner is doing (incomplete) materialisation!
— Using OWL 2 RL/RDF rules that support RDFS and OWL (2)

http://www.w3.org/TR/owl2-profiles/#Reasoning in OWL 2 RL and RDF Graphs using Rules

http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Lots of rules ...

* Goal: be familiar with idea, not every rule

e Useful for reference
 Homework: read over them quickly

— Let them wash over you ©

OWL 2 RL/RDF (rules for OWL)

Table 4. The Semantics of Equality

Equality

If then
T(?s, owl:sameAs, ?2s)
eq-ref T(?s, ?p, 20) T(?p, owl:sameAs, 2?p)
T(?0, owl:sameAs, ?0)
eq-sym T(?x, owl:sameAs, ?y) T(?y, owl:sameAs, ?x)
) T(?x, owl:sameAs, ?y) N . .
eq-trans T(?y, owl:sameAs, 2z) T(?x, owl:sameAs, ?z)
nen.c || T(?s, owl:sameAs, ?s') ' 3 O
eq-rep-s (s, p, 20) T(?s', ?p, ?0)
nen.n || T(?P, owl:sameAs, 2p*) S« ' O
eq-rep-p || + >, >p, 20) T(?s, ?2p*, ?0)
a : T(?0, owl:sameAs, ?0"') 5 5 oy
eq-rep-o T(%s., p, 20) T(?s, ?p, 20")
. T(?x, owl:sameAs, ?y)
€q-diffl |l o, owl:differentFrom, 2y) A
T(?x, rdf:type, owl:AllDifferent)
) T(?x, owl:members, ?y) ..
eq-diff2 LIST[?y, 221, ..., 220] false foreach1<i<jsn
T(?z3, owl:sameAs, ?z5)
T(?x, rdf:type, owl:AllDifferent)
X T(?x, owl:distinctMembers, ?y) .
eq-diff3 LIST[2Y, 221, ..., 227] false foreach1<i<j=n
T(?z3, owl:sameAs, ?z3)

OWL 2 RL/RDF (rules for OWL) [Example]

Property Axioms

What rule(s) could we use for owl:inverseOf?

, T(?py, owl:inverself, ?pi)

- T(?y, ?p2, ?
prp-invi TCx, b1,) (?y, ?p2, ?x)

, T{?pq, owl:inverself, ?pi)

- T(?y, ?p1s ?
prp-invz T(2x, 2pa2, 2y) (?y, ?p1, x)

OWL 2 RL/RDF (rules for OWL)

Property Axioms

Table 5. The Semantics of Axioms about Properties

PrP-rng |l 1 ox,

2p, 2y)

T(ap, rdf:type, owl:AnnotationProperty)
) T(?p, rdfs:domain, ?c) N X N
prp-dom TOx, 2, 2y) T(?x, rdf:type, 2¢)
T(?p, rdfs:range, 2c)

T(?y, rdf:type, 2¢)

T(?p,
prp-fp T(2x,
T(?x,

rdf:type,
p, 2y1)
p, 2y2)

owl:FunctionalProperty)

T(?y1, owl:sameAs, ?y3)

T(2p,
prp-ifp || T(?x1,
T(?%2,

rdf:type,
p, 2y)
p, ?y)

owl:InverseFunctionalProperty)

T(?x1, owl:sameAs, ?x3)

>
prp-irp T(?p,

rdf:type,
2p, ?x)

owl:IrreflexiveProperty)

false

prp-symp

rdf:type,
p, ?y)

owl:SymmetricProperty)

T(?y, ?p, 2X)

prp-asyp || T(?x,

rdf:type,
p, ?y)
2p, 2x)

owl:AsymmetricProperty)

false

prp-trp || T(?x,

rdf:type,
?p, ?y)
’p, ?z)

owl:TransitiveProperty)

T(?x, ?p, ?2Z)

OWL 2 RL/RDF (rules for OWL)
Property Axioms

T(?p1, rdfs:subProperty0of, ?pia)
- T(?%, ?pz, ?
prp-spol T (?x, ?p2, ?y)
T({?p, owl:propertyChainfxiom, ?x)
LIST[?%, ?p1, ---, ?Pn]
T(?Ul, ?pll ?Uz}
- T(?uy, ?p, ?
PPP=SRO2 | 1 (2uy, 2py, 2u3) (P 70,)
T(?Un, ?Pns Uns1)
T(?p1, owl:equivalentProperty, ?p2)
- T(?%, ?p3, ?
Pre-eapl || ¢ o ape,) (7%, 2p2, ?y)
T(?p1, owl:equivalentProperty, ?2pa2)
- T(?%, ?p1, ?
Pre-eap2 || 1 o apas 2y) (7%, 2p1, ?y)
T(?p1, owl:propertyDisjointWith, ?p;)
prp-pdu || T(?x%, 2?p1. ?vy) false
T(x, 2p2, ?y)
T{?x, rdf:type, owl:AllDisjointProperties)
T{?x, owl:members, ?2y)
prp-adp || LISTL[Z?Y. ?P1s ..., 2Pnl false foreach1=i<j<n
T{?u, ?pj, ?v)
T{?u, 2p3, W)
, T(?p1, owl:inverseQf, ?p3)
- T(?y, ?pz, ?
prp-invl TOx, 1, 2y) (?y. ?pz, ?x)
, T(?p1, owl:inverseQf, ?p3)
- T(?y, ?p1, ?
prp-inv2 0%, 02,) (?y, 2p1, x)

OWL 2 RL/RDF (rules for OWL)

Property Axioms

prp-key

T(?c, owl:hasKey, ?u)
LIST[?u, 2p1, ..., ?Pn]
T(?x, rdf:type, 2c)
T(?x, ?p1, ?z1)

T(?x, ?pn, ?Zp)
T(?y, rdf:type, 2¢)
T(?YJ ?le ?21)

T(?Y, ?an ?Zn)

T(?x, owl:sameAs, ?y)

T(?x, owl:sourceIndividual, ?i;)
T(?x, owl:assertionProperty, ?p)

PrP-nPal |l v >y, owl:targetIndividual, 2i,) el
T(?ila ?P: ?12)
T(?x, owl:sourceIndividual, ?i)
? . ; 3
prp-npa2 T(?x, owl:assertionProperty, ?p) false

T(?x, owl:targetValue, ?1t)
T(?i, ?p, ?1lt)

OWL 2 RL/RDF (rules for OWL) [Example]
Class Axioms

What rule(s) could we use for owl:disjointiWith?

