
CC5212-1 
PROCESAMIENTO MASIVO DE DATOS 
OTOÑO 2021 
 

Lecture 2 
Distributed Systems 

Aidan Hogan 

aidhog@gmail.com 



PROCESSING MASSIVE DATA NEEDS  
 DISTRIBUTED SYSTEMS … 



Monolithic vs. Distributed Systems 

• One machine that’s n 
times as powerful? 

• n machines that are 
equally as powerful? 

 



Parallel vs. Distributed Systems 

• Distributed System 

often shared nothing 

Memory 

Processor Processor Processor 

Processor 

Memory 
Processor 

Memory 
Processor 

Memory 

• Parallel System 

often shared memory 



What is a Distributed System? 

A distributed system is a system that enables a collection of independent 
computers to communicate in order to solve a common goal. 

 
They have three important properties ... 

0010010001011010100 

100101110100010001001 



What is a Distributed System? 
 Three properties ... 

1. Concurrency 
2. Independent failures 

3. No global clock 

0010010001011010100 

100101110100010001001 



What is a Distributed System? 
 Three properties ... 

1. Concurrency 
2. Independent failures 

3. No global clock 

0010010001011010100 

100101110100010001001 



What is a Distributed System? 
 Three properties ... 

1. Concurrency 
2. Independent failures 

3. No global clock 

0010010001011010100 

100101110100010001001 



CHALLENGES OF DISTRIBUTED SYSTEMS 



Two General's Problem 



Two General's Problem 

• Two generals need to agree a time to attack 

– They can send messengers on horse-back 

– Messengers can be killed en route 

How can the generals coordinate a time for attack? 



Two General's Problem 

• Two generals need to agree a time to attack 

– They can send messengers on horse-back 

– Messengers can be killed en route 

How can the generals coordinate a time for attack? 

12:50 



Two General's Problem 

• Two generals need to agree a time to attack 

– They can send messengers on horse-back 

– Messengers can be killed en route 

How can the generals coordinate a time for attack? 

"12:50" Ok 

12:50 



Two General's Problem 

• Two generals need to agree a time to attack 

– They can send messengers on horse-back 

– Messengers can be killed en route 

How can the generals coordinate a time for attack? 

"12:50" Ok 

12:50 

""12:50" Ok" Ok 



Two General's Problem 

• Two generals need to agree a time to attack 

– They can send messengers on horse-back 

– Messengers can be killed en route 

How can the generals coordinate a time for attack? 

"12:50" Ok 

12:50 

""12:50" Ok" Ok 

"""12:50" Ok" Ok" Ok  



Two General's Problem 

• Two generals need to agree a time to attack 

– They can send messengers on horse-back 

– Messengers can be killed en route 

How can the generals coordinate a time for attack? 

"12:50" Ok 

12:50 

""12:50" Ok" Ok 

"""12:50" Ok" Ok" Ok  

... 



Two General's Problem 

• Two generals need to agree a time to attack 

– They can send messengers on horse-back 

– Messengers can be killed en route 

So how can we solve this problem? 

Umm, try to make sure the messengers don't get killed. 



Byzantine General's Problem 

• Two generals need to agree a time to attack 

– They can send messengers on horse-back 

– Messengers can be killed en route 

– Messengers can be replaced with spies 

So how can we solve this problem? 

Umm, try to make sure the messengers don't get killed or replaced. 



WHAT MAKES A GOOD  
 DISTRIBUTED SYSTEM? 



A Good Distributed System … 

Transparency 
… looks like one system 



A Good Distributed System … 

Transparency 
… looks like one system 

• Abstract/hide: 

– Access: How different machines are accessed 

– Location: Where the machines physically reside 

– Heterogeneity: Different software/hardware 

– Etc. 

• How? 

– Abstract addresses, APIs, etc. 



A Good Distributed System … 

Flexibility 
… can add/remove machines quickly and easily 



A Good Distributed System … 

Flexibility 
… can add/remove machines quickly and easily 

• Avoid: 

– Downtime: Restarting the distributed system 

– Complex Config.: 12 admins working 24/7 

– Specific Requirements: Assumptions of OS/HW 

– Etc. 

• How? 

– Platform-independent SW, load-balancing, … 



A Good Distributed System … 

Reliability 
… avoids failure / keeps working in case of failure 



A Good Distributed System … 

Reliability 
… avoids failure / keeps working in case of failure 

• Avoid: 

– Downtime: The system going offline 

– Inconsistency: Verify correctness 

• How? 

– Replication, flexible routing, Consensus Protocols, …  



A Good Distributed System … 

Performance 
… does stuff quickly 



A Good Distributed System … 

Performance 
… does stuff quickly 

• Avoid: 

– Latency: Time for initial response 

– Long runtime: Time to complete response 

– Avoid                 basically 

• How? 

