CC6202-1
LA WEB DE DATOS
PRIMAVERA 2016

Lecture 5: Web Ontology Language (ll)

Aidan Hogan
aidhog@gmail.com

PREVIOUSLY ON
“LA WEB DE DATOS”

RDF: Resource Description Framework

subject

subject predicate object

ex:lreland | ex:partOf ex:Europe

ex:lreland | rdf:type ex:Country

ex:lreland | ex:capital ex:Dublin

ex:Dublin | ex:population | 1,000,000
predicate

rdf :type

(ex ; Irelandjéx :part0f

> object /&X;c(,untry]

—» ex:Europe

ex:capital

T

[ex:DublinJi ex:population — »| 1000000

RDF Schema ...

[f oaf :Person]

rdfs:subClassOf rdfs:subClass0f =~ rdfs:subClassOf

[mov:Producer) [mov:Director]
rdfs:domain rdfs:domain rdfs:domain rdfs:domain
[mov:produced) (mov:directed] [mov:actedln]q——-rdfs:subPropertny ———{mov:starredlnj

‘ ———

rdfs:range rdfs:range rdfs:range rdfs:range

mov:Movie

rdfs:subClass0f

(mov : HorrorMovieJ [mov : ComedyMovie] [mov : ActionMovie]

rdfs:subClass0f rdfs:subClass0f

(an example)

A special family ...

I ex:Vincent I

Y

The - q
Godfather

ex:Michael

TODAY’S TOPIC ...

An ontology is just some definitions ...

:hasDaughter rdfs:subPropertyOf :hasChild .
:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .
:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;
owl:onClass :Person] .

... but what do they mean?
... and what can we do with ontologies?

MODELS ...

Models of ontologies

A model is any world that an ontology might describe

:hasDaughter rdfs:subPropertyOf :hasChild .
:hasChild rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

:hasDaughter
:hasChild :hasChild
:ancestor0f :ancestor0f

—_

.. not a model, since Carmela would need to be an ancestor of Mary

Models of ontologies

A model is any world that an ontology might describe

:hasDaughter rdfs:subPropertyOf :hasChild .
:hasChild rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

:hasDaughter
:hasChild :hasChild
ancestor0f :ancestor0f
rancestor0f
... a model

(leaving aside things like OWL definitions, reflexive owl : sameAs, etc.)

Models of ontologies

A model is any world that an ontology might describe

:hasDaughter rdfs:subPropertyOf :hasChild .
:hasChild rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

:hasDaughter
:hasChild :hasChild
rancestor0f :ancestor0f

rancestor(0f

... also a model

(Under Open World Assumption, Ontology can describe part of the world)

Models of ontologies

A model is any world that an ontology might describe

:hasDaughter rdfs:subPropertyOf :hasChild .
:hasChild rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

:hasDaughter
:hasChild :hasChild
rancestor0f :ancestor0f

rancestor(0f

... also a model

(Since we don’t know what ex: Cake, ex:Carmela, etc., actually refer to)

Mapping of names to things part of model

(Different names mapped to different things means a different model!)

ENTAILMENT ...

Ontology O entails O’ (O E O')

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person] .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

Any model of ' is a model of O’

(O' forms part of the models of)
(O’ says nothing new over ()

Entailment symbol: E

Ok O

Ontology Entailment

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

ex:Carmela :ancestorOf ex:Mary .
ex:Mary :likes ex:Cake .

Does entail O'(EO)?

No! There are models of O’ that are not of O’ ...

Mary doesn’t like cake here

:hasDaughter
-hasChild -hasChild
:ancestor0f :ancestor0f

rancestor0f

REASONING TASKS ...

Materialisation:

Write down entailments

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person] .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

Any problems with this?

Materialisation:

Write down entailments

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person] .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

Materialisation:

Write down entailments

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person] .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

Materialisation:
Write down entailments

Entailments are infinite ...

... which makes it tricky to write them all down ...

