
CC6202-1
LA WEB DE DATOS
PRIMAVERA 2015

Lecture 6: Web Ontology Language (III)

Aidan Hogan
aidhog@gmail.com

PREVIOUSLY ON
“LA WEB DE DATOS”

ex:Carmelaex:Vito

ex:Sonny ex:Connie ex:Fredo ex:Michael

ex:Vincent ex:Mary

Modelling family relations with OWL

Materialisation:
Write down entailments

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .
…

:hasDaughter rdfs:subPropertyOf :hasChild .
:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .
:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;
owl:onClass :Person] .

ex:Mary :hasParent _:parent1 . _:parent1 a :Person .
ex:Mary :hasParent _:parent2 . _:parent2 a :Person .
_:parent1 :hasParent _:parent11 . _:parent11 a :Person .
_:parent2 :hasParent _:parent12 . _:parent12 a :Person

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Person] .

:FirstPerson a :Person ,
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Ape] .

So does O have a model?

YES! Ontology O is Satisfiable!

Entailment checking:
Does O entail O′?

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

:hasDaughter rdfs:subPropertyOf :hasChild .
:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .

Alternatively: Are all models of O models of O′ too?

OWL satisfiability/entailment is powerful

OWL satisfiability/entailment checking also undecidable!
Otherwise could be used to solve Domino Tiling problem …
… and the Halting problem …
… and (given enough time), the Collatz conjecture …
… and a bunch of other stuff

Reduction
Reduction

TODAY’S TOPIC …

Options …

• Accept incomplete reasoners that halt
– You may not get all the entailments … so what entailments

do you get?
• Accept complete reasoners that may not halt

– Java is a language that lets you write programmes that may
not halt

• Restrict OWL so reasoning tasks become decidable
– Main problem tackled in Description Logics field: find

decidable sublanguages of OWL without turning off too
many features (and allowing efficient algorithms)

More next week …

Well great. What are we supposed to do now?

In the labs …

• But what is the reasoner actually doing? …

Data

Ontology

EntailmentsReasoner
???

INCOMPLETE REASONERS
THAT HALT

Incomplete reasoners that halt:
Works for materialisation

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .
ex:Carmela :ancestorOf ex:Mary .

:hasDaughter rdfs:subPropertyOf :hasChild .
:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subPropertyOf :ancestorOf .

:ancestorOf rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .
:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;
owl:onClass :Person] .

ex:Mary :hasParent _:parent1 . _:parent1 a :Person .
ex:Mary :hasParent _:parent2 . _:parent2 a :Person .
_:parent1 :hasParent _:parent11 . _:parent11 a :Person .
_:parent2 :hasParent _:parent12 . _:parent12 a :Person

Incomplete reasoners that halt:
for Entailment/Satisfiability Checking?

Why can’t we have incomplete satisfiability/entailment checkers?

• Both are decision problems (yes/no)
• What would an incomplete answer be? (ye/n)

In the labs …

• The reasoner is doing (incomplete) materialisation!

Data

EntailmentsReasoner
???

Ontology

Recall: RDFS reasoning using “rules”

(Don’t worry about rdfD1, rdfs1, rdfs12, rdfs13)

In the labs …

• The reasoner is doing (incomplete) materialisation!
– Using OWL 2 RL/RDF rules that support RDFS and OWL (2)

http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Data

EntailmentsReasoner
???

Ontology

Lots of rules …

• Goal: be familiar with idea, not every rule
• Useful for reference
• Homework: read over them quickly

– Let them wash over you 

OWL 2 RL/RDF (rules for OWL)
Equality

OWL 2 RL/RDF (rules for OWL) [Example]
Property Axioms

What rule(s) could we use for owl:inverseOf?

OWL 2 RL/RDF (rules for OWL)
Property Axioms

…

OWL 2 RL/RDF (rules for OWL)
Property Axioms

…

OWL 2 RL/RDF (rules for OWL)
Property Axioms

OWL 2 RL/RDF (rules for OWL) [Example]
Class Axioms

…

What rule(s) could we use for owl:disjointWith?

