
CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTOÑO 2020

Lecture 9
NoSQL: Overview

Aidan Hogan

aidhog@gmail.com

Hadoop/MapReduce/Pig/Spark:

Processing Un/Structured Information

Information Retrieval:

Storing Unstructured Information

Storing Structured Information??

?

BIG DATA:
STORING STRUCTURED INFORMATION

Relational Databases

Relational Databases:
One Size Fits All?

SQL

Difficult to optimise

Difficult to distribute

Declarative language

Expressive

ACID

Costly to implement

Difficult to distribute

Guarantees correct behaviour

Support transactions

Transactional overhead: the cost of ACID

• 640 transactions per second for
system with full transactional
support (ACID)

• 12,700 transactions per second
for system without logs,
transactions or lock scheduling

ALTERNATIVES TO RELATIONAL DATABASES
FOR BIG DATA?

NoSQL Anybody know anything about NoSQL?

http://db-engines.com/en/ranking

NoSQL: features vs. scale/performance

NoSQL: common characteristics

• Often distributed

• Often simpler languages than SQL

• Different flavours (for different scenarios)

NoSQL: four main flavours

LIMITATIONS OF DISTRIBUTED COMPUTING:
CAP THEOREM

What is CAP?

Three guarantees a distributed sys. could make

1. Consistency:

– All nodes have a consistent view of the system

2. Availability:

– Every read/write is acted upon

3. Partition-tolerance:

– The system works even if messages are lost

CA in CAP not the same as CA in ACID!!

A Distributed System (with Replication)

–

– –

–

Consistency

–

– –

–

There’s 891
users in ‘M’

There’s 891
users in ‘M’

Availability

–

– –

–

How many users
start with ‘M’

891

Partition tolerance

–

– –

–

How many users
start with ‘M’

891

The CAP Question

Can a distributed system guarantee

consistency (all nodes have the same up-to-date view),

availability (every read/write is acted upon) and

partition-tolerance (the system works if messages are lost)

at the same time?

What do you think?

The CAP Answer

The CAP Theorem

A distributed system cannot guarantee

consistency (all nodes have the same up-to-date view),

availability (every read/write is acted upon) and

partition-tolerance (the system works if messages are lost)

at the same time!

The CAP “Proof”

–

– –

–

How many users
start with ‘M’

There’s 891
users in ‘M’

There’s 891
users in ‘M’

891

There’s 892
users in ‘M’

The CAP Triangle

C

A P

Choose
Two

CAP Systems

C

A P
(No intersection)

CA: Guarantees to give a

correct response but only
while network works fine
(Centralised / Traditional)

CP: Guarantees responses

are correct even if there are
network failures, but response
may fail (Weak availability)

AP: Always provides a

“best-effort” response even in
presence of network failures
(Eventual consistency)

CA System

–

– –

–

How many users
start with ‘M’

There’s 891
users in ‘M’

There’s 891
users in ‘M’

There’s 892
users in ‘M’

There’s 892
users in ‘M’

892

CP System

–

– –

–

How many users
start with ‘M’

There’s 891
users in ‘M’

There’s 891
users in ‘M’

Error

There’s 892
users in ‘M’

AP System

–

– –

–

How many users
start with ‘M’

There’s 891
users in ‘M’

There’s 891
users in ‘M’

There’s 892
users in ‘M’

891

BASE (AP)

• Basically Available

– Almost always “up”

• Soft State

– Replicated, cached data

• Eventual Consistency

– Stale data tolerated, for a while

In what way does Twitter act as a BASE (AP) system?

High-fanout creates a “partition”

Users may see retweets of celebrity tweets
before the original tweet.

Later when the original tweet arrives the
timeline will be reordered and made consistent.

CAP in practical distributed systems

C

A P

1. Fix P
2. Choose trade-off point

between C and A

PARTITION TOLERANCE

Faults

Fail–Stop Fault

• A machine fails to respond or times-out
– often hardware or load

– need at least f + 1 replicated machines

• f = number of fail-stop failures

Word
Count

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

 …

Byzantine Fault

• A machine responds incorrectly/maliciously

Word
Count

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

 …

el 4.575.144

po 2.160.185

sé 2.073.216

ni 1.844.613

al 1.479.936

 …

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

 …

How many working machines do we need in the general case to be
robust against Byzantine faults?

Byzantine Fault

• A machine responds incorrectly/maliciously
– Need at least 2f +1 replicated machines

• f = number of (possibly Byzantine) failures

Word
Count

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

 …

el 4.575.144

po 2.160.185

sé 2.073.216

ni 1.844.613

al 1.479.936

 …

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

 …

DISTRIBUTED CONSENSUS

Distributed Consensus

Colour of the dress?

Consensus.

Distributed Consensus

Strong consensus: All nodes need to agree

Blue

Blue

Blue

Blue

Blue

Distributed Consensus

Strong consensus: All nodes need to agree

Blue

Blue

Blue

White

Blue

No consensus.