T{?cq, owl:disjointWith, ?c3)
cax-dw T(?x, rdf:type, ?c;) falca
T{?x, rdf:type, ?c3)

OWL 2 RL/RDF (rules for OWL)
Class Axioms

Table 7. The Semantics of Class Axioms

If

then

Cax-5Co

T{?cq, rdfs:subClass0f, 2c3)
T(?x, rdf:type, ?cq)

rdf:type,

?Cz}

cax-eqcl

T(?cq, owl:equivalentClass, ?c3)
T{?x, rdf:type, ?ci)

T(%,

rdf:type,

?Cz}

cax-eqc2

T{?cy, owl:equivalentClass, ?c3)
T(?x, rdf:type, ?c3)

T(?x,

rdf:type,

?Cl}

cax-dw

T(?cq, owl:disjointwWith, ?c3)
T{?x, rdf:type, ?cq)
T{?x, rdf:type, ?c3)

false

cax-adc

T(?x, rdf:type, owl:AllDisjointClasses)
T(?x, owl:members, 2y)

LIST[?y, ?c1, ..., ?cCnl

T{?z, rdf:type, ?ci)

T(?z, rdf:type, ?c3)

false

foreach1<i<jsn

OWL 2 RL/RDF (rules for OWL) [Example]
Class definitions

What rule(s) could we use for owl :intersectionOf?

T{?c, owl:intersectionOf, ?x)
LIST[?x, €1, ..., 2Cpl
T(?y, rdf:type, ?cq)

cls-intl T{?y, rdf:type, ?c3)

T{?y, rdf:type, ?c)

T(?y, rdf:type, ?cg)

T({?y, rdf:type, ?cq)

T{?c, owl:intersectionOf, ?x)
T{?y, rdf:type, ?c3)

cls-int2 LIST[?x, ?C1, ..., ?Cpl

T(?y, rdfitype, ic) %&;y, rdf:type, ?c,)

What rule(s) could we use for owl:allValuesFrom?

T(?x, owl:allValuesFrom, ?y)
T(?x, owl:onProperty, ?p)
T{?u, rdf:type, ?x)

T(?u, ?p, ?v)

cls-avf T(?v, rdf:type, ?y)

No way to write rule for “opposite” direction:
if ... T(7x,owl:allValuesFrom, 7y) and T(?x, owl:onProperty, 7p)
and where T(?7u,?p,?v) implies ?v of rdf:type ?y then T(7u, rdf:type, 7x)

OWL 2 RL/RDF (rules for OWL)
Class definitions

Table 6. The Semantics of Classes

If then

cls-thing T{owl:Thing, rdf:type, owl:Class)
cls-nothingl T{owl:Nothing, rdf:type, owl:Class)
cls-nothing2 || T(?x, rdf:type, owl:Nothing) false

T{?c, owl:intersectionOf, ?x)

LIST[?x, ?cq, .--, ?Cqpl

, T(?y, rdf:type, ?cy) 5 . s

cls-intl T SOeyeE S T({?y, rdf:type, ?c)

T(?y, rdf:type, ?cg)

T(?y, rdf:type, ?

T{?c, owl:intersectionOf, ?x) T(jy PdF.type jcl}

cls-int2 LIST[?x, ?C1, ..., 2Cpl bl s s
? .] 100

T(?y, rdfitype, ¥c) T(?y, rdf:type, ?c;)

T{?c, owl:unionOf, ?2x)
cls-uni LIST[?x, 1, ..., ?Cq] T(2y, rdf:type, 2c) foreach 1 <i=n

T(?y, rdf:type, ?cyi)

T(?cqy, owl:complementOf, ?c3)
cls-com T(?x, rdf:type, ?cq) Fxllzz

T(?x, rdf:type, ?c3)

OWL 2 RL/RDF (rules for OWL)

Class definitions

cls-syfl

T(?x,
T(?x,
T(?u,
T(?v,

owl
owl
?p,
rdf

:someValuesFrom, ?2y)
:onProperty, ?p)

2v)

ttype, ?v)

T(?u, rdf:type, ?x)

cls-syf2

T ?x,
T(?x,
T(?u,

owl:

owl
p,

someValuesFrom, owl:Thing)

:onProperty, ?p)

2v)

T(?u, rdf:type, ?x)

cls-avf

T(?x,
T(?x,
T(?u,
T(?u,

owl
owl
rdf

’p,

rallvaluesFrom,
:onProperty, ?p)
ttype, ?x)

?y)

2v)

T(?v, rdf:type, ?y)

cls-hvl

T(?x,
T(?x,
T(?u,

owl:

owl
rdf

hasvalue, 2y)

:onProperty, ?p)
ttype, ?x)

T(?u, ?p,

cls-hv2

T(?x,
T(?x,
T(?u,

owl:

owl
’p,

hasWalue, ?y)

:onProperty, ?p)

2y)