– Network optimisation, more resources, etc. 

 

 



A Good Distributed System … 

Scalability 
… ensures the infrastructure scales 



A Good Distributed System … 

Scalability 
… ensures the infrastructure scales 

• Avoid: 

– Bottlenecks: Relying on one part too much 

– Pair-wise messages: Grows quadratically: 

• How? 

– Peer-to-peer, direct transfer, distributed indexes, etc. 



A Good Distributed System … 

Transparency 
… looks like one system 

Flexibility 
… can add/remove machines quickly and easily 

Reliability 
… avoids failure / keeps working in case of failure 

Performance 
… does stuff quickly 

Scalability 
… ensures the infrastructure scales 



DISTRIBUTED SYSTEMS: 
 CLIENT–SERVER ARCHITECTURE 



Client–Server Model 

Client makes request to server 

Server acts and responds 

For example? Web, Email, DropBox, … 



Three Layer Architecture 

1. Data | 2. Logic | 3. Presentation 

Server 

 Client–Server: Three-Tier Server 

Data Logic Presentation 

SQL:  
Create 
query: 

all salaries 

Add all the 
salaries 

HTTP: 
Total salary 

of all 
employees 

Create 
HTML page 



Three Layer Architecture 

1. Data | 2. Logic | 3. Presentation 

 Client–Server: Three-Tier Server 

Server can be a distributed system! 
 

Server ≠ Physical Machine 

Server 

Data Logic Presentation 

SQL:  
Create 
query: 

all salaries 

Add all the 
salaries 

HTTP: 
Total salary 

of all 
employees 

Create 
HTML page 



DISTRIBUTED SYSTEMS: 
 PEER-TO-PEER (P2P) ARCHITECTURE 



Peer-to-Peer (P2P) 

Client–Server 

• Client interacts directly with 
server 

Peer-to-Peer (P2P) 

• Peers interact directly with each 
other 



Peer-to-Peer (P2P) 

Client–Server 

• Client interacts directly with 
server 

Peer-to-Peer (P2P) 

• Peers interact directly with each 
other 

Client Client 

Client Client 

Client Client Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 



Peer-to-Peer (P2P) 

Client–Server 

• Client interacts directly with 
server 

Peer-to-Peer (P2P) 

• Peers interact directly with each 
other 

Client Client 

Client Client 

Client Client Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Examples of P2P systems? 



Peer-to-Peer (P2P) 

File Servers (DropBox): 

• Clients interact with a central file 
server 

P2P File Sharing (e.g., Bittorrent): 

• Peers act both as the file server 
and the client 

Client Client 

Client Client 

Client Client Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 



Peer-to-Peer (P2P) 

Online Banking: 

• Clients interact with a central 
banking server 

Cryptocurrencies (e.g., Bitcoin): 

• Peers act both as the bank and 
the client 

Client Client 

Client Client 

Client Client Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 



Peer-to-Peer (P2P) 

SVN: 

• Clients interact with a central 
versioning repository 

GIT: 

• Peers have their own 
repositories, which they sync. 

Client Client 

Client Client 

Client Client Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 

Client 

Server 



Peer-to-Peer: Unstructured (flooding) 

Ricky Martin’s 
new album? 



Peer-to-Peer: Unstructured (flooding) 

Pixie’s new 
album? 



Peer-to-Peer: Structured (Central) 

• In central server, each 
peer registers 

– Content 

– Address 

 

• Peer requests content 
from server 

 

• Peers connect directly 

 

Ricky Martin’s 
new album? 

Advantages / Disadvantages? 



Dangers of SPoF: not just technical 



Dangers of SPoF: not just technical 



Peer-to-Peer: Structured (Hierarchical) 

Super-peers and peers 

 

 

 

 

• Super-peers index and 
organise the content of 
local peers 

Advantages / Disadvantages? 



Peer-to-Peer: Structured (Distributed Index) 

Often a: 

Distributed Hash Table (DHT) 

• (key,value) pairs 

• Hash on key  

• Insert with (key,value) 

• Peer indexes key range 

 

Hash: 000 Hash: 111 

Advantages / Disadvantages? 