OWL 2 RL/RDF (rules for OWL)
Class Axioms

…

OWL 2 RL/RDF (rules for OWL) [Example]
Class definitions

What rule(s) could we use for owl:intersectionOf?

What rule(s) could we use for owl:allValuesFrom?

OWL 2 RL/RDF (rules for OWL)
Class definitions

…

OWL 2 RL/RDF (rules for OWL)
Class definitions

…

OWL 2 RL/RDF (rules for OWL)
Class definitions

OWL 2 RL/RDF (rules for OWL) [Example]
Schema

… but what other rule(s) are we missing for rdfs:subClassOf?

…

OWL 2 RL/RDF (rules for OWL)
Schema

…

OWL 2 RL/RDF (rules for OWL)
Schema

…

OWL 2 RL/RDF (rules for OWL)
Schema

OWL 2 RL/RDF (rules for OWL)
Datatypes

OWL 2 RL/RDF (rules for OWL)
Datatypes

In the labs …

• Applies these OWL 2 RL/RDF rules recursively until
nothing new is found

http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Data

EntailmentsReasoner
(OWL 2 RL/RDF)

Ontology

Why Incomplete?
Missing Features

Why Incomplete?
Missing Features

Why Incomplete?
Incomplete for some Features

Why Incomplete?
Incomplete for some Features

Why Incomplete?
Incomplete for some Features

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)]⇒ ex:Vincent rdf:type :Man .

Why Incomplete?
Incomplete for some Features

Why Incomplete?
Incomplete for some Features

Why Incomplete?
Incomplete for some Features

ex:Carmela rdf:type :Parent .
:Parent rdfs:subClassOf

[owl:someValuesFrom :Person ; owl:onProperty :hasChild] .
:hasChild rdfs:domain :PostPuberty .⇒ ex:Carmela rdf:type :PostPuberty .

Worst Example of the
Lecture Award

• No support for min-cardinality

Why Incomplete?
Incomplete for some Features

ex:Carmela :hasChild ex:Sonny , ex:Connie , ex:Fredo , ex:Michael .
ex:Sonny :dateOfBirth “1916-07-23”^^xsd:date .
ex:Connie :dateOfBirth “1922-04-18”^^xsd:date .
ex:Fredo :dateOfBirth “1919-01-08”^^xsd:date .
ex:Michael :dateOfBirth “1920-11-15”^^xsd:date .
:dateOfBirth rdf:type owl:FunctionalProperty .
[owl:minCardinality 3 ; owl:onProperty :hasChild] rdfs:subClassOf

:StressedParent .⇒ ex:Carmela rdf:type :StressedParent .

• Limited support for max-cardinality

Why Incomplete?
Incomplete for some Features

ex:Vincent rdf:type :Person ; :hasParent ex:Lucy, ex:Sonny, ex:Santino .
:Person rdfs:subClassOf [owl:maxCardinality 2 ; owl:onProperty

:hasParent] .
ex:Lucy a :Woman . ex:Sonny a :Man . ex:Santino a :Man .
:Man owl:disjointWith :Woman .⇒ ex:Sonny owl:sameAs ex:Santino .

• No support for exact cardinality
• Support also limited for qualified cardinalities

Why Incomplete?
Incomplete for some Features

• Just some missing examples for inverse-of:
– ?a owl:inverseOf ?b . ⇒ ?b owl:inverseOf ?a .
– ?a owl:inverseOf ?a . ⇒ ?a rdf:type owl:SymmetricProperty .
– ?a rdf:type owl:SymmetricProperty . ⇒ ?a owl:inverseOf ?a .
– ?a owl:inverseOf ?b . ?b owl:inverseOf ?a . ⇒ ?a owl:equivalentProperty ?b .
– ?a owl:inverseOf ?b . ?b rdf:type owl:TransitiveProperty .⇒ ?a rdf:type owl:TransitiveProperty .
– ?a owl:inverseOf ?b . ?b rdf:type owl:FunctionalProperty . ⇒ ?b rdf:type owl:InverseFunctionalProperty .
– ?a owl:inverseOf ?b . ?b rdfs:domain ?c . ⇒ ?a rdfs:range ?c .
…

Why Incomplete?
Missing Schema Inferences

owl:unionOf () [ii]

:Woman:Person :Man

ex:Vincent rdf:type :Person .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)]⇒ ex:Vincent rdf:type :Woman . OR ex:Vincent rdf:type :Man .

ex:Vincent

rdf:type

≡
rdf:type rdf:typeOR

Why is OWL 2 RL/RDF Incomplete?