T{?u, rdf:type, ?x)

cls-maxcl

T(?x,
T(?x,
T(?u,
T(?u,

owl
owl
rdf

2p,

:maxCardinality,
:onProperty, ?p)
ttype, ?x)

"@"~~xsd:nonNegativelnteger)

2y)

false

cls-maxc2

T ?x,
T(?x,
T(?u,
T({?u,
T(?u,

owl
owl
rdf
’p,
2p,

:maxCardinality,
:onProperty, ?p)
ttype, ?x)

"1"~*xsd:nonNegativeInteger)

?y1)
2y2)

T{?yq1, owl:samels, ?y3)

OWL 2 RL/RDF (rules for OWL)
Class definitions

T({?x, owl:maxQualifiedCardinality, "@"~"xsd:nonNegativelnteger)
T(?x, owl:onProperty, ?p)

T(?x, owl:onClass, ?c)

T(?u, rdf:type, ?x)

T(?u, 2p, 2y)

T(?y, rdf:type, ?c)

cls-maxgcl talse

T(?%x, owl:maxQualifiedCardinality, "@"""xsd:nonNegativeInteger)
T(?%x, owl:onProperty, ?p)

cls-maxgc2 T(?%, owl:onClass, owl:Thing) false
T(?u, rdf:type, ?x)
T(?u, ?p, ?y)

T(?x, owl:maxQualifiedCardinality, "1"~"xsd:nonNegativelnteger)
T(?x, owl:onProperty, ?p)

T(?x, owl:onClass, ?c)

T{?u, rdf:type, ?x)

cls-maxgc3 T(2u, 2p, 2y1)

T(?yq, rdf:type, ?c)

T(?I.,I_, -:'P: ?Y?_}

T(?ya, rdf:type, ?c)

T(?yq1, owl:samefs, ?yi3)

T{?x, owl:maxQualifiedCardinality, "1"**xsd:nonNegativelnteger)
T{?x, owl:onProperty, ?p)

T{?x, owl:onClass, owl:Thing)

cls-maxqca T(?u, rdf:type, ?x)

T(?u, 2p, 2y1)

T(?u, 2p, 2y32)

Ti{?yq1, owl:samefs, ?y3)

3 . ?
T(?c, owl:onedf, ?x) T(?y1, rdf:type, 2c)

cls-o0
LIST[?x, ?y¥1, ---» ?¥nl

T(?yn, rdf:type, 2c)

OWL 2 RL/RDF (rules for OWL) [Example]

Schema

Cax-5Co

T{?cq, rdfs:subClass0Of, ?c3)
T{?x, rdf:type, ?cq)

T(?x, rdf:type, ?c3)

... but what other rule(s) are we missing for rdfs:subClassOf?

T{?cq, rdfs:subllass0Of, ?c3)
= T(?cy, rdfs:subClassof, ?
SEM-=c0 T{?cy, rdfs:subClass0f, ?c3) (2¢1, rdfs:subClass €3)
T{?cq, rdfs:subClass0f, ?c3) .
= T(?cq, 1: lentClass, ?
scm-eqc2 T{?ca, rdfs:subllass0Of, ?cq) (?c1, owliequivalen a3 c2)

OWL 2 RL/RDF (rules for OWL)

Schema

Table 9. The Semantics of Schema Vocabulary

If then
T{?c, rdfs:subClass0f, ?c)
. . T{?c, owl:equivalentClass, ?c)
sem-cls || T(?c, rdfitype, owl:Class) T(?c, rdfs:subClass0Of, owl:Thing)
T{owl:Mothing, rdfs:subClass0Of, ?c)
T{?cq, rdfs:subClass0Of, ?c3)
= T(?cq, rdfs:subClass0f, ?
Sefm=co T{?cy, rdfs:subClass0f, ?c3) (€1, rdfs:subClass €3)
. T(?cq, rdfs:subClassof, ?
scm-eqcl || T(?cq, owl:eguivalentClass, ?cj) TE?E; :de'zEb(12220+ }Ei;
T{?cq, rdfs:subClass0Of, ?c3) .
_ T(?cq, 1: lentClass, ?
scm-eqc2 T{?cy, rdfs:subClass0f, ?cq) (€1, owl:equivalentClass, Icy)
. T(?p, rdfs:subPropertyof, ?
SCm-ap T(?p, rdf:type, owl:0bjectProperty) TE?E awl:equiualzntP{DpEPtS} >p)
T(?p, rdfs:subPropertyof, ?
scm-dp T(?p, rdf:type, owl:DatatypeProperty) TE?E awl:equiualzntP{DpEPtS} >p)
T(?py, rdfs:subProperty0f, ?pa)
= T(?py, rdfs:subP tyof, ?
SCim-=po T(?p>, rdfs:subProperty0f, ?pi3) (?p1, rdfs:subProperty P3)
. T(?py, rdfs:subPropertyof, ?
scm-eqpl || T(?p1, owl:equivalentProperty, ?p;z) nggz Pde'SubPPGEEFtiOF jEi;
T(?py, rdfs:subProperty0f, ?pa) .
= T(?p1, 1: lentP ty, ?
scm-eqp2 T(?p3, rdfs:subProperty0f, ?pi1) (?p1, owl:equivalentProperty, 2p;)

OWL 2 RL/RDF (rules for OWL)
Schema

T(?pz, rdfs:domain, ?c)

- T(?py, rdfs:d in, ?
scm-dom2 T{?py, rdfs:subProperty0f, ?pa) (?p1, rdfs:domain, 2c)
T{?p, rdfs:range, ?cq)
- T(?p, rdfs: , ?
sem-rngl T(?cq, rdfs:subClassOf, ?c3) (?p, rdfs:range, 2cy)
? . 3
scm-rng2 T(2pz, rdfs:range, c) T(?p1, rdfs:range, ?c)

