CC6202-1
LA WEB DE DATOS
PRIMAVERA 2015

Lecture 5: Web Ontology Language (ll)

Aidan Hogan
aidhog@gmail.com

PREVIOUSLY ON
“LA WEB DE DATOS”

RDF: Resource Description Framework

subject

subject predicate object

ex:lreland | ex:partOf ex:Europe

ex:lreland | rdf:type ex:Country

ex:lreland | ex:capital ex:Dublin

ex:Dublin | ex:population | 1,000,000
predicate, | coct —

[ex e Ireland]<ax :partOf

— ex:Europe

ex:capital

\\\\\\E;;TBEEEEE;}ex:population» 1000000

RDF Schema ...

[:f oaf: Person]

rdfs:subClassOf rdfs:subClass0f ~ rdfs:subClassOf

|
[mov : Producer] [mov :Direct or]
f 1 f

rdfs:domain rdfs:domain rdfs:domain

[mov 3 produced] [mov :direct ed] [mov : actedln}'— rdfs:subProperty0f —(mov x st:arredIn]

e——

rdfs:domain

rdfs:range rdfs:range rdfs:range rdfs:range

mov:Movie

rdfs:subClassOf rdfs:subClassOf rdfs:subClassOf

[mov : HorrorMovie] (mov : ComedyMovieJ (mov : ActionMovieJ

(an example)

Modelling family relations with OWL a

ex:Connie ex:Fredo ex:Michael

The
Godfather

ex:Vincent

ex:Mary

owl:TransitiveProperty

ex:Carmela :ancestor0f ex:Michael

ex:Michael :ancestorOf ex:Mary .

:ancestorUf rdf:type owl:TransitiveProperty .

= ex:Carmela :ancestorlf ex:Mary .

owl:someValuesFrom (3) [ii]

[3 :hasChild.

:Parent

)
rdf :type
1

h 4

ex:Carmela

ex:Carmela rdf:type :Parent .
:Parent rdfs:subClassOf

1

L _:Pe'r'son

—_—r = = |
¥
rdf:type

—_—q

[owl:someValuesFrom :Person ; owl:onProperty :hasChild]

= ex:Mary :hasChild _:someone . _:someone rdf:type :Person .

TODAY’S TOPIC ...

An ontology is just some definitions ...

:hasDaughter rdfs:subProperty0f :hasChild .
:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subProperty0f :ancestor(Of .
:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .
:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person]

... but what do they mean?
... and what can we do with ontologies?

MODELS ...

Models of ontologies

A model is any world that an ontology might describe

:hasDaughter rdfs:subProperty0f :hasChild .
:hasChild rdfs:subProperty0f :ancestor(Of .

:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

:hasDaughter
:hasChild :hasChild
:ancestor0f ' :ancestorO0f

l——"

.. not a model, since Carmela would need to be an ancestor of Mary

Models of ontologies

A model is any world that an ontology might describe

:hasDaughter rdfs:subProperty0f :hasChild .
:hasChild rdfs:subProperty0f :ancestor(Of .
:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

:hasDaughter
:hasChild :hasChild
:ancestor0f :ancestor0f
:ancestor0f
... a model

(leaving aside things like OWL definitions, reflexive owl : sameAs, etc.)

Models of ontologies

A model is any world that an ontology might describe

:hasDaughter rdfs:subProperty0f :hasChild .
:hasChild rdfs:subProperty0Of :ancestorOf .
:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

:hasDaughter
.hasChild :hasChild
:ancestor0f :ancestor0f

rancestor0f

... also a model

(Under Open World Assumption, Ontology can describe part of the world)

Models of ontologies

A model is any world that an ontology might describe

' -

:hasDaughter rdfs:subProperty0f :hasChild .
:hasChild rdfs:subProperty0f :ancestor(Of .

:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

:hasDaughter
.hasChild ‘hasChild
:ancestor0f :ancestor0f

rancestor0f

... also a model

(Since we don’t know what ex:Cake, ex:Carmela, etc., actually refer to)

Mapping of names to things part of model

(Different names to different things means a different model!)

ENTAILMENT ...

Ontology O entails O’ (O E O’)

:hasDaughter rdfs:subProperty0f :hasChild .
:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subProperty0f :ancestor0Of
:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .
:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person]

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestor0f ex:Mary .

Any model of C is a model of O

(O’ forms part of the models of)
(O" says nothing new over ()

Entailment symbol: E

Ok O

Ontology Entailment

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestor0f ex:Mary .

ex:Carmela :ancestor0f ex:Mary .

ex:Mary :likes ex:Cake .

Does entail O'(E O')?

