
CC6202-1
LA WEB DE DATOS

PRIMAVERA 2016

Lecture 5: Web Ontology Language (II)

Aidan Hogan

aidhog@gmail.com

PREVIOUSLY ON
“LA WEB DE DATOS”

RDF: Resource Description Framework

RDF Schema …

(an example)

ex:Carmelaex:Vito

ex:Sonny ex:Connie ex:Fredo ex:Michael

ex:Vincent ex:Mary

A special family …

TODAY’S TOPIC …

An ontology is just some definitions …
:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;

rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

ex:Mary a :Person .

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ;

owl:onProperty :hasParent ;

owl:onClass :Person] .

… but what do they mean?
… and what can we do with ontologies?

Trying to give a taste of OWL

MODELS …

Models of ontologies

A model is any world that an ontology might describe

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

… not a model, since Carmela would need to be an ancestor of Mary

Models of ontologies

A model is any world that an ontology might describe

… a model
(leaving aside things like OWL definitions, reflexive owl:sameAs, etc.)

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

Models of ontologies

A model is any world that an ontology might describe

… also a model
(Under Open World Assumption, Ontology can describe part of the world)

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

Models of ontologies

A model is any world that an ontology might describe

… also a model
(Since we don’t know what ex:Cake, ex:Carmela , etc., actually refer to)

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

Mapping of names to things part of model

(Different names mapped to different things means a different model!)

ENTAILMENT …

Ontology O entails O′ (O ⊧ O′)

ex:Michael :hasParent ex:Carmela .

ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestorOf ex:Mary .

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

ex:Mary a :Person .

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ;

owl:onProperty :hasParent ;

owl:onClass :Person] .

Any model of O is a model of O′
(O′ forms part of the models of O)

(O′ says nothing new over O)

Entailment symbol: ⊧

Ontology Entailment

ex:Carmela :ancestorOf ex:Mary .

ex:Mary :likes ex:Cake .

ex:Michael :hasParent ex:Carmela .

ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestorOf ex:Mary .

No! There are models of O that are not of O′ …

Mary doesn’t like cake here

Does O entail O′ (O ⊧ O′)?

REASONING TASKS …

Materialisation:
Write down entailments

ex:Michael :hasParent ex:Carmela .

ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestorOf ex:Mary .

…

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

ex:Mary a :Person .

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ;

owl:onProperty :hasParent ;

owl:onClass :Person] .

Any problems with this?

Materialisation:
Write down entailments

ex:Michael :hasParent ex:Carmela .

ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestorOf ex:Mary .

…

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

ex:Mary a :Person .

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ;

owl:onProperty :hasParent ;

owl:onClass :Person] .

ex:Mary :hasParent _:parent1 . _:parent1 a :Person .

ex:Mary :hasParent _:parent2 . _:parent2 a :Person .

_:parent1 :hasParent _:parent11 . _:parent11 a :Person .

_:parent2 :hasParent _:parent12 . _:parent12 a :Person

Materialisation:
Write down entailments

ex:Michael :hasParent ex:Carmela .

ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestorOf ex:Mary .

…

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf
:hasParent ;

rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

ex:Mary a :Person .

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ;

owl:onProperty :hasParent ;

owl:onClass :Person] .

:Person rdfs:subClassOf [owl:maxQualifiedCardinality 2 ;
owl:onProperty :hasParent ; owl:onClass :Person] .

:Person rdfs:subClassOf [owl:maxQualifiedCardinality 3 ;
owl:onProperty :hasParent ; owl:onClass :Person]

Entailments are infinite …
… which makes it tricky to write them all down …

Materialisation:
Write down entailments

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Person] .

:FirstPerson a :Person ,

[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Ape] .

So does O have a model?

YES! Ontology O is Satisfiable!

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Person] .

:FirstPerson a :Person ,

[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Ape] .

:Ape owl:disjointWith :Person .

So does O have a model now?

YES! Ontology O is still Satisfiable!

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Person] .

:FirstPerson a :Person ,

[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Ape] .

:Ape owl:disjointWith :Person .

What more would we have to add to O to make it Unsatisfiable?

:Person rdfs:subClassOf

[owl:cardinality 2 ; owl:onProperty :hasParent] .

:Person owl:equivalentClass

[owl:allValuesFrom :Person ; owl:onProperty :hasParent] .

:FirstPerson a :Ape .