Peer-to-Peer: Structured (DHT) 

• Circular DHT: 

– Only aware of 
neighbours 

– O(n) lookups 

 

• Shortcuts: 

– Skips ahead 

– Enables binary-search-
like behaviour 

– O(log(n)) lookups 

000 

001 

010 

011 
100 

101 

110 

111 

Pixie’s new 
album? 111 



Peer-to-Peer: Structured (DHT) 

 

• Handle peers leaving 
(churn) 

– Keep n successors 

 

• New peers 

– Fill gaps 

– Replicate 

 

000 

001 

010 

011 
100 

101 

110 

111 



DISTRIBUTED SYSTEMS: 
 HYBRID EXAMPLE (BITTORRENT) 



Bittorrent: Search Server 

BitTorrent 
Search  
(Server) 

“ricky martin” 

Client–Server 



Bittorrent: Tracker 

BitTorrent  
Peer Tracker 

(or DHT) 



Bittorrent: File-Sharing 



Bittorrent: Hybrid 

Uploader 

 

1. Creates torrent file 

2. Uploads torrent file 

3. Announces on tracker 

4. Monitors for downloaders 

5. Connects to downloaders 

6. Sends file parts 

 

Downloader 

 

1. Searches torrent file 

2. Downloads torrent file 

3. Announces to tracker 

4. Monitors for peers/seeds 

5. Connects to peers/seeds 

6. Sends & receives file parts 

7. Watches illegal movie 

 

 
Local / Client–Server / Structured P2P / Direct P2P 



DISTRIBUTED SYSTEMS: 
 IN THE REAL WORLD 



Physical Location: Cluster Computing 

• Machines (typically) in a central, local location; 
e.g., a local LAN in a server room 



Physical Location: Cluster Computing 



Physical Location: Cloud Computing 

• Machines (typically) in a central remote 
location; e.g., Amazon EC2 



Physical Location: Cloud Computing 



Physical Location: Grid Computing 

• Machines in diverse locations 



Physical Location: Grid Computing 

 



Physical Location: Grid Computing 

282,589,933  − 1 



Physical Locations 

• Cluster computing: 

– Typically centralised, local 

 

• Cloud computing: 

– Typically centralised, remote 

 

• Grid computing: 

– Typically decentralised, remote 



LAB II PREVIEW: 
 DISTRIBUTED SYSTEM 



Messaging System 



Distributed messaging system 

•  Central server (optional; IP known globally) 

•  Peer machines (IP unknown to other machines initially) 

 

How can we design a system  
such that: 
• Peers find the IPs of other peers 
• Peers can send and receive 

messages to/from other peers 



LAB II PREVIEW: 
 JAVA RMI OVERVIEW 



Why is Java RMI Important? 

We can use it to quickly build distributed systems 
using some standard Java skills. 

 



What is Java RMI? 

• Server: has Java code implemented 

• Client: wants to call Java code on server        
(possibily sending arguments and receiving a return value) 

 

 

Client 

Network 

Server 



What is Java RMI? 

• RMI = Remote Method Invocation 

• Stub / Skeleton model (TCP/IP) 

 

Client 

Stub Network 

Server 

Skeleton 



What is Java RMI? 

Stub (Client): 

– Sends request to skeleton: 
marshalls/serialises and 
transfers arguments 

 

 

– Demarshalls/deserialises 
response and ends call 

 

Skeleton (Server): 

 

 

– Passes call from stub onto the 
server implementation 

– Passes the response back to 
the stub 

 

Client 

Stub Network 

Server 

Skeleton 



Stub/Skeleton Same Interface! 

Client Server 



Server Implements Skeleton 

Server 

Synchronisation: 
(e.g., should use 
ConcurrentHashMap) 

Problem? 



Server 

Registry 

Server Registry 

• Server (typically) has a Registry: a Map 

• Adds skeleton implementations with key (a string) 

SkelImpl1 “sk1” 

“sk2” SkelImpl2 

“sk3” SkelImpl3 



Server Creates/Connects to Registry 

OR 

Server 



Server Registers Skeleton Implementation 

Server 



Server 

Registry 

Client Connecting to Registry 

• Client connects to registry (port, hostname/IP)! 

• Retrieves skeleton/stub with key 

Client 

Network 

SkelImpl1 “sk1” 

“sk2” SkelImpl2 

“sk3” SkelImpl3 
“sk2” 

SkelImpl2 

Stub2 



Client Connecting to Registry 

Client 



Server 

Client Calls Remote Methods 

• Client has stub, calls method, serialises arguments 

• Server does processing 

• Server returns answer; client deserialises result 

Client 
Network 

SkelImpl2 Stub2 

concat (“a”,”b”) 

“ab” 



Client Calls Remote Methods 

Client 



Java RMI: Remember … 

1. Remote calls are pass-by-value, not pass-by-
reference (objects not modified directly) 

2. Everything passed and returned must be 
Serialisable (implement Serializable) 

3. Every stub/skel method must throw a remote 
exception (throws RemoteException) 

4. Server implementation can only throw 
RemoteException 

 



Questions? 