No! There are models of ¢’ that are not of O’ ...

Mary doesn’t like cake here

:hasDaughter
:hasChild :hasChild
:ancestor0f :ancestor0f

:ancestor0f

REASONING TASKS ...

Materialisation:
Write down entailments

:hasDaughter rdfs:subProperty0f :hasChild .
:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subProperty0f :ancestor0Of
:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .
:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person]

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestor0f ex:Mary .

Any problems with this?

Materialisation:
Write down entailments

:hasDaughter rdfs:subProperty0f :hasChild .
:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subProperty0f :ancestor(Of .
:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .
:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person |

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestor0f ex:Mary .

Materialisation:
Write down entailments

:hasDaughter rdfs:subProperty0f :hasChild .
:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subProperty0f :ancestor(Of .
:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .
ex:Michael :hasDaughter ex:Mary .
ex:Mary a :Person .
:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ;
owl:onProperty :hasParent ;

owl:onClass :Person |

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestor0f ex:Mary .

Materialisation:
Write down entailments

Entailments are infinite ...

... Which makes it tricky to write them all down ...

monnnv (:lnE

|
|
v
.‘-.-“
i A i s n .
'I."_‘ ! ‘F..:-F'} Sl el = 1'.". L

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Person]
:FirstPerson a :Persomn ,
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

owl:onClass :Ape]

So does have a model?

:hasParent /

[ex :FirstPers on)< rdf :type

:hasParent \

R rdf : type —-—

YES! Ontology (' is Satisfiable!

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Person]
:FirstPerson a :Persomn ,
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Ape]

:Ape owl:disjointWith :Person .

So does have a model now?

/ rdf :type

:hasParent \ i
/-' rdf:type 4“
“hasParent
(ex:FirstPerson
:hasParent

\ rdf:type

YES! Ontology O is still Satisfiable!

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Person]
:FirstPerson a :Persomn ,
[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;
owl:onClass :Ape]

:Ape owl:disjointWith :Person .

What more would we have to add to to make it Unsatisfiable?

:Person rdfs:subClassOf

[owl:cardinality 2 ; owl:onProperty :hasParent]

OR

:Person owl:equivalentClass

[owl:allValuesFrom :Person ; owl:onProperty :hasParent]

OR

:FirstPerson a :Ape

OR

:FirstPerson a owl:Nothing .

OR...

Ontology Satisfiability:
Does O have a “model”?

:Person owl:equivalentClass

[owl:qualifiedCardinality 2 ; owl:onProperty :hasParent ;

An unsatisfiable ontology cannot model any world!

It is inconsistent!

:FirstPerson a :Ape .

OR

:FirstPerson a owl:Nothing .

OR...

Entailment checking:
Does O entail O'?

:hasDaughter rdfs:subProperty0f :hasChild .

:hasChild rdf:type owl:AsymmetricProperty ; owl:inverseOf :hasParent ;
rdfs:subProperty0f :ancestor(Of .

:ancestor0f rdf:type owl:TransitiveProperty .
ex:Carmela :hasChild ex:Michael .

ex:Michael :hasDaughter ex:Mary .

ex:Michael :hasParent ex:Carmela .
ex:Michael :hasChild ex:Mary .

ex:Carmela :ancestor0f ex:Mary .

Alternatively: Are all models of & models of O’ too?

REASONING ...

How can we perform reasoning?

* Does Ontology © entail O'?

:hasDaughter rdfs:subProperty0f :hasChild .

ex:Michael :hasDaughter ex:Mary .

ex:Michael :hasChild ex:Mary .

e Could instead ask: is “C0 U =0" unsatisfiable?

:hasDaughter rdfs:subProperty0f :hasChild .

ex:Michael :hasDaughter ex:Mary .

[] owl:sourceIndividual ex:Michael ;
owl:assertionProperty :hasChild ;

owl:targetIndividual ex:Mary .

Can reduce entailment to unsatisfiability!

So how do we test unsatisfiability then?

NOTHING IS IMPOSSIBLE
THE WORD ITSELF SAYS

'M POSSIBLE
ﬂ““"““‘f"'f’l’"’””

UNDECIDABILITY ...

A simple Java program ...

public class Collatz {

public static void collatz(int n) { In: 6
StdOut.print(n + " ");
if (n == 1) return; 3
else if (n % 2 == @) collatz(n / 2); 10
else collatz(3*n + 1); 5
¥ 16
public static void main(String[] args) { 8
int N = Integer.parselnt(args[@]); 4
collatz(N); 2
StdOut.println(); 1 (end)

Does this Java program terminate
on all possible (positive) inputs?