.\ Y
v
s
-
e~
—

o el b w313 \ \
T f,'.‘.'“:“ ar Seraplif %‘ = 0

— -
‘*’ J—
o wal,
=) e

43 -
e o ST

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Person] .
:FirstPerson a :Person ,
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Ape] .

So does have a model?

:hasParent /

(ex : FirstPerson]< rdf :type

:hasParent \

e rdf :type —»

YES! Ontology (' is Satisfiable!

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Person] .
:FirstPerson a :Person ,
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Ape] .
:Ape owl:disjointWith :Person .

So does have a model now?

/ rdf:type

:hasParent -
/ rdf:type — " L° pe
“hasParent
[ex :FirstPerson
:hasParent
:hasParent \@7 rdf:type —"

\ rdf:type

YES! Ontology O is still Satisfiable!

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Person] .
:FirstPerson a :Person ,
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Ape] .
:Ape owl:disjointWith :Person .

What more would we have to add to to make it Unsatisfiable?

:Person rdfs:subClassOf
[owl:cardinality 2 ; owl:onProperty :hasParent] .

OR

:Person owl:equivalentClass
[owl:allValuesFrom :Person ; owl:onProperty :hasParent] .

OR

:FirstPerson a :Ape .

OR

:FirstPerson a owl:Nothing .

OR..

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

An unsatisfiable ontology cannot model any world!

It is inconsistent!

:FirstPerson a :Ape .

:FirstPerson a owl:Nothing .

OR..

Entailment checking:
Does O entail O'?

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ;
owl:inverseOf :hasParent ;

rdfs:subPropertyOf :ancestorOf .
:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

Alternatively: Are all models of ' models of O’ too?

REASONING ...

How can we perform reasoning?

* Does Ontology © entail O'?

:hasDaughter rdfs:subPropertyOf :hasChild .
ex:Michael :hasDaughter ex:Mary .

ex:Michael :hasChild ex:Mary .

e Could instead ask: is “C0 U =0"" unsatisfiable?

:hasDaughter rdfs:subPropertyOf :hasChild .

ex:Michael :hasDaughter ex:Mary .

[] owl:sourceIndividual ex:Michael ;
owl:assertionProperty :hasChild ;
owl:targetIndividual ex:Mary .

Can reduce entailment to unsatisfiability!

So how do we test unsatisfiability then?

NOTHING IS IMPOSSIBLE
THE WORD ITSELF SAYS

I'M POSSIBLE

UNDECIDABILITY ...

A simple Java program ...

public class Collatz {

public static void collatz[int n) { In: 6
StdOut.print(n + " "); 3
if (n == 1) return;
else if (n % 2 == @) collatz(n / 2); 10
else collatz(3*n + 1); 5
} 16
public static void main(String[] args) { 8
int N = Integer.parselnt(args[@]); 4
collatz(N); 2
StdOut.println(); 1 (end)

Does this Java program terminate
on all possible (positive) inputs?

A simple Java program ...

public class Collatz {
public static void collatz(int n) {
StdOut.print(n + " ");
if (n == 1) return;
else if (n % 2 == @) collatz(n / 2);
else collatz(3*n + 1);

}

public static void main(String[] args) {
int N = Integer.parselnt(args[@]);
collatz(N);
StdOut.println();

* Collatz conjecture: an unsolved problem in mathematics

* If we knew that this program terminates or does not terminate on
all natural numbers (not just ints), this problem would be solved!

Halting Problem

* |[nput: a program and an input to that program

* Output:
— true if the program halts on that input
— false otherwise

* UNDECIDABLE: a general algorithm to solve
the Halting Problem does not exist!

— It will not halt for all program—input pairs!

A quick sketch of Halting Problem proof

DoeS
THIS PROGRAM
HALT?

Problem: Consecutive ‘1’s in 1t

* Input: A natural number n
* Qutput:

— true if m contains n consecutive ‘1’s
— false otherwise

|s this problem DECIDABLE or UNDECIDABLE?

... i.e., does there exist a program that halts (with the correct answer) for all n?

What if we knew the maximum sequence of consecutive ‘1’s in 1t?

if (n £ MAX) return true; else return false;

e there must exist a MAX sequence of consecutive ‘1’s in 1t (even if it’s o)
. there must exist a correct program that halts (even if we don’t know its details)
- problem is DECIDABLE!