:FirstPerson a owl:Nothing .

OR

OR

OR

OR …

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Person] .

:FirstPerson a :Person ,

[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Ape] .

:Ape owl:disjointWith :Person .

What more would we have to add to O to make it Unsatisfiable?

:Person rdfs:subClassOf

[owl:cardinality 2 ; owl:onProperty :hasParent] .

:Person owl:equivalentClass

[owl:allValuesFrom :Person ; owl:onProperty :hasParent] .

:FirstPerson a :Ape .

:FirstPerson a owl:Nothing .

OR

OR

OR

OR …

An unsatisfiable ontology cannot model any world!

It is inconsistent!

Entailment checking:
Does O entail O′?

ex:Michael :hasParent ex:Carmela .

ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestorOf ex:Mary .

:hasDaughter rdfs:subPropertyOf :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ;

owl:inverseOf :hasParent ;

rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .

ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

Alternatively: Are all models of O models of O′ too?

REASONING …

How can we perform reasoning?

• Does Ontology O entail O′?

• Could instead ask: is “O ∪ ¬O′” unsatisfiable?

Can reduce entailment to unsatisfiability!

ex:Michael :hasChild ex:Mary .

:hasDaughter rdfs:subPropertyOf :hasChild .

ex:Michael :hasDaughter ex:Mary .

:hasDaughter rdfs:subPropertyOf :hasChild .

ex:Michael :hasDaughter ex:Mary .

[] owl:sourceIndividual ex:Michael ;

owl:assertionProperty :hasChild ;

owl:targetIndividual ex:Mary .

So how do we test unsatisfiability then?

(Audrey was clearly
not a Computer Scientist)

UNDECIDABILITY …

A simple Java program …

Does this Java program terminate
on all possible (positive) inputs?

6
3
10
5
16
8
4
2
1

In:

(end)

A simple Java program …

• Collatz conjecture: an unsolved problem in mathematics
• If we knew that this program terminates or does not terminate on

all natural numbers (not just ints), this problem would be solved!

Halting Problem

• Input: a program and an input to that program

• Output:

– true if the program halts on that input

– false otherwise

• UNDECIDABLE: a general algorithm to solve
the Halting Problem does not exist!

– It will not halt for all program–input pairs!

– It may halt for some program–input pairs

A quick sketch of Halting Problem proof

Problem: Consecutive ‘1’s in π

• Input: A natural number n

• Output:

– true if π contains n consecutive ‘1’s

– false otherwise

Is this problem DECIDABLE or UNDECIDABLE?
… i.e., does there exist a program that halts (with the correct answer) for all n?

What if we knew the maximum sequence of consecutive ‘1’s in π?

if (n ≤ MAX) return true; else return false;

• there must exist a MAX sequence of consecutive ‘1’s in π (even if it’s ∞)
∴ there must exist a correct program that halts (even if we don’t know its details)

∴ problem is DECIDABLE!

Problem: Collatz Halting Problem

• Input: [none]

• Output:

– true if Collatz program halts on all inputs

– false otherwise

Is this problem DECIDABLE or UNDECIDABLE?

(P1) return true;

• either (P1) or (P2) must be correct
∴ there must exist a correct program that halts (even if we don’t know it)

∴ problem is DECIDABLE!

Halting Problem UNDECIDABLE in the general case
(for all programs and inputs)

(P2) return false;

Domino Tiling Problem

• Input: A set of Dominos (like D)

• Output:

– true if there exists a valid infinite tiling (like t)

– false otherwise

Is this problem
DECIDABLE or

UNDECIDABLE?

Can reduce from Halting to Tiling

It has been shown that there exists a program that can reduce any
Halting problem instance into a Domino Tiling problem instance

Reduction

Now is the Domino Tiling
problem DECIDABLE or

UNDECIDABLE?

halts(p,in) {
D = reduce(p,in);
return hasTiling(D);

}

• reduce(p,in) is DECIDABLE
∴ if hasTiling(D) were DECIDABLE, then halts(p,in) would be DECIDABLE

• but halts(p,in) is UNDECIDABLE
∴ hasTiling(D) must be UNDECIDABLE!

If we have a decidable reduction from an UNDECIDABLE problem A
to another problem B, then B must be UNDECIDABLE

Reduce from Tiling to OWL entailment?

Reduction

Does D have an
infinite tiling?