Distributed Consensus

Majority consensus: A majority of nodes need to agree

Blue

Blue

Blue

White

White

Consensus.

Distributed Consensus

Majority consensus: A majority of nodes need to agree

Blue

Blue

White

White

White

Consensus.

Distributed Consensus

Majority consensus: A majority of nodes need to agree

Blue

Blue

Green

White

White

No consensus.

Distributed Consensus

Plurality consensus: A plurality of nodes need to agree

Blue

Blue

Green

White

Orange

Consensus.

Distributed Consensus

Plurality consensus: A plurality of nodes need to agree

Blue

Blue

Green

White

White

No consensus.

Distributed Consensus

Quorum consensus: n nodes need to agree

Blue

Blue

Blue

White

White

n = 3 Consensus.

n = 4 No consensus.

Distributed Consensus

Quorum consensus: n nodes need to agree

Blue

Blue

Green

White

White

n = 2 Consensus.
(First 2 machines asked,

but not unique!)

Distributed Consensus

Quorum consensus: n nodes need to agree

Blue

Blue

Green

White

White

Value of n needed for unique consensus with N nodes? n > N/2

Distributed Consensus

Consensus off: Take first answer

Blue

Blue

Green

White

Orange

Consensus.

CP

AP

Distributed Consensus

Strong consensus: All nodes need to agree

Majority consensus: A majority of nodes need to agree

Plurality consensus: A plurality of nodes need to agree

Quorom consensus: “Fixed” n nodes need to agree

Consensus off: Take first answer

CP vs. AP?

More replication

Less replication

Distributed Consensus

Strong consensus: All nodes need to agree

Majority consensus: A majority of nodes need to agree

Plurality consensus: A plurality of nodes need to agree

Quorom consensus: “Fixed” n nodes need to agree

Consensus off: Take first answer

Scale?

Distributed Consensus

Strong consensus: All nodes need to agree

Majority consensus: A majority of nodes need to agree

Plurality consensus: A plurality of nodes need to agree

Quorom consensus: “Fixed” n nodes need to agree

Consensus off: Take first answer

Choice is application dependent:
Many NoSQL stores allow you to choose

level of consensus/replication

NOSQL: KEY–VALUE STORES

NoSQL: Key–Value Stores

Key–Value Store Model

It’s just a Map / Associate Array / Dictionary 
• put(key,value)

• get(key)

• delete(key)

Key Value

Afghanistan Kabul

Albania Tirana

Algeria Algiers

Andorra la Vella Andorra la Vella

Angola Luanda

Antigua and Barbuda St. John’s

… …

But You Can Do a Lot With a Map

… actually you can model any data in a map (but possibly with a lot
of redundancy and inefficient lookups if unsorted).

Key Value

country:Afghanistan capital@city:Kabul,continent:Asia,pop:31108077#2011

country:Albania capital@city:Tirana,continent:Europe,pop:3011405#2013

… …

city:Kabul country:Afghanistan,pop:3476000#2013

city:Tirana country:Albania,pop:3011405#2013

… …

user:10239 basedIn@city:Tirana,post:{103,10430,201}

… …

THE CASE OF AMAZON

The Amazon Scenario

Products Listings: prices, details, stock

The Amazon Scenario

Customer info: shopping cart, account, etc.

The Amazon Scenario

Recommendations, etc.:

The Amazon Scenario

• Amazon customers:

The Amazon Scenario

The Amazon Scenario

Databases struggling …

But many Amazon services don’t need:

• SQL (a simple map often enough)

or even:

• transactions, strong consistency, etc.

Key–Value Store: Amazon Dynamo(DB)

Goals:
• Scalability (able to grow)
• High availability (reliable)
• Performance (fast)

Don’t need full SQL, don’t need full ACID

Key–Value Store: Distribution

How might we distribute a key–value store over multiple machines?

Key–Value Store: Distribution

What happens if a machine leaves or joins afterwards?

How can we avoid rehashing everything?

Consistent Hashing
Avoid re-hashing everything

• Hash using a ring

• Each machine picks n pseudo-random points on the ring

• Machine responsible for arc after its point

• Objects mapped to ring

• If a machine leaves, its range moves to previous machine

• If a machine joins, it picks new points

How many keys (on average) would
need to be moved if a machine
joins or leaves?

Amazon Dynamo: Hashing

• Consistent Hashing (128-bit MD5)

Amazon Dynamo: Replication

• A set replication factor (e.g., 3)

• Commonly primary / secondary replicas

– Primary replica elected from secondary replicas in
the case of failure of primary

k v

k v

A1 B1 C1 D1 E1

k v

k v k v

k v

Amazon Dynamo: Replication

• Replication factor of n?
– Easy: pick n next buckets (different machines!)