Problem: Collatz Halting Problem

* Input: [none]

* Qutput:
— true if Collatz program halts on all inputs
— false otherwise

|s this problem DECIDABLE or UNDECIDABLE?

(P1) return true; (P2) return false;

e either (P1) or (P2) must be correct
. there must exist a correct program that halts (even if we don’t know it)
. problem is DECIDABLE!

Halting Problem UNDECIDABLE in the general case

(for all programs and inputs)

Domino Tiling Problem

* Input: A set of Dominos (like D)
* Qutput:

Is this problem
DECIDABLE or
UNDECIDABLE?

— true if there exists a valid infinite tiling (like t)

— false otherwise

Can reduce from Halting to Tiling

0o -

- -
L
HEEERE

It has been shown that there exists a program that can reduce any
Halting problem instance into a Domino Tiling problem instance

Now is the Domino Tiling halts(pbi”) {d o
= reduce(p,in);
problem DECIDABLE or return hasTiling(D);
UNDECIDABLE? }

e reduce(p,in) is DECIDABLE
~ifhasTiling(D) were DECIDABLE, then halts(p,in) would be DECIDABLE
e but halts(p,in) is UNDECIDABLE
~ hasTiling(D) must be UNDECIDABLE!

If we have a decidable reduction from an UNDECIDABLE problem A
to another problem B, then B must be UNDECIDABLE

Reduce from Tiling to OWL entailment?

O o
B R [
L1
I
Lt
Does D have an Does OWL ontology
infinite tiling? O entail O'?

How can we encode a Domino Tiling question into an
OWL ontology entailment question?

If we could do this, we could save ourselves trying to code a program to implement
OWL entailment since we would know it was UNDECIDABLE

Some Description Logic symbols

* LC:sub-class/-property

* =:equivalent class/property

* Ll:union

* [1:Intersection

* T: top (class of everything)

* |:bottom (empty class)

* d:exists (someValuesFrom/hasValue)
 V:forall (allValuesFrom)

* -:not (complement, negation)

* — (superscript minus): inverse property

* {}: enumeration (owl :oneOf)

* Self, Trans, Dom, etc.: where symbols not available
e o:property chain

* C(x): class membership

* P(x,y):atriple (x,P,y)

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino

— Define dominos as a class D, a union of classes for each domino type:
DEDll_IDQI_I...I_IDk_ll_IDk

Now what else do we need to encode?

| s

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino

— Define dominos as a class D, a union of classes for each domino type:
DEDll_IDQI_I...I_IDk_ll_IDk
2. Each tile can only be one domino type

How can we encode this in OWL?

| s

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino

— Define dominos as a class D, a union of classes for each domino type:
DED1UD2|J...L|Dk_1L|Dk

2. Each tile can only be one domino type

— Define dominos types as pairwise disjoint:
DzﬂDJEJ_(fOI'].SZ<.]§k)

What else do we need to encode?

D
|

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino

— Define dominos as a class D, a union of classes for each domino type:
DED1|_|D2|_|...|_|D]€_1|_|Dk

2. Each tile can only be one domino type

— Define dominos types as pairwise disjoint:
DZHDJEJ_(fOI'1§Z<j§k)
3. Each tile must have a tile to the right and above

How can we encode this?

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino

— Define dominos as a class D, a union of classes for each domino type:
DED1|_|D2|_|...|_|D]€_1|_|Dk
2. Each tile can only be one domino type

— Define dominos types as pairwise disjoint:
DZHDJEJ_(fOI'1§Z<j§k‘)
3. Each tile must have a tile to the right and above

— Define that a domino has some values from domino for right/above:

D C (Ir.D) M (da.D) ID. t

Are we there yet?

