CC5212-1

PROCESAMIENTO MASIVO DE DATOS
OTONO 2021

Lecture 2
Distributed Systems

Aidan Hogan
aidhog@gmail.com

PROCESSING MASSIVE DATA NEEDS
DISTRIBUTED SYSTEMS ...

Monolithic vs. Distributed Systems

e One machine that’s n e n machines that are
times as powerful? equally as powerful?

Parallel vs. Distributed Systems

* Parallel System

often shared memory

Processor Processor Processor

! ! !

Memory

e Distributed System

often shared nothing

Processor

!

Memory
Processor

!

Memory

Processor

!

Memory

What is a Distributed System?

A distributed system is a system that enables a collection of independent
computers to communicate in order to solve a common goal.

They have three important properties ...

0010010001011010100

100101110100010001001

What is a Distributed System?
Three properties ...

1. Concurrency

0010010001011010100

£t

100101110100010001001

What is a Distributed System?
Three properties ...

1. Concurrency
2. Independent failures

0010010001011010100

£t

100101110100010001001

What is a Distributed System?
Three properties ...

1. Concurrency
2. Independent failures
3. No global clock

0010010001011010100

100101110100010001001

CHALLENGES OF DISTRIBUTED SYSTEMS

wo General's Problem

A I =] c [5) E
4 4
Pleasonton’s cavalry employed by
regiment for militory police duly
in rear.
Hookers whole force
withdrew within the
lines held by Reynolds,
s -/ Meade, and Howard
by noon, 3 May.
= Y 3 . 3
ihe
| Folmouth
Wilderness % ¥

® Tovern

“Seon'y
Ford

Bank's Ford
]

Smittield a\

e,
e,
Q

= 1 - 4 : Homiltons
- Crozsing
\

Orange CH
THE WILDERNESS, 1863
CHANCELLORSVILLE CAMPAIGN 7'

Situation Early 3 May 1863

| o | 2
[——r—

SCALE OF MILES

7y T B T c T 5] : E

Two General's Problem

 Two generals need to agree a time to attack
— They can send messengers on horse-back
— Messengers can be killed en route

How can the generals coordinate a time for attack? @

Two General's Problem

 Two generals need to agree a time to attack
— They can send messengers on horse-back
— Messengers can be killed en route

How can the generals coordinate a time for attack? @

Two General's Problem

 Two generals need to agree a time to attack
— They can send messengers on horse-back
— Messengers can be killed en route

How can the generals coordinate a time for attack? @

"12:50" Ok

Two General's Problem

 Two generals need to agree a time to attack
— They can send messengers on horse-back
— Messengers can be killed en route

How can the generals coordinate a time for attack? @

Two General's Problem

 Two generals need to agree a time to attack
— They can send messengers on horse-back
— Messengers can be killed en route

How can the generals coordinate a time for attack? @

IIIIII12:50H Okll Okll Ok

Two General's Problem

 Two generals need to agree a time to attack
— They can send messengers on horse-back
— Messengers can be killed en route

How can the generals coordinate a time for attack? @

Two General's Problem

 Two generals need to agree a time to attack
— They can send messengers on horse-back
— Messengers can be killed en route

So how can we solve this problem? @

Umm, try to make sure the messengers don't get killed.

Byzantine General's Problem

 Two generals need to agree a time to attack
— They can send messengers on horse-back
— Messengers can be killed en route
— Messengers can be replaced with spies

So how can we solve this problem? @

Umm, try to make sure the messengers don't get killed or replaced.

\WHAT MAKES A GOOD
DISTRIBUTED SYSTEM?

A Good Distributed System ...

Transparency

... looks like one system

A Good Distributed System ...

Transparency

... looks like one system

e Abstract/hide:
— Access: How different machines are accessed
— Location: Where the machines physically reside
— Heterogeneity: Different software/hardware
— Etc.
* How?

— Abstract addresses, APls, etc.

A Good Distributed System ...

Flexibility

... can add/remove machines quickly and easily

A Good Distributed System ...

Flexibility

... can add/remove machines quickly and easily

* Avoid:
— Downtime: Restarting the distributed system
— Complex Config.: 12 admins working 24/7
— Specific Requirements: Assumptions of OS/HW
— Etc.
* How?

— Platform-independent SW, load-balancing, ...

A Good Distributed System ...