T{?py, rdfs:subProperty0f, ?pa)

T{?cq, owl:hasValue, ?i)
T(?cq, owl:onProperty, ?p1)
scm-hv T{?c3, owl:hasValue, ?i) T{?cq, rdfs:subllassOf, ?c3)
T{?c3, owl:onProperty, ?ps)
T(?p1, rdfs:subProperty0f, ?pi3)

T{?cq, owl:someValuesFrom, ?yq)
T{?cq, owl:onProperty, 2p)
scm-svfl || T({?ca, owl:someValuesFrom, ?ys3) T(?cq, rdfs:subClassOf, ?c3)
T{?cy, owl:onProperty, ?p)
T{?yq, rdfs:subClass0f, ?y;)

T{?cq, owl:someValuesFrom, ?y)
T{?cq, owl:onProperty, ?pi1)
scm-svf2 || T({?cy, owl:someValuesFrom, ?y) T(?cq, rdfs:subClassOf, ?c3)
T(?c3, owl:onProperty, ?pa)
T(?py, rdfs:subProperty0f, ?p3)

OWL 2 RL/RDF (rules for OWL)

Schema

scm-avfl

T{?Cl,
T(?Cq,
T{?Co,
T{?Cz,
T(?y1,

owl:allValuesFrom, ?yq)
owl:onProperty, ?p)
owl:allValuesFrom, ?ya)
owl:onProperty, ?p)
rdfs:subClass0of, ?y3)

T({?cq, rdfs:subllass0Of, ?c3)

scm-avf2

T({?cq,
T{?Cl,
T(?cy,
T{?Co,
T(?p1,

owl:allValuesFrom, ?y)
owl:onProperty, ?p1)
owl:allValuesFrom, 2y}
owl:onProperty, ?pa2)
rdfs:subProperty0f, ?ps3)

T({?cy, rdfs:subClass0f, ?cq)

scm-int

T{?c, owl:intersectionOf, ?x)
LIST[?x, ?c1, ..., *Cq]

T{?c, rdfs:subClass0f, ?cq)
T({?c, rdfs:subClass0f, ?ca)

T{?c, rdfs:subClass0f, ?c,)

scm-uni

T{?c, owl:unionOf, ?2x)
LIST[?x, ?c1, ..., *Cq]

T{?cq, rdfs:subClass0f, ?c)
T({?ca, rdfs:subllass0Of, ?c)

T{?cn, rdfs:subClass0f, ?c)

OWL 2 RL/RDF (rules for OWL)
Datatypes

Want to capture:

"2"""xsd:integer owl:sameAs "2.0"""xsd:decimal .
"2"""xsd:integer owl:differentFrom "3.0""“xsd:decimal .
"2"""xsd:integer owl:differentFrom "2.0""“xsd:string .

(Literals allowed in subject positions while reasoning, removed afterwards)

OWL 2 RL/RDF (rules for OWL)
Datatypes

Table 8. The Semantics of Datatypes

If then

dt-typel T(dt, rdf:type, rdfs:Datatype) | for each datatype 4t supported in OWL 2 RL

i , for each literal 1t and each datatype dt supported in OWL 2 RL
ke Bis, gl s such that the data value of 1t is contained in the value space of dt
dt-eq T(1lt;, owl:sameAs, 1t;) for all literals 1t, and 1+, with the same data value
dt-diff T(1lty, owl:differentfFrom, 1ty) |([for all literals 1t; and 1+, with different data values

o . for each literal 1+ and each datatype 4t supported in OWL 2 RL
EIEERLE s s e such that the data value of 1+ is not contained in the value space of 4t

In the labs ...

Reasoner Entailments
(OWL 2 RL/RDF)

Ontology

* Applies these OWL 2 RL/RDF rules recursively until
nothing new is found

http://www.w3.org/TR/owl2-profiles/#Reasoning in OWL 2 RL and RDF Graphs using Rules

http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Why Incomplete?
Missing Features

owl:ReflexiveProperty

N

ex:Connie ex:Fredo

;similarTo rdf:tyvpe owl:ReflexivePropertv .
= ex:Connte :similarlo exr:Connie .

ex:Freddie :similarlo ex:Freddie .

(everything :similarTo itself)

Why Incomplete?

Missing Features

2
owl:hasSelf (Self) [i] a

%ﬂ% E Self(: Loves)

:Narcissist

ex:Vincent —

ex:Vincent rdf:type :Narcissist .
:Narcissist rdfs:subClas=s0f
[owl:hasSelf true ; owl:onProperty :loves]

= ez Vincent :loves ex:Vincent .

Why Incomplete?
Incomplete for some Features

T{?c, owl:unionOf, ?2x)
cls-uni LIST[?%, ?C1, ..., ?€n] T(?y, rdf:type, 2c) foreach1=i=n
T(?y, rdf:type, ?ci)

owl:union0f (U) a

'Woman | :Man

|

—rdf T =

ex:Vincent

ex:Vincent rdf:type :Man .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)]
= ex:Vincent rdf:type :Person .

Why Incomplete?
Incomplete for some Features

owl:unionOf (U) [ii] a

'Person ! Woman !Man

rdf :type

ex:Vincent

ex:Vincent rdf:type :Person .

:Person owl:equivalentClass [owl:unionOf (:Woman :Man) 1

= ex:Vincent rdf:type :Woman . OR ex:Vincent rdf:type :Man .