A simple Java program ...

public class Collatz {
public static void collatz(int n) {
StdOut.print(n + " ");
if (n == 1) return;
else if (n % 2 == @) collatz(n / 2);
else collatz(3*n + 1);

}

public static void main(String[] args) {
int N = Integer.parselnt(args[@]);
collatz(N);
StdOut.println();

* Collatz conjecture: an unsolved problem in mathematics

* If we knew that this program terminates or does not terminate on
all natural numbers (not just ints), this problem would be solved!

Halting Problem

° Input: d program and an input to that program
* QOutput:

— true if the program halts on that input

— false otherwise

* UNDECIDABLE: a general algorithm to solve
the Halting Problem does not exist!

— It will not halt for all program—input pairs!

A quick sketch of Halting Problem proof

DoEeS
THIS PROGRAM
HALT?

Problem: Consecutive ‘1’s in 1t

* Input: A natural number n
* Qutput:

— true if m contains n consecutive ‘1’s

— false otherwise

|s this problem DECIDABLE or UNDECIDABLE?

... i.e., does there exist a program that halts (with the correct answer) for all n?

What if we knew the maximum sequence of consecutive ‘1’s in 1t?

if (n £ MAX) return true; else return false;

e there must exist a MAX sequence of consecutive ‘1’s in 1t (even if it’s oo)
. there must exist a correct program that halts (even if we don’t know its details)
. problem is DECIDABLE!

Problem: Collatz Halting Problem

* |Input: [none]
* Qutput:
— true if Collatz program halts on all inputs

— false otherwise

|s this problem DECIDABLE or UNDECIDABLE?

(P1) return true; (P2) return false;

e either (P1) or (P2) must be correct
. there must exist a correct program that halts (even if we don’t know it)
. problem is DECIDABLE!

Halting Problem UNDECIDABLE in the general case

(for all programs and inputs)

Domino Tiling Problem

_ :lj | » Is this problem
|] 'E =_| ; DECIDABLE or

e S e . UNDECIDABLE?

e Input: A set of Dominos (like D)
* Qutput:

— true if there exists a valid infinite tiling (like t)
— false otherwise

~~

EENEE

i

—

Can reduce from Halting to Tiling
mppun

It has been shown that there exists a program that can reduce any
Halting problem instance into a Domino Tiling problem instance

Now is the Domino Tiling halts(p,in) { .
D = reduce(p,in);
problem DECIDABLE or I
UNDECIDABLE? }

e reduce(p,in) is DECIDABLE
~ ifhasTiling (D) were DECIDABLE, then halts(p,in) would be DECIDABLE
e but halts(p,in) is UNDECIDABLE
~hasTiling (D) must be UNDECIDABLE!

If we have a decidable reduction from an UNDECIDABLE problem A
to another problem B, then B must be UNDECIDABLE

Reduce from Tiling to OWL entailment?

0o
I
L)
Ll
[T rCrl.
Does D have an Does OWL ontology
infinite tiling? O entail O'?

How can we encode a Domino Tiling question into an
OWL ontology entailment question?

If we could do this, we could save ourselves trying to code a program to implement
OWL entailment since we would know it was UNDECIDABLE

Some Description Logic symbols

* [:sub-class/-property

* =:equivalent class/property

* Ll:union

* [1:intersection

* T: top (class of everything)

* |:bottom (empty class)

* 3. exists (someValuesFrom/hasValue)
* V:forall (allValuesFrom)

* -:not (complement, negation)

* — (superscript minus): inverse property
* {}: enumeration (owl: oneOf)

* Self, Trans, Dom, etc.: where symbols not available
* o:property chain

* C(x): class membership

* P(xy):atriple (x,P,y)

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino

— Define dominos as a class D, a union of classes for each domino type:

DEDll_lDQI_I...I_IDk_ll_IDk

Now what else do we need to encode?

| 1]
T

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino

— Define dominos as a class D, a union of classes for each domino type:
DEDll_ngl_l...I_le_ll_le

2. Each tile can only be one domino type

How can we encode this in OWL?

I

| 1]
et

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino

— Define dominos as a class D, a union of classes for each domino type:
DEDll_lDQI_I...I_IDk_ll_IDk

2. Each tile can only be one domino type

— Define dominos types as pairwise disjoint:
D@HDJEL(fOT1SZ<j§]€)

What else do we need to encode?

D

id

LT

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino

— Define dominos as a class D, a union of classes for each domino type:

DED1UD2U...L|Dk_1L|Dk

2. Each tile can only be one domino type

— Define dominos types as pairwise disjoint:
D@HDJEJ_(fOI'ng<j§]€)
3. Each tile must have a tile to the right and above

How can we encode this?