Reliability

... avoids failure / keeps working in case of failure

A Good Distributed System ...

Reliability

... avoids failure / keeps working in case of failure

* Avoid:
— Downtime: The system going offline
— Inconsistency: Verify correctness

* How?

— Replication, flexible routing, Consensus Protocols, ...

A Good Distributed System ...

Performance
... does stuff quickly

K
\/
1}
|‘l i
\ |
)
I
s s

A Good Distributed System ...

Performance
... does stuff quickly

e Avoid:

— Latency: Time for initial response

— Long runtime: Time to complete response

— Avoid = basically
e How?

— Network optimisation, more resources, etc.

A Good Distributed System ...

Scalability

... ensures the infrastructure scales

n-4l
{1l
£)

A Good Distributed System ...

Scalability

... ensures the infrastructure scales

* Avoid:

— Bottlenecks: Relying on one part too much

— Pair-wise messages: Grows quadratically: O(n?)
* How?

— Peer-to-peer, direct transfer, distributed indexes, etc.

A Good Distributed System ...

Transparency

... looks like one system
A

Flexibility
... can add/remove machines quickly and easily

Reliability
... avoids failure / keeps working in case of failure

Performance
... does stuff quickly

Scalability
... ensures the infrastructure scales

DISTRIBUTED SYSTEMS:
CLIENT—SERVER ARCHITECTURE

Client—Server Model

Client makes request to server

Server acts and responds

For example? @ Web, Email, DropBox, ... @

Client—=Server: Three-Tier Server

Three Layer Architecture
1. Data | 2. Logic | 3. Presentation

Server

Logic
—

Add all the Create
EIEIES HTML page

SQL: HTTP:

Create -jj Total salary
query: of all
all salaries employees

Client—=Server: Three-Tier Server

Server can be a distributed system!

Server # Physical Machine

Server

Logic

Add all the
salaries

SQL
Create
query:

all salaries

Presentation

Create
HTML page

ST Pg
Total salary
of all
employees

A

DISTRIBUTED SYSTEMS:
PEER-TO-PEER (P2P) ARCHITECTURE

Peer-to-Peer (P2P)

Client—Server Peer-to-Peer (P2P)
* Client interacts directly with e Peers interact directly with each
server other

- . -
N / N
- - o= -
7\ \ /
R E - -

Peer-to-Peer (P2P)

Client—Server Peer-to-Peer (P2P)
* Client interacts directly with e Peers interact directly with each
server other

Client Client
Client Client
Server Server

. Client Client
Client Server Client

Server Server

Client Client

Client Client

Server Server

Peer-to-Peer (P2P)

Examples of P2P systems?

®

Peer-to-Peer (P2P)

* Peers interact directly with each
other

Client Client

Server Server

Client Client

Server Server

Client Client

Server Server

Peer-to-Peer (P2P)

File Servers (DropBox): P2P File Sharing (e.g., Bittorrent):

 (lients interact with a central file ¢ Peers act both as the file server

server and the client

Client
Client Client
Server

Client

Client Server Client

Server

: : Client
Client Client

Server

Client

Server

Client

Server

Client

Server

Peer-to-Peer (P2P)

Online Banking:

e (lients interact with a central
banking server

Client Client

Client Server Client

Client Client

Cryptocurrencies (e.g., Bitcoin):

e Peers act both as the bank and
the client

Client Client

Server Server

Client Client

Server Server

Client Client

Server Server

Peer-to-Peer (P2P)

SVN:

e (lients interact with a central
versioning repository

Client Client

Client Server Client

Client Client

GIT:

e Peers have their own
repositories, which they sync.

Client Client

Server Server

Client Client

Server Server

Client Client

Server Server

Peer-to-Peer: Unstructured (flooding)

\ Ricky Martin’s
.}
new album?

Peer-to-Peer: Unstructured (flooding)

% Pixie’s new
/ album?

Peer-to-Peer: Structured (Central)

Ricky Martin’s
new album?

* |n central server, each
peer registers

— Content
— Address

* Peer requests content
from server

* Peers connect directly

Advantages / Disadvantages?

Individual home PCs running
Napster.

The central index
server owned by
Napster.

The home PC’s connect to the
central index server and send it
data about their music libraries.

. Napster

The central index
server owned by
Napster.

Individual home PCs running
Napster.