• Missing features:
– owl:ReflexiveProperty, owl:hasSelf, owl:minCardinality …

• Problems with disjunction (OR cases)
– owl:unionOf, owl:oneOf, owl:maxCardinality, …

• Problems with existentials
– owl:someValuesFrom, owl:minCardinality, ...

• Problems with counting
– owl:minCardinality, …

• Problems with negation
– owl:disjointWith, owl:propertyDisjointWith, owl:complementOf …

• Incomplete “schema” inferences

Finite rules not enough

• Could write a rule for any non-existential case

• Infinite such rules (have to stop somewhere)

ex:Vincent rdf:type :Person ; :hasParent ex:Lucy, ex:Sonny, ex:Santino .
:Person rdfs:subClassOf [owl:maxCardinality 2 ; owl:onProperty :hasParent] .
ex:Lucy a :Woman . ex:Sonny a :Man . ex:Santino a :Man .
:Man owl:disjointWith :Woman .⇒ ex:Sonny owl:sameAs ex:Santino .

?w rdf:type ?c ; ?p ?x , ?y , ?z .
?c owl:maxCardinality 2 ; owl:onProperty ?p .
?x owl:differentFrom ?y , ?z .⇒ ?y owl:sameAs ?z .

Existential rules are dangerous

• Could write rules for existential cases too

• Might lead to materialising ∞ entailments
– (In this case if ?x rdf:type ?d . ⇒ ?x rdf:type ?c .)

ex:Mary rdf:type :Person .
:Person rdfs:subClassOf [owl:someValuesFrom :Person ; owl:onProperty

:hasParent] .⇒ ex:Mary :hasParent _:x1 . _:x1 rdf:type :Person .
_:x1 :hasParent _:x2 . _:x2 rdf:type :Person .
… ∞

?x rdf:type ?c .
?c owl:someValuesFrom ?d ; owl:onProperty ?p .⇒ ?x ?p _:b . _:b rdf:type ?d .

COMPLETE REASONERS
THAT MAY NOT HALT

Complete reasoners that may not halt:
Quite Practical!

• Cons:
– Erm … reasoner may never halt

• Pros:
– Avoid complicated decidability restrictions!

What might the “pros” be in this case?

Imagine restricting C or Java to be decidable
1. Don’t allow features like loops/recursion

• But not all programs with loops/recursion fail to halt!
2. Restrict how features like loops/recursion can be used

• More detailed restrictions allow more programmes but are more
complicated to understand 

Complete reasoners that may not halt:
Rare in practice

• Only line of work on this I know of:

not going to talk
about this but
good to know

about! 

RESTRICT OWL TO
GUARANTEE DECIDABILITY

Recap …

• Accept incomplete reasoners that halt
– Complete language, incomplete reasoning, halts

• Accept complete reasoners that may not halt
– Complete language, complete reasoning, may not halt

• Restrict OWL so reasoning becomes decidable
– Restricted language, complete reasoning, halts

Core idea:
Restrict OWL so that complete reasoning is decidable over

any ontology written within those restrictions

Restrict OWL to guarantee decidability:
How to guarantee decidability?

• We’ve seen how to prove that something is undecidable

• Most commonly: give an algorithm that halts …
How can we prove that something is decidable?

Restrict OWL to guarantee decidability:
How to guarantee decidability?

• Focus on satisfiability/entailment checking
– Recall: Can (usually) reduce entailment to satisfiability

• (So long as we can do negation in the language)

Restrict OWL to guarantee decidability:
Sublanguages of OWL 2

• Description Logic community
– Predates OWL
– Looks at decidable subsets of First Order Logic
– Results can be applied to OWL!