Does OWL ontology
O entail O′?

How can we encode a Domino Tiling question into an
OWL ontology entailment question?

If we could do this, we could save ourselves trying to code a program to implement
OWL entailment since we would know it was UNDECIDABLE

Some Description Logic symbols

• ⊑: sub-class/-property
• ≡: equivalent class/property
• ⊔: union
• ⊓: intersection
• ⊤: top (class of everything)
• ⊥: bottom (empty class)
• ∃: exists (someValuesFrom/hasValue)
• ∀: for all (allValuesFrom)
• ¬: not (complement, negation)
• – (superscript minus): inverse property
• {}: enumeration (owl:oneOf)
• Self, Trans, Dom, etc.: where symbols not available
• ∘: property chain
• C(x): class membership
• P(x,y): a triple (x,P,y)

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino
– Define dominos as a class D, a union of classes for each domino type:

Now what else do we need to encode?

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino
– Define dominos as a class D, a union of classes for each domino type:

2. Each tile can only be one domino type
How can we encode this in OWL?

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino
– Define dominos as a class D, a union of classes for each domino type:

2. Each tile can only be one domino type
– Define dominos types as pairwise disjoint:

What else do we need to encode?

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino
– Define dominos as a class D, a union of classes for each domino type:

2. Each tile can only be one domino type
– Define dominos types as pairwise disjoint:

3. Each tile must have a tile to the right and above
How can we encode this?

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino
– Define dominos as a class D, a union of classes for each domino type:

2. Each tile can only be one domino type
– Define dominos types as pairwise disjoint:

3. Each tile must have a tile to the right and above
– Define that a domino has some values from domino for right/above:

Are we there yet?

Can reduce from OWL entailment to Tiling

4. Tiles to the right and tiles above must match colour
– Define that a domino has all values from matching tiles right/above:

Are we there yet?

What condition are we missing?

• So far we could still have trees as models

• Need to state:

Tile above and to the right = Tile to the right and above

How can we encode this?

Can reduce from OWL entailment to Tiling

5. Tile right then above = Tile above then right
– Define diagonal tile using two property chains (above-right/right-above)

– Declare functional (a tile can only have one such diagonal tile)

Are we there yet?

What’s the entailment question?

???

What should we
put in O′?

Goal: Ontology O entails O′ if and only if D has an infinite tiling

What’s the entailment question?

Goal: Ontology O entails O′ if and only if D has an infinite tiling
If D has any member (a “tile”), it must have an infinite tiling!

If D has no member, it must not have an infinite tiling.

Could also use satisfiability

Ontology O is satisfiable if and only if D has an infinite tiling
Here, x is an arbitrary fresh term

OWL satisfiability/entailment is powerful

OWL satisfiability/entailment also undecidable!

Otherwise could be used to solve Domino Tiling problem …

… and the Halting problem …

… and (given enough time), the Collatz conjecture …

… and a bunch of other stuff

Reduction
R

ed
u

ctio
n

PRACTICAL REASONING

Options …

• Accept incomplete reasoners that halt

– You may not get all the entailments … so what entailments
do you get?

• Accept complete reasoners that may not halt

– Java is a language that lets you write programmes that may
not halt

• Restrict OWL so we can’t solve Halting/Tiling

– Main problem tackled in Description Logics field: find
decidable sublanguages of OWL without turning off too
many features (and allowing efficient algorithms)

More next week …

Well great. What are we supposed to do now?

RECAP

OWL Definitions

• Models
– A world that the ontology could be true for

• … and a mapping from the terms of the ontology to that world

– Not necessarily the real world (just a consistent world)
– Can be much larger than the ontology describes
– The more detailed the ontology, the fewer its models

• Entailment
– An ontology O entails another ontology O′ if any model of

O is a model of O′
• … in which case O′ adds no new information to O
• … in which case O′ follow from O

OWL Reasoning Tasks

• Materialisation
– Write down all the entailments from O′

• Unfortunately, they are infinite

• Satisfiability
– Does an ontology have any model?

• If not, it is inconsistent/unsatisfiable
• Unfortunately, satisfiability is undecidable

• Entailment (checking)
– Does an ontology O entail another ontology O′?

• If so, O′ follows as a consequence of O
• Can be reduced to satisfiability
• Unfortunately, entailment checking is also undecidable

Questions?