Why Incomplete?
Incomplete for some Features

: owl:unionOf (1) [ii] a:
: I
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I ex:Vincent rdf:type :Person . :
I :Person owl:equivalentClass [owl:unionOf (:Woman :Man)] I
I = ex:Vincent rdf:type :Woman . OR ex:Vincent rdf:type :Man . I
- I

r

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)]

= ex:Vincent rdf:type :Man .

Will not get this (valid) entailment with OWL 2 RL/RDF

Why Incomplete?
Incomplete for some Features

T{?x, owl:someValuesFrom, ?y)
~ T(?x, owl:onProperty, ?p) 3 . 3
cls-syfl TCu, p, V) T{?u, rdf:type, ?x)
T({?v, rdf:type, ?y)

owl:someValuesFrom (3) [i] a

— 3 :hasChild.

:Person

:hasChild.

ex:Carmela :hasChild ex:Michael . ex:Michael rdf:type :Person .
:Parent owl:eguivalentClass

[owl:someValuesFrom :Person ; owl:onProperty :hasChild]
= er:Carmela rdf:tupe :Parent .

Why Incomplete?
Incomplete for some Features

owl:someValuesFrom (3) [ii] a

[H -hasChild.

:Parent :Person |
) '}
. ar:t
;df;type z;{; E?e

i

| ex:Camelﬁ | 7

ex:Carmela rdf:tvpe :Parent .
:Parent rdfs:subClass0f
[owl:someValuesFrom :Person ; owl:onProperty :hasChild 1 .

= er:Mary :hasChild _:someone . _:someone raf:tupe :Person .

Why Incomplete?
Incomplete for some Features

owl:someValuesFrom (3) [iil

ex:Carmela rdf:tvpe :Parent .
:Parent rdfs:subClass0f

[owl:someValuesFrom :Person ; owl:onProperty :-hasChild 1 .
= ez:Mary :hasChild _:someone . _:someone rdf:iype :Person

Worst Example of the |
ex:Carmela rdf:type :Parent . Lecture Award

:Parent rdfs:subClassOf
[owl:someValuesFrom :Person ; owl:onProperty :hasChild] .

rhasChild rdfs:domain :PostPuberty .
= ex:Carmela rdf:type :PostPuberty .

Will not get this (valid) entailment with OWL 2 RL/RDF

Why Incomplete?
Incomplete for some Features

* No support for min-cardinality

ex:Carmela :hasChild ex:Sonny , ex:Connie , ex:Fredo , ex:Michael .
ex:Sonny :dateOfBirth “1916-07-23”~"xsd:date .

ex:Connie :dateOfBirth “1922-04-18”""xsd:date .

ex:Fredo :dateOfBirth “1919-01-08”""xsd:date .

ex:Michael :dateOfBirth “1920-11-15”""xsd:date .

:dateOfBirth rdf:type owl:FunctionalProperty .

[owl:minCardinality 3 ; owl:onProperty :hasChild] rdfs:subClassOf
:StressedParent .

= ex:Carmela rdf:type :StressedParent .

Will not get this (valid) entailment with OWL 2 RL/RDF

Why Incomplete?
Incomplete for some Features

* Limited support for max-cardinality

T(?x, owl:maxCardinality, "@"""xsd:nonNegativelnteger)
T{?x, owl:onProperty, ?p)

T{?u, rdf:type, ?x)

T{?u, ?p, ?v)

cls-maxcl false

T{?x, owl:maxCardinality, "1"~"xsd:nonNegativelnteger)
T{?x, owl:onProperty, ?p)

cls-maxc2 T(?u, rdf:type, ?x) T(?y1, owl:samels, ?y;)
T(?u, }F': }};1}
T(?u, }P: >F2}

ex:Vincent rdf:type :Person ; :hasParent ex:Lucy, ex:Sonny, ex:Santino

:Person rdfs:subClassOf [owl:maxCardinality 2 ; owl:onProperty
:hasParent] .

ex:Lucy a :Woman . ex:Sonny a :Man . ex:Santino a :Man
:Man owl:disjointWith :Woman
= ex:Sonny owl:sameAs ex:Santino .

Will not get this (valid) entailment with OWL 2 RL/RDF

Why Incomplete?
Incomplete for some Features

* No support for exact cardinality
e Support also limited for qualified cardinalities

Why Incomplete?

Missing Schema Inferences

* Just some missing examples for inverse-of:

’a owl:
’a owl:

’a rdf:

’a owl:
= 73

’a owl:
= 73
’a owl:
= ?b

’a owl:
= 73

inverseOf ?b . = ?b owl:inverseOf ?a .
inverseOf ?a . = ?a rdf:type owl:SymmetricProperty

type owl:SymmetricProperty . = ?a owl:inverseOf ?a

inverseOf ?b . ?b owl:inverseOf ?a .
owl:equivalentProperty ?b .

inverseOf ?b . ?b rdf:type owl:TransitiveProperty .

rdf:type owl:TransitiveProperty .

inverseOf ?b . ?b rdf:type owl:FunctionalProperty .

rdf:type owl:InverseFunctionalProperty .

inverseOf ?b . ?b rdfs:domain ?c .
rdfs:range ?c .

Why is OWL 2 RL/RDF Incomplete?

* Missing features:

— owl:ReflexiveProperty, owl:hasSelf, owl:minCardinality ...

* Problems with disjunction (OR cases)

— owl:unionOf, owl:oneOf, owl:maxCardinality, ..

* Problems with existentials

— owl:someValuesFrom, owl:minCardinality, ...

* Problems with counting

— owl:minCardinality, ...

* Problems with negation

— owl:disjointWith, owl:propertyDisjointWith, owl:complementOf ..