• OWL 2 Full: The unrestricted, undecidable language
• OWL 2 DL: A restricted, decidable version

Restrict OWL to guarantee decidability:
Sublanguages of OWL 2

• What is restricted?

Restrict OWL to guarantee decidability:
Sublanguages of OWL 2

• What is restricted?

• For example, OWL 2 DL restricts:
– functional properties to be “simple” (no chains, no

transitivity)

Restrict OWL to guarantee decidability:
Sublanguages of OWL 2

• What is restricted?
• For example, OWL 2 DL restricts:

– functional properties to be “simple” (no chains, no
transitivity)

– likewise properties used with hasSelf, cardinalities,
inverse functionality, asymmetry and irreflexivity must
be simple

– inverse functional properties must be object
properties

– need to follow specific RDF syntax and explicitly
declare classes, object properties (with IRI values),
datatype properties (with literal values)

– … more (it’s really quite messy )

Restrict OWL to guarantee decidability:
On the plus side …

• OWL 2 DL still supports disjunction,
existentials, counting, negation!

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)] .⊧ ex:Vincent rdf:type :Man .

Restrict OWL to guarantee decidability:
On the plus side …

• OWL 2 DL still supports disjunction,
existentials, counting, negation!

ex:Carmela rdf:type :Parent .
:Parent rdfs:subClassOf

[owl:someValuesFrom :Person ; owl:onProperty :hasChild] .
:hasChild rdfs:domain :PostPuberty .⊧ ex:Carmela rdf:type :PostPuberty .

Restrict OWL to guarantee decidability:
On the plus side …

• OWL 2 DL still supports disjunction,
existentials, counting, negation!

ex:Carmela :hasChild ex:Sonny , ex:Connie , ex:Fredo , ex:Michael .
ex:Sonny :dateOfBirth “1916-07-23”^^xsd:date .
ex:Connie :dateOfBirth “1922-04-18”^^xsd:date .
ex:Fredo :dateOfBirth “1919-01-08”^^xsd:date .
ex:Michael :dateOfBirth “1920-11-15”^^xsd:date .
:dateOfBirth rdf:type owl:FunctionalProperty .
[owl:minCardinality 3 ; owl:onProperty :hasChild] rdfs:subClassOf

:StressedParent .⊧ ex:Carmela rdf:type :StressedParent .

Restrict OWL to guarantee decidability:
An algorithm for OWL 2 DL

• What sort of algorithm can we use?
• One answer: Tableau (positive sketch below)

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)] .⊧ ex:Vincent rdf:type :Man .

Restrict OWL to guarantee decidability:
An algorithm for OWL 2 DL

• What sort of algorithm can we use?
• One answer: Tableau (positive sketch below)

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)] .
¬ ex:Vincent rdf:type :Man .

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
ex:Vincent rdf:type Man .
¬ ex:Vincent rdf:type :Man .

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
ex:Vincent rdf:type Woman .
¬ ex:Vincent rdf:type :Man .

Restrict OWL to guarantee decidability:
An algorithm for OWL 2 DL

• What sort of algorithm can we use?
• One answer: Tableau (negative sketch below)

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)] .⊧ ex:Vincent rdf:type :Woman .

Restrict OWL to guarantee decidability:
An algorithm for OWL 2 DL

• What sort of algorithm can we use?
• One answer: Tableau (negative sketch below)

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
:Person owl:equivalentClass [owl:unionOf (:Woman :Man)] .
¬ ex:Vincent rdf:type :Woman .

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
ex:Vincent rdf:type Man .
¬ ex:Vincent rdf:type :Woman .

ex:Vincent rdf:type :Person , :Godfather .
:Godfather owl:disjointWith :Woman .
ex:Vincent rdf:type Woman .
¬ ex:Vincent rdf:type :Woman .

Restrict OWL to guarantee decidability:
An algorithm for OWL 2 DL!

• We have a complete algorithm that halts and
that supports a lot of the OWL features!

Restrict OWL to guarantee decidability:
An algorithm for OWL 2 DL!