File Index
00101100010
10010101010

The home PC’s connect to the
central index server and send it

data about their music libraries. g

00101100010

Peer-to-Peer: Structured (Hierarchical)

Super-peers and peers

e Super-peers index and
organise the content of
local peers

Advantages / Disadvantages? @

Peer-to-Peer: Structured (Distributed Index)

Often a:

Distributed Hash Table (DHT)
* (key,value) pairs

* Hash on key
* Insert with (key, value)
* Peer indexes key range

Advantages / Disadvantages? @

Peer-to-Peer: Structured (DHT)

e Circular DHT:

— Only aware of

neighbours 110 %

— O(n) lookups
V/l 010
e Shortcuts: 101 S :
— Skips ahead

— Enables binary-search-
like behaviour

Pixie’s new

— O(log(n)) lookups album? 111

Peer-to-Peer: Structured (DHT)

* Handle peers leaving
(churn) HOE

— Keep n SUccessors

DISTRIBUTED SYSTEMS:
HYBRID EXAMPLE (BITTORRENT)

Bittorrent: Search Server

BitTorrent
Search
(Server)

“ricky martin”
1

Client—Server

Bittorrent: Tracker

BitTorrent
Peer Tracker

Bittorrent: File-Sharing

Bittorrent: Hybrid

Uploader Downloader

1. Creates torrent file 1. Searches torrent file

2. Uploads torrent file 2. Downloads torrent file

3. Announces on tracker 3. Announces to tracker

4. Monitors for downloaders 4. Monitors for peers/seeds

5. Connects to downloaders 5. Connects to peers/seeds

6. Sends file parts 6. Sends & receives file parts
7. Watches illegal movie

Local / Client—Server / Structured P2P / Direct P2P

DISTRIBUTED SYSTEMS:
IN THE REAL WORLD

Physical Location: Cluster Computing

 Machines (typically) in a central, local location;
e.g., a local LAN in a server room

="\

o S
~

Physical Location: Cluster Computing

Physical Location: Cloud Computing

 Machines (typically) in a central remote
location; e.g., Amazon EC2

<A

==c> |11

v

==c> |l

N ———

Physical Location: Cloud Computing

Amazon EC2

Region: eu-west-1

Region: us-east-1

hovailability Zone

Physical Location: Grid Computing

e Machines in diverse locations

- ®
®\ /
B e

N

Physical Location: Grid Computing

This globe shows your climate model running
Model date and time: 19/10/1952 00:30

Atmos Model Time 00:30

Atmos Model Date 19/10/1952 —
Hours Elapsed 0685:15:50 (2.99 s8/TS)
Timestep 826417 of 4147560
Progress 19.93 %

bbc.co.uk/climatechange

Yol 208 P 5T23
Fages T41-508 10

DISTIRIBUTED

ARY A8

c‘re_med by - '
climateprediction.net

Physical Location: Grid Computing

282,589,933 —1

A0 wm

3107417 . 4849004372135 7088508858793 -
ozzaaunsasuumsaue 518081 [ﬁl‘m e a rl d
280073 12778352F 38845 n7a%%02

296711° 786782 43 79167 380. ne7

Physical Locations

e Cluster computing:

— Typically centralised, local

* Cloud computing:

— Typically centralised, remote

* Grid computing:
— Typically decentralised, remote

LAB || PREVIEW:
DISTRIBUTED SYSTEM

Messaging System

:...._7 - - .
- o 2 -y .
e lar b=yt ST STR TN S ae . T —

= — o n

Distributed messaging system

* Central server (optional; IP known globally)
* Peer machines (IP unknown to other machines initially)

How can we design a system @

such that:

* Peers find the IPs of other peers

e Peers can send and receive
messages to/from other peers

LAB || PREVIEW:
Java RMI| OVERVIEW

Why is Java RMI Important?

We can use it to quickly build distributed systems
using some standard Java skills.

What is Java RMI?

e Server: has Java code implemented

* Client: wants to call Java code on server
(possibily sending arguments and receiving a return value)

Client
<Network>

What is Java RMI?

e RMI| = Remote Method Invocation
* Stub / Skeleton model (TCP/IP)

Skeleton

<N etwo rk>

What is Java RMI?