* |Incomplete “schema” inferences

Finite rules not enough

e Could write a rule for any non-existential case

ex:Vincent rdf:type :Person ; :hasParent ex:Lucy, ex:Sonny, ex:Santino .
:Person rdfs:subClassOf [owl:maxCardinality 2 ; owl:onProperty :hasParent

] .
ex:Lucy a :Woman . ex:Sonny a :Man . ex:Santino a :Man .
:Man owl:disjointWith :Woman .

= ex:Sonny owl:sameAs ex:Santino .

w rdf:type ?c ; ?p ?x , ?y , ?z .

?c owl:maxCardinality 2 ; owl:onProperty ?p .

?X owl:differentFrom ?y , ?z .
= ?y owl:sameAs ?z .

* |nfinite such rules (have to stop somewhere)

Existential rules are dangerous

e Could write rules for existential cases too

ex:Mary rdf:type :Person .

:Person rdfs:subClassOf [owl:someValuesFrom :Person ; owl:onProperty

:hasParent] .
= ex:Mary :hasParent _:x1

. _:x1 rdf:type :Person .

_:X1 :hasParent :x2 . _:x2 rdf:type :Person .

s w

?X rdf:type ?c .

?c owl:someValuesFrom ?d ; owl:onProperty ?p .

= ?X ?p :b . _:b rdf:type ?d .

* Might lead to materialising o= entailments
— (Inthiscaseif ?x rdf:type ?d . = ?x rdf:type ?c .)

COMPLETE REASONERS
THAT MAY NOT HALT

Complete reasoners that may not halt:

* Cons:
— Erm ... reasoner may never halt

What might the “pros” be in this case?

* Pros:

— Avoid complicated decidability restrictions!

Complete reasoners that may not halt:

* Only line of work on this | know of:

Reasoning in the OWL 2 Full Ontology Language
using First-Order Automated Theorem Proving

1

The Wb (Vntalooyr T anoaocs (W T 2 1MTE] has heen standardiezad Far the Wiarld

Rare in practice

Michael Schneider'™ and Geoff Suteliffe®

! FZ1 Research Center for Information Technology, Germany
2 University of Miami, USA

Abstract. OWL 2 has been standardized by the World Wide Web Con-
sortinm (W3C) as a family of cotology languages for the Semantic Web.
The most expressive of these lanpuages 1= OWL 2 Full, but to date no
reasoner has been implemented for this language. Consistency and en-
tailment checking are known to be undecidable for OWL 2 Full. We
have translated a large fragment of the (WL 2 Full semantics into first-
order logic, and used automated theorem proving systems to do reasoning
based on this theory, The results are promising, and indicate that this
approach can be applied in practice for effective OWL reasoning, beyoned
the capabilities of current Semantic Web reasoners.

This is an erfended version of a paper with the same title that has
been published at CADE 2011, LNAL 6803, pp. 446—460. The extended
version provides appendices with additional resources that were used in
the reported evaluation.

Key words: Semantic Web, OWL, First-order logic, ATF

Introduction

not going to talk
about this but
good to know
about! ©

RESTRICT OWLTO
GUARANTEE DECIDABILITY

Recap ...

* Accept incomplete reasoners that halt
— Complete language, incomplete reasoning, halts

* Accept complete reasoners that may not halt
— Complete language, complete reasoning, may not halt

e Restrict OWL so reasoning becomes decidable
— Restricted language, complete reasoning, halts

Core idea:
Restrict OWL so that complete reasoning is decidable over

any ontology written within those restrictions

Restrict OWL to guarantee decidability:

 We’'ve seen how to prove that something is undecidable

How can we prove that something is decidable?

* Most commonly: give an algorithm that halts ...

Problem: Consecutive ‘1’s in 1t

* Input: A natural numbern
* Output:
— true if m contains n consecutive ‘1's

— false otherwise

Is this problem DECIDABLE or UNDECIDABLE?
... i.e., does there exist a program that halts (with the correct answer) foralln?

What if we knew the maximum sequence of consecutive ‘1’sinm?

if (n £ MAX) return true; else return false;

» there must exist a MAX sequence of consecutive ‘1's int (even if it's ==)
=~ there must exist a correct program that halts {even if we don’t know its details)
=~ problem is DECIDABLE!

Restrict OWL to guarantee decidability:

* Focus on satisfiability/entailment checking

— Recall: Can (usually) reduce entailment to satisfiability

How can we perform reasoning?

* Does Ontology © entail O'?

:hasDaughter rdfs:subProperty0f :hasChild .

ex:Michasl :hasDaughter ex:Mary .

ex:Michasel :hasChild ex:Mary .

* Couldinstead ask: is “C’ U -0 unsatisfiable?

:hasDaughter rdfs:subProperty0f :hasChild .

ex:Michasl :hasDaughter ex:Mary .

[1 owl:sourceIndividual ex:Michael ;
owl:assertionProperty :hasChild ;

owl:targetIndividual ex:Mary .

Can reduce entailment to unsatisfiability!

Restrict OWL to guarantee decidability:

* Description Logic community
— Predates OWL
— Looks at decidable subsets of First Order Logic
— Results can be applied to OWL!

e OWL 2 Full: The unrestricted, undecidable language
* OWL 2 DL: A restricted, decidable version

Restrict OWL to guarantee decidability:

e What is restricted?

What's the entailment question?

D=D,UDyU...UDy_1UDy
D;ND;C L(for1<i<j<k)

D C (3r.D)N(3a.D)

Dicvr(|| D)nve(|| D)

D'eR(Dy) D'e A(Dy) <— Must restrict something here
(for example)

DrCvr(|| D)nve(|| D)
D'€R(Dy) D'€ A(Dy)
dCaocr, dCroa, Func(d)

D=1

Goal: Ontology © entails O’ if and only if D has an infinite tiling
If D has any member [a “tile”), it must have an infinite tiling!