• A few problems:
– We have to give the entailments to check

• Cannot just ask to compute the entailments
– Restrictions are complicated

• Very complicated
• And often are broken by real-world ontologies

– Tableau reasoning is really expensive
• Branch for every disjunction suggests exponential
• N2EXPTIME-complete (!!?!!!)

– on a non-deterministic machine
– …

N2EXPTIME-Complete so nasty …

The only results
returned by Google
relate to OWL

N2EXPTIME-Complete (OWL 2 DL’s small print) …

• Checking entailment is guaranteed to halt for
OWL 2 DL restricted ontologies*

* halt may not occur before heat death of the universe

OWL 2 DL performance considerations

• Not all OWL 2 DL ontologies will run into
worst-cases

• Entailments will work fine for most small
ontologies

• Scalability still a real issue in practice

OWL 2 Profiles (briefly)

• More efficient sublanguages of OWL 2 DL
– More restrictions to allow complete reasoning with

more efficient algorithms

• OWL 2 RL: A restriction of OWL 2 DL such that
OWL 2 RL/RDF rules provide complete reasoning
(in some sense we won’t get into)

• OWL 2 EL: Tractable algorithm for classifying
ontologies

• OWL 2 QL: Tractable algorithm based on rewriting
SQL queries

IMPRESSIONS …

Opinion of lots of people in the Semantic Web
with respect to OWL …

Also perhaps part of the reason why you see
things like …

Is OWL good for the Semantic Web?

• It provides formal foundations for semantics
• Indicates what’s possible, what’s not with respect to machine-

readable semantics
– What’s efficient, what’s not

• Offers options: OWL 2 RL/EL/QL/DL/Full

• Drives many applied/practical people crazy
• Some theoretical folks also consider it to have poor aesthetic
• Makes lots of bad assumptions for the Web

– Not scalable
– Strict in what it accepts
– Blindly accepting

What do you think?

If we have time …

Let’s model a domain …

RECAP …

Coping with undecidability (reasoning) …
• Accept incomplete reasoners that halt

– Complete language, incomplete reasoning, halts
– e.g., OWL 2 RL/RDF rules can be applied on any RDF data using

any OWL features in any way, but may not get all inferences

• Accept complete reasoners that may not halt
– Complete language, complete reasoning, may not halt
– e.g., can use a first-order-theorem prover, but it may run forever

on some input ontologies

• Restrict OWL so reasoning becomes decidable
– Restricted language, complete reasoning, halts
– e.g., can restrict the OWL 2 Full language to sublanguages that

have decidable/tractable reasoning algorithms

OWL 2 RL/RDF rules

• What we’ve been using in the labs
• Rules supporting a lot of OWL

– but incomplete
• Can be run over any RDF/OWL data

– no restrictions needed!
• Can materialise entailments
• Relatively efficient in practice
• Easy to implement, not so hard to understand

OWL 2 Full / Complete reasoning

• Not a lot of work
• One proposal using a First-Order-Logic

theorem prover

OWL 2 DL
• Restrict OWL 2 Full to make entailment/satisfiability

checking decidable
• Complete reasoning with respect to ontologies

following restrictions
– Supports some pretty complex entailments
– Will always halt with a correct answer eventually

• Very bad worst-case: 2NEXPTIME-Complete
– May not halt before end of universe
– Worst-cases might be rare, but scalability and compute

times still often encountered in practice
• Need to ask if something specific is entailed

– Cannot materialise “all” entailments
• Restrictions make the whole thing nasty to understand

OWL 2 Profiles

• More efficient sublanguages of OWL 2 DL
– More restrictions to allow complete reasoning with

more efficient algorithms

• OWL 2 RL: A restriction of OWL 2 DL such that
OWL 2 RL/RDF rules provide complete reasoning
(in some sense)

• OWL 2 EL: Tractable algorithm for classifying
ontologies

• OWL 2 QL: Tractable algorithm based on rewriting
SQL queries

End of main OWL part (after next lab)

… rest of material should be easier / more applied
(but I hope you learned something about why telling
machines stuff about the world is hard)

No lecture/lab next week (Oct. 12/14)

Questions?