Stub (Client): Skeleton (Server):
— Sends request to skeleton:
marshalls/serialises and
transfers arguments — Passes call from stub onto the
server implementation
— Passes the response back to

— Demarshalls/deserialises the stub
response and ends call

Network Skeleton

Stub/Skeleton Same Interface!

package org.mdp.dir;

v import java.io.Serializable;[]

= II,-'**
* This is the interface that will be registered in the server.
* In RMI, a remote interface is called a stub (on the client-side)
* or a skeleton (on the server-side).
*
* An implementation is created and registered on the server.
&
* Remote machines can then call the methods of the interface.
*
* Note: every method *must* throw RemoteException!
&
* Note: every object passed or returned *must* be Serializable!
*
* @author Aidan
&

*/
public interface UserDirectoryStub extends Remote, Serializable{
public boolean createUser(User u) throws RemoteException;

public Map<String,User> getDirectory() throws RemoteException;

public User removelUserWithMame(String un) throws RemoteException;

Client Server

Server Implements Skeleton

package ocrg.mdp.dir;
+ import java.util.HashMap;[]

* This is the implementation of UserDirectoryStub.[]
public class UserDirectoryServer implements UserDirectoryStub {

private static final long seriglVersionUID = -6B825896167995177846L;
private Map<String,User> directory;

= public UserDirectoryServer()}{ PrObIem?

directory = new HashMap<String,User:();

¥
) , , Synchronisation:
& * Return true if successful, false otherwise.[]
= public boolean createlser({User u) { (e.g., ShOUId use
if{u.getUsername(}==null)
return false; ConcurrentHashMap)
directory.put{u.getUsername(}, u);
System.out.println({"New user registered! Bienvendioc a ...'\n\t"+u);
return true;
h
+ * Returns the current directory of users.[]

= public Map<String, User:> getDirectory() {
return directory;

h

® * Just an option to clean up if necessaryl[]
= public User removeUserWithName(String un) {
System.out.println("Removing username ""+un+"'. Chac!™);

turn directory. (un);
} FETUrn 1rectory. removelun Server

Server Registry

e Server (typically) has a Registry: a Map
e Adds skeleton implementations with key (a string)

Registry

“sk3” | SkelImpl3

“sk2” | SkelImpl2

“sk1” | SkelImpl1

Server Creates/Connects to Registry

[/ create registry
Registry registry = LocateRegistry.createRegistry(port);

OR

// connect to registry
Registry registry = LocateRegistry.getRegistry(hostname, port);

Server

Server Registers Skeleton Implementation

// create a remote stub to make it
// ready for incoming calls
Remote stub = UnicastRemoteObject.exportObject({new UserDirectoryServer(),8);

// register stub in registry under a key stub-name
String stubname = "mensaje”;
registry.bind{stubname, stub);

Server

Client Connecting to Registry

* Client connects to registry (port, hostname/IP)!
* Retrieves skeleton/stub with key

N
o

Registry

“sk3” | SkelImpl3

SkelImpl?2 sk2” | SkelImpl2

“sk1” | SkelImpl1

Client Connecting to Registry

String hostname = "server.com”;
int port = 1985;
String stubname = "mensaje”;

/{ first need to connect to the remote registry on the giwven
// IP and port
Registry registry = LocateRegistry.getRegistry(hostname, port);

/{ then need to find the interface we're locking for
UserDirectoryStub stub = (UserDirectoryStub) registry.lockup(stubname);

Client Calls Remote Methods

e Client has stub, calls method, serialises arguments
e Server does processing
e Server returns answer; client deserialises result

Client 'I H - Server

Concat (“a”,”b”)

SkelImpl2

Client Calls Remote Methods

// now we can use the stub to call remote methods!!
Map<5tring,User> users = stub.getDirectory();
System.err.println(users.toString());

User u = new User("aidhog”, "Aidan Hogan", "18.8.114.59", 1589);
stub.createlUser({u);

users = stub.getDirectory();
System.err.println{users.toString());

stub.removeUserWithName("aidhog");

users = stub.getDirectory();
System.err.println{users.toString());

Java RMI: Remember ...

1. Remote calls are pass-by-value, not pass-by-
reference (objects not modified directly)

2. Everything passed and returned must be
Serialisable (implement Serializable)

3. Every stub/skel method must throw a remote
exception (throws RemoteException)

4. Server implementation can only throw
RemoteException

Questions?