If I has no member, it must not have an infinitetiling.

Restrict OWL to guarantee decidability:

e What is restricted?

What’s the entailment question?

D=DiUuDsU... 0D U Dy
DiND; C L(for 1<i<j<k)
D C (3r.D) M (3e.D)

Dicvr(|| DP)nve(|| D)
D'eR(Dy) D'e A(Dy) + Must restrict something here

pecvr(|| Dynve(|| D)
e) D' !‘Dk)
dCaor, dCroa, Func(d)

D=1

Goal: Ontology © entails O if and only if D has an infinite tiling

If D has any member (a “tile”), it must have an infinite tiling!

If D has no member, it must not have an infinitetiling.

* For example, OWL 2 DL restricts:

— functional properties to be “simple” (no chains, no
transitivity)

Restrict OWL to guarantee decidability:

e What is restricted?

* For example, OWL 2 DL restricts:

— functional properties to be “simple” (no chains, no
transitivity)

— likewise properties used with hasSelf, cardinalities,
inverse functionality, asymmetry and irreflexivity must
be simple

— inverse functional properties must be object
properties

— need to follow specific RDF syntax and explicitly
declare classes, object properties (with IRI values),
datatype properties (with literal values)

— ... more (it’s really quite messy ®)

Restrict OWL to guarantee decidability:

e OWL 2 DL still supports disjunction,
existentials, counting, negation!

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)] .

Fex:Vincent rdf:type :Man .

Restrict OWL to guarantee decidability:

* OWL 2 DL still supports disjunction,
existentials, counting, negation!

ex:Carmela rdf:type :Parent .
:Parent rdfs:subClassOf

[owl:someValuesFrom :Person ; owl:onProperty :hasChild] .
:hasChild rdfs:domain :PostPuberty .

Fex:Carmela rdf:type :PostPuberty .

Worst Example of the
Lecture Award

Restrict OWL to guarantee decidability:

* OWL 2 DL still supports disjunction,
existentials, counting, negation!

ex:Carmela :hasChild ex:Sonny , ex:Connie , ex:Fredo , ex:Michael .
ex:Sonny :dateOfBirth “1916-07-23”~"xsd:date .

ex:Connie :dateOfBirth “1922-04-18”""xsd:date .

ex:Fredo :dateOfBirth “1919-01-08”~"xsd:date .

ex:Michael :dateOfBirth “1920-11-15”~"xsd:date .

:dateOfBirth rdf:type owl:FunctionalProperty .

[owl:minCardinality 3 ; owl:onProperty :hasChild] rdfs:subClassOf
:StressedParent .

Fex:Carmela rdf:type :StressedParent .

Restrict OWL to guarantee decidability:

 What sort of algorithm can we use?
* One answer: Tableau (positive sketch below)

ex:Vincent rdf:type :Person , :Godfather . —

:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)

Fex:Vincent rdf:type :Man .

Restrict OWL to guarantee decidability:

 What sort of algorithm can we use?
* One answer: Tableau (positive sketch below)

ex:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Woman .

:Person owl:equivalentClass [owl:unionOf (:Woman :Man) Unsatisfiable?
] .

—ex:Vincent rdf:type :Man .

Branch for OR

ex:Vincent rdf:type :Person , :Godfather ex:Vincent rdf:type :Person , :Godfather
:Godfather owl:disjointWith :Woman . :Godfather owl:disjointWith :Woman .
ex:Vincent rdf:type Man . ex:Vincent rdf:type Woman .

-ex:Vincen -ex:Vincen

Unsatisfiable in all branches — O U =0’ unsatisfiable — O = O’

Restrict OWL to guarantee decidability:

 What sort of algorithm can we use?
* One answer: Tableau (negative sketch below)

ex:Vincent rdf:type :Person , :Godfather . —

:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)

Eex:Vincent rdf:type :Woman .

Restrict OWL to guarantee decidability:

 What sort of algorithm can we use?
* One answer: Tableau (negative sketch below)

ex:Vincent rdf:type :Person , :Godfather .

:Godfather owl:disjointWith :Woman .

:Person owl:equivalentClass [owl:unionOf (:Woman :Man) Unsatisfiable?
] .

—ex:Vincent rdf:type :Woman

Branch for OR

ex:Vincent rdf:type :Person , :Godfather ex:Vincent rdf:type :Person , :Godfather
:Godfather owl:disjointWith :Woman . :Godfather owl:disjointWith :Woman .
ex:Vincent rdf:type Man . ex:Vincent rdf:type Woman .

—ex:Vincent rdf:type :Woman . —-ex:Vincen

Satisfiable in a branch — O U -0’ satisfiable — O = O’

Restrict OWL to guarantee decidability:

* We have a complete algorithm that halts and
that supports a lot of the OWL features!

Restrict OWL to guarantee decidability:
An algorithm for OWL 2 DL!

* A few problems:
— We have to give the entailments to check
e Cannot just ask to compute the entailments

— Restrictions are complicated
* Very complicated
* And often are broken by real-world ontologies

— Tableau reasoning is really expensive
* Branch for every disjunction suggests exponential

— 92" on a non-deterministic machine

N2EXPTIME-Complete so nasty ...

The only results
returned by Google
relate to OWL

MZEXFTIME-complete

Web Shoipping Videos Images Mews Maore - Search iools

About 1,280 results (.43 seconds)

Did you mean: N2 EXPTIME-complete

2-EXFTIME - Wikipedia, the free encyclopedia

https:/fen.wikipedia. org/wiki2-EXPTIME - Wikipedia -

Generalizations of many fully cbservable games are EXPTIME-complete. These games
can be viewed as particular instance of a class of ransifion systems ..