Amazon Dynamo: Model

Countries

Primary Key Value

Afghanistan capital:Kabul,continent:Asia,pop:31108077#2011

Albania capital:Tirana,continent:Europe,pop:3011405#2013

… …

• Named table with primary key and a value

• Primary key is hashed / unordered

Cities

Primary Key Value

Kabul country:Afghanistan,pop:3476000#2013

Tirana country:Albania,pop:3011405#2013

… …

Amazon Dynamo: CAP

Two options for each table:

• AP: Eventual consistency,
High availability

• CP: Strong consistency,
Lower availability

What’s a CP
system again?

What’s an AP
system again?

Amazon Dynamo: Consistency

• Vector Clock:

– A list of pairs indicating a node and operation count

– Used to track branches of revisions

Amazon Dynamo: Consistency

• Two versions of one shopping cart:

Application knows best
 (… and must support multiple versions being returned)

How best to merge multiple conflicting versions of a value
 (known as reconciliation)?

Amazon Dynamo: Consistency

How can we efficiently verify that two copies of a block of
data are the same (and find where the differences are)?

Amazon Dynamo: Merkle Trees

• Merkle tree: A hash tree

– Leaf node compute hashes from data

– Non-leaf nodes have hashes of their children

– Find differences between two trees level-by-level

Read More …

OTHER KEY–VALUE STORES

Other Key–Value Stores

Other Key–Value Stores

Other Key–Value Stores

Other Key–Value Stores

Evolved into a
tabular store …

TABULAR / COLUMN FAMILY

NoSQL: Column Family Stores

Key–Value = a Distributed Map

Countries

Primary Key Value

Afghanistan capital:Kabul,continent:Asia,pop:31108077#2011

Albania capital:Tirana,continent:Europe,pop:3011405#2013

… …

Tabular = Multi-dimensional Maps

Countries

Primary Key capital continent pop-value pop-year

Afghanistan Kabul Asia 31108077 2011

Albania Tirana Europe 3011405 2013

… … … … …

Bigtable: The Original Whitepaper

MapReduce
authors

Bigtable used for …

…

Bigtable: in a nutshell

31108077

(row, column, time) → value

(Afganistan,pop-value,t4) →

Primary Key capital continent pop-value pop-year

Afghanistan t1 Kabul t1 Asia

t1 31143292
t1 2009

t2 31120978

t4 31108077 t4 2011

Albania t1
Tiran
a

t1 Europe
t1 2912380 t1 2010

t3 3011405 t3 2013

… … … … …

Primary Key value only!

Bigtable: Sorted Keys

Benefits of sorted vs. hashed keys?

Range queries and …

Primary Key capital pop-value pop-year

Asia:Afghanistan t1 Kabul

t1 31143292
t1 2009

t2 31120978

t4 31108077 t4 2011

Asia:Azerbaijan … … … … … …

… … … … … … …

Europe:Albania t1 Tirana
t1 2912380 t1 2010

t3 3011405 t3 2013

Europe:Andorra … … … … … …

… … … … … … …

S
O
R
T
E
D

Bigtable: Tablets

Primary Key capital pop-value pop-year

Asia:Afghanistan t1 Kabul

t1 31143292
t1 2009

t2 31120978

t4 31108077 t4 2011

Asia:Azerbaijan … … … … … …

… … … … … … …

Europe:Albania t1 Tirana
t1 2912380 t1 2010

t3 3011405 t3 2013

Europe:Andorra … … … … … …

… … … … … … …

A
S
I
A

E
U
R
O
P
E

Benefits of sorted vs. hashed keys?

Range queries and …

... locality of processing

A real-world example of locality/sorting

Primary Key language title links

com.imdb t1 en

t1 IMDb Home
t1 …

t2 IMDB - Movies

t4 IMDb t4 …

com.imdb/title/tt2724064/ t1 en t2 Sharknado t2 …

com.imdb/title/tt3062074/ t1 en t2 Sharknado II t2

… … … … … … …

org.wikipedia t1 multi
t1 Wikipedia t1 …

t3 Wikipedia Home t3 …

org.wikipedia.ace t1 ace t1
 Wikipèdia bahsa

Acèh
… …

… … … … … … …

Bigtable: Distribution

Split by tablet

Horizontal range partitioning

Bigtable: Column Families

• Group logically similar columns together
– Accessed efficiently together

– Access-control and storage: column family level

– If of same type, can be compressed

Primary Key pol:capital demo:pop-value demo:pop-year

Asia:Afghanistan t1 Kabul

t1 31143292
t1 2009

t2 31120978

t4 31108077 t4 2011

Asia:Azerbaijan … … … … … …

… … … … … … …

Europe:Albania t1 Tirana
t1 2912380 t1 2010

t3 3011405 t3 2013

Europe:Andorra … … … … … …

… … … … … … …

Read More …

Tabular Store: Apache HBase

Tabular Store: Cassandra

Questions?