D

Can reduce from OWL entailment to Tiling

1. Each tile must be a domino
— Define dominos as a class D, a union of classes for each domino type:

DED1UD2|J...|JDk_1L|Dk
2. Each tile can only be one domino type

— Define dominos types as pairwise disjoint:
D@HDJEJ_(fOI'ng<j§]€)
3. Each tile must have a tile to the right and above

— Define that a domino has some values from domino for right/above:

D C (3r.D) M (Ja.D) ID. |: t

Are we there yet?

Can reduce from OWL entailment to Tiling

4. Tiles to the right and tiles above must match colour

— Define that a domino has all values from matching tiles right/above:

DiCvr(|| D)nva(|| D)
D’€R(D1) D’€A(D1)

DyCvr.(|| D)nva(|| D)
D,ER(DR) D’EA(Dk)

Where: D
R(D;) denotes all domino types that can be to the right of D; B— |
A(D;) denotes all domino types that can be above D; I |

Are we there yet?

What condition are we missing?

 So far we could still have trees as models

* Need to state:
Tile above and to the right = Tile to the right and above

How can we encode this?

Can reduce from OWL entailment to Tiling

5. Tile right then above = Tile above then right
— Define diagonal tile using two property chains (above-right/right-above)
— Declare functional (a tile can only have one such diagonal tile)

dCaor, dCroa, Func(d)

|
I .
I :
| 1 ...
- II_II - /
| " : % Are we there yet?
7
| .
It
|
|
|
|
|

What's the entailment question?

D=DUDy;...UD;_1UDyg

D,MD; C L(for1<i<j<k)

D C (3r.D) M (Ja.D)

D1 CVr.(D" MVa.(D)
D’'eR(D1) D'eA(D1)

D.cvr(|| D)nvae(|| D)
D’'€R(Dy) D’c A(Dy) What shoulgl) we
dCaor, dCroa, Func(d) putin O":

777

Goal: Ontology ' entails O' if and only if D has an infinite tiling

What's the entailment question?

D=DUDy;...UD;_1UDyg

D,MD; C L(for1<i<j<k)

D C (3r.D) M (Ja.D)

D1 CVr.(D" MVa.(D)
D’'€R(D1) D’'€A(Dy)

Dpcvr(|| D)nva(|| D)
dCaor, dCroa, Func(d)

D=1

Goal: Ontology ' entails O' if and only if D has an infinite tiling

If D has any member (a “tile”), it must have an infinite tiling!
If D has no member, it must not have an infinite tiling.

Could also use satisfiability

D=DUDy;...UD;_1UDyg

D,MD; C L(for1<i<j<k)

D C (3r.D) M (Ja.D)

D1 CVr.(D" MVa.(D)
D’'eR(D1) D'eA(D1)

Dpcvr(|| D)nva(|| D)
dCaor, dCroa, Func(d)

D(x)

Ontology (O is satisfiable if and only if D has an infinite tiling

Here, x is an arbitrary fresh term

OWL satisfiability/entailment is powerful

OWL satisfiability/entailment also undecidable!
Otherwise could be used to solve Domino Tiling problem ...
... and the Halting problem ...
... and (given enough time), the Collatz conjecture ...
... and a bunch of other stuff

uondNpPay

PRACTICAL REASONING

Options ...

Well great. What are we supposed to do now?

* Acceptincomplete reasoners that halt
— You may not get all the entailments ... so what entailments
do you get?
* Accept complete reasoners that may not halt

— Java is a language that lets you write programmes that may
not halt

e Restrict OWL so we can’t solve Halting/Tiling

— Main problem tackled in Description Logics field: find
decidable sublanguages of OWL without turning off too
many features (and allowing efficient algorithms)

More next week ...

RECAP

OWL Definitions

e Models

— A world that the ontology could be true for
e ...and a mapping from the terms of the ontology to that world

— Not necessarily the real world (just a consistent world)
— Can be much larger than the ontology describes
— The more detailed the ontology, the fewer its models

 Entailment

— An ontology O entails another ontology O’ if any model of
O is a model of O’

e ...in which case O’ adds no new information to O
* ... in which case O’ follow from O

OWL Reasoning Tasks

e Materialisation

— Write down all the entailments from O’
* Unfortunately, they are infinite

e Satisfiability
— Does an ontology have any model?

* If not, it is inconsistent/unsatisfiable
* Unfortunately, satisfiability is undecidable

* Entailment (checking)

— Does an ontology O entail another ontology O'?
* If so, O follows as a consequence of O
e Can be reduced to satisfiability
* Unfortunately, entailment checking is also undecidable

Questions?