Can reduce from OWL entailment to Tiling

4. Tiles to the right and tiles above must match colour

— Define that a domino has all values from matching tiles right/above:

Dicvr(|| D)nve(|| D)

D’'€R(D1) D’'€A(D1)

D.Cvr(|| D)nvae(|| D
D’ER(D].C) D’EA(Dk)

Where: D . ;
R(D;) denotes all domino types that can be to the right of D; —
A(D;) denotes all domino types that can be above D; I |

Are we there yet?

What condition are we missing?

e So far we could still have trees as models

* Need to state:
Tile above and to the right = Tile to the right and above

How can we encode this?

Can reduce from OWL entailment to Tiling

5. Tileright then above = Tile above then right
— Define diagonal tile using two property chains (above-right/right-above)
— Declare functional (a tile can only have one such diagonal tile)

dCaor, dCroa, Func(d)

Are we there yet?

What's the entailment question?

DED1UD2|J...UDk_1L|Dk
DzﬂDJEJ_(fOI‘1§Z<j§/€)
D C (dr.D) M (Ja.D)

D.cvr(|| D)nvae(|| D
DIGR(D]_) D'EA(D:L)

Dy T Vr.(|_| D’) MVa.(|_| D/)
D’€R(Dy) D’'€A(Dy) What shoulgwe
dCaor, dCroa, Func(d) putin 0’3

2?2

Goal: Ontology O entails O’ if and only if D has an infinite tiling

What's the entailment question?

DED1UD2|J...UDk_1L|Dk
DzﬂDJEJ_(fOI'1§Z<j§]€)
D C (dr.D) M (Ja.D)

D.cvr(|| D)nvae(|| D
DIGR(D]_) D'EA(D:L)

Dycvr(|| D)Hnvae(|| D)
D’ER(Dk) D’EA(Dk)
dCaor, dCroa, Func(d)

D=1

Goal: Ontology O entails O’ if and only if D has an infinite tiling

If D has any member (a “tile”), it must have an infinite tiling!
If D has no member, it must not have an infinite tiling.

Could also use satisfiability

DED1UD2|J...UDk_1L|Dk
DzﬂDJEJ_(fOI'].S’L<j§/€)
D C (dr.D) M (Ja.D)

D.cvr(|| D)nvae(|| D
DIGR(D]_) D'EA(D:L)

Dycvr(|| D)Hnvae(|| D)
D’ER(Dk) D’EA(Dk)
dCaor, dCroa, Func(d)

D(x)

Ontology O is satisfiable if and only if D has an infinite tiling

Here, x is an arbitrary fresh term

OWL satisfiability/entailment is

oowerful
I
1
I
EREEny

OWL satisfiability/entailment also undecidable!

Otherwise could be used to solve Domino Tiling problem ...

... and the Halting problem ...
... and (given enough time), the Collatz conjecture ...
... and a bunch of other stuff

uolldNpay

PRACTICAL REASONING

Options ...

Well great. What are we supposed to do now?

* Accept incomplete reasoners that halt
— You may not get all the entailments ... so what entailments
do you get?
* Accept complete reasoners that may not halt

— Java is a language that lets you write programmes that may
not halt

e Restrict OWL so we can’t solve Halting/Tiling

— Main problem tackled in Description Logics field: find
decidable sublanguages of OWL without turning off too
many features (and allowing efficient algorithms)

More next week ...

RECAP

OWL Definitions

e Models

— A world that the ontology could be true for
* ...and a mapping from the terms of the ontology to that world

— Not necessarily the real world (just a consistent world)
— Can be much larger than the ontology describes
— The more detailed the ontology, the fewer its models

e Entailment

— An ontology O entails another ontology O’ if any model of
O is a model of O’
e ...in which case O' adds no new information to O
... in which case O' follow from O

OWL Reasoning Tasks

e Materialisation

— Write down all the entailments from O’
* Unfortunately, they are infinite

 Satisfiability
— Does an ontology have any model?

* If not, it is inconsistent/unsatisfiable
* Unfortunately, satisfiability is undecidable

* Entailment (checking)

— Does an ontology O entail another ontology O'?
* If so, O' follows as a consequence of O
e Can be reduced to satisfiability
* Unfortunately, entailment checking is also undecidable

Questions?