FRSRIG and SROIC are Harder than SHOIC

https: /fwwiw.es.0... = Department of Computer Science, University of Oxford -
by Kazakow - 2008 - Cited by 127 - Related articles

May 15, 2008 - NZExpTime-complete for SROK2 [and for SROIF).

1 hitp:Fewai.cs man acuk-~ezolindl’. Yeugeny Kazakov {presenied by Bire Glimm). SRIQ
and ...

Modular Reuse of Ontologies: Theary and Practice
https:/forer uni-ulm.del .. fdr-yevgeny-kazakov htmi?... = University of Uim -
e prove that the classical reasoning problems are NZExpTime-complete for SROIZ
and ZExpTime-hard for its sub-language RIQ. RK2 and SROK2 are thus ...

Logic for Programming, Artificial Intelligence, and ...
https:/books.google. com/books Tisbn=2540884381

liame Cervesatn, Helmut Vieith, Andrei Voronkow - 2008 - Compuiers

ltremains an open guestion whether SHOIF r is M2ExpTime-complete and so far even
decidability is unknown. Ve think that the answer fo this guestion can ..

FRManuscript (pdf) - Pascal Hitzler - Wright State University
daselab.cs. wright. eduteaching/s 1 W com plexity/ce-script. pdf =

Apr 28, 2010 - B SAT is NP-Complete. 20 ... 13 NP-complete Problems. 27.1 ... The
Web Oniology Language OWL-OL {see [2]) is N2-EXPTIME-complete.

Description Logic Rules - Page 260 - Google Books Result
https://books.google. com/books Tisbn=1614083424

M. Kritesch - 2010 - Compuiers

... 52 interpretation medularity {OLP}, 114 N, s=& role expression M {OL nomenclature),
40 MZExpTime, 25 N2ExpTime-complete SROIZ, 85 SROIC rule bases, ..

{mm

N2EXPTIME-Complete (OWL 2 DL’s small print) ...

* Checking entailment is guaranteed to halt for
OWL 2 DL restricted ontologies*

* halt may not occur before heat death of the universe

OWL 2 DL performance considerations

* Not all OWL 2 DL ontologies will run into
worst-cases

e Entailments will work fine for most small
ontologies

e Scalability still a real issue in practice

OWL 2 Profiles (briefly)

More efficient sublanguages of OWL 2 DL

— More restrictions to allow complete reasoning with
more efficient algorithms

OWL 2 RL: A restriction of OWL 2 DL such that
OWL 2 RL/RDF rules provide complete reasoning
(in some sense we won’t get into)

OWL 2 EL: Tractable algorithm for classifying
ontologies

OWL 2 QL: Tractable algorithm based on rewriting
SQL queries

IMPRESSIONS ...

Opinion of lots of people in the Semantic Web
with respect to OWL ...

THIS IS TOO MUCH

Also perhaps part of the reason why you see
things like ...

s OWL good for the Semantic Web?

* |t provides formal foundations for semantics

* Indicates what’s possible, what’s not with respect to machine-
readable semantics

— What’s efficient, what’s not

* Offers options: OWL 2 RL/EL/QL/DL/Full

* Drives many applied/practical people crazy
 Some theoretical folks also consider it to have poor aesthetic
* Makes lots of bad assumptions for the Web

— Not scalable
— Strict in what it accepts
— Blindly accepting

What do you think?

If we have time ...

RECAP ...

Coping with undecidability (reasoning) ...

* Acceptincomplete reasoners that halt
— Complete language, incomplete reasoning, halts

— e.g., OWL 2 RL/RDF rules can be applied on any RDF data using
any OWL features in any way, but may not get all inferences

* Accept complete reasoners that may not halt
— Complete language, complete reasoning, may not halt

— e.g., can use a first-order-theorem prover, but it may run forever
on some input ontologies

* Restrict OWL so reasoning becomes decidable
— Restricted language, complete reasoning, halts

— e.g., can restrict the OWL 2 Full language to sublanguages that
have decidable/tractable reasoning algorithms

OWL 2 RL/RDF rules

What we’ve been using in the labs
Rules supporting a lot of OWL

— but incomplete
Can be run over any RDF/OWL data

— no restrictions needed!
Can materialise entailments

Relatively efficient in practice

Easy to implement, not so hard to understand

OWL 2 Full / Complete reasoning

e Not a lot of work

* One proposal using a First-Order-Logic
theorem prover

OWL 2 DL

e Restrict OWL 2 Full to make entailment/satisfiability
checking decidable

* Complete reasoning with respect to ontologies
following restrictions
— Supports some pretty complex entailments
— Will always halt with a correct answer eventually
* Very bad worst-case: 2NEXPTIME-Complete
— May not halt before end of universe

— Worst-cases might be rare, but scalability and compute
times still often encountered in practice

* Need to ask if something specific is entailed
— Cannot materialise “all” entailments

e Restrictions make the whole thing nasty to understand

OWL 2 Profiles

 More efficient sublanguages of OWL 2 DL

— More restrictions to allow complete reasoning with
more efficient algorithms

e OWL 2 RL: A restriction of OWL 2 DL such that
OWL 2 RL/RDF rules provide complete reasoning
(in some sense)

e OWL 2 EL: Tractable algorithm for classifying
ontologies

e OWL 2 QL: Tractable algorithm based on rewriting
SQL queries

End of main OWL part (after next lab)

... rest of material should be easier / more applied

(but | hope you learned something about why telling
machines stuff about the world is hard)

No lecture/lab next week (Oct. 17/19)

\ \ 4 % The 15th International
-wr W L Semantic Web Conference

Will post an assignment in the forum. ©

Questions?

