
CC5212-1
PROCESAMIENTO MASIVO DE DATOS

OTOÑO 2019

Lecture 3
DFS/HDFS + MapReduce/Hadoop

Aidan Hogan

aidhog@gmail.com



MASSIVE DATA PROCESSING IN GOOGLE



Inside Google circa 1997/98



Inside Google circa 2017



Building Google Web-search

What processes/algorithms does Google

need to implement Web search?

Crawling
1. Parse links from webpages

2. Schedule links for crawling

3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages

2. Index keywords to webpages

3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)

2. How important is it? (PageRank)

3. How many users clicked it?

...



Building Google Web-search

What processes/algorithms does Google

need to implement Web search?

Crawling
1. Parse links from webpages

2. Schedule links for crawling

3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages

2. Index keywords to webpages

3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)

2. How important is it? (PageRank)

3. How many users clicked it?

...

Google
≈ 100 PB / day
≈ 2,000,000 Wiki / day

(2014, processed)



Building Google Web-search

What processes/algorithms does Google

need to implement Web search?

Crawling
1. Parse links from webpages

2. Schedule links for crawling

3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages

2. Index keywords to webpages

3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)

2. How important is it? (PageRank)

3. How many users clicked it?

...

Google
≈ 100 PB / day
≈ 2,000,000 Wiki / day

(2014, processed)



Implementing on thousands of machines

Crawling
1. Parse links from webpages

2. Schedule links for crawling

3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages

2. Index keywords to webpages

3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)

2. How important is it? (PageRank)

3. How many users clicked it?

...

If we implement each task separately …

… re-implement storage

… re-implement retrieval

… re-implement distributed processing

… re-implement communication

… re-implement fault-tolerance

... and then re-implement those again



Implementing on thousands of machines

Crawling
1. Parse links from webpages

2. Schedule links for crawling

3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages

2. Index keywords to webpages

3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)

2. How important is it? (PageRank)

3. How many users clicked it?

...

Build distributed abstractions

• write(file f )

• read(file f )

• delete(file f )

• append(file f, data d)



GOOGLE FILE SYSTEM (GFS)



Google File System (GFS): White-Paper



Google File System

What is a “file-system”?



Google File System

What is a “file-system”?



1. Splits a file up into chunks (blocks/clusters) of storage

• Remembers location and sequence of chunks for a file

Google File System

What does a “file-system” do?



1. Splits a file up into chunks (blocks/clusters) of storage

• Remembers location and sequence of chunks for a file

2. Organises a hierarchical directory structure

• Tracks sub-directories and files in directories

Google File System

What does a “file-system” do?



1. Splits a file up into chunks (blocks/clusters) of storage

• Remembers location and sequence of chunks for a file

2. Organises a hierarchical directory structure

• Tracks sub-directories and files in directories

3. Tracks file meta-data

• File size, date created, date last modified

• Ownership, permissions, locks

Google File System

What does a “file-system” do?



1. Splits a file up into chunks (blocks/clusters) of storage

• Remembers location and sequence of chunks for a file

2. Organises a hierarchical directory structure

• Tracks sub-directories and files in directories

3. Tracks file meta-data

• File size, date created, date last modified

• Ownership, permissions, locks

4. Provides read/write/update/delete interface, etc.

Google File System

What does a “file-system” do?



Google File System

What does “Google File System” do?

1. Splits a file up into chunks (blocks/clusters) of storage

• Remembers location and sequence of chunks for a file

2. Organises a hierarchical directory structure

• Tracks sub-directories and files in directories

3. Tracks file meta-data

• File size, date created, date last modified

• Ownership, permissions, locks

4. Provides read/write/update/delete interface, etc.

Same thing, just distributed:



Google File System

So which architecture do you think Google uses?

Client–Server? Peer-To-Peer?



Google File System

So which architecture do you think Google uses?

Client–Peer-To-Server-To-Peer-Server-Client!



Google File System: Assumptions

 Files are huge
 Files often read or appended
 Concurrency important
 Failures are frequent
 Streaming important

So how should Google design its Distributed File System?



GFS: Architecture

Chunk-servers (slaves)

• 64 MB per chunk
• 64 bit label for each chunk
• Assume replication factor of 3 

File System (In-Memory)

A1 B1 C1 D1 E1

Master



GFS: Pipelined Writes

Chunk-servers (slaves)

• 64 MB per chunk
• 64 bit label for each chunk
• Assume replication factor of 3 

1

1 12

2

2

3

3

3

1

1 122

2

File System (In-Memory)
/blue.txt [3 chunks]
1: {A1, C1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}
/orange.txt [2 chunks]
1: {B1, D1, E1}
2: {A1, C1, E1}

A1 B1 C1 D1 E1

blue.txt

(150 MB: 3 chunks)

orange.txt

(100 MB: 2 chunks)

Master



GFS: Fault Tolerance

1

1 12

2

2

3

3

3

1

1 122

2

A1 B1 D1 E1C1

1

2

Chunk-servers (slaves)

• 64 MB per chunk
• 64 bit label for each chunk
• Assume replication factor of 3 

File System (In-Memory)
/blue.txt [3 chunks]
1: {A1, C1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}
/orange.txt [2 chunks]
1: {B1, D1, E1}
2: {A1, C1, E1}

File System (In-Memory)
/blue.txt [3 chunks]
1: {A1, B1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}
/orange.txt [2 chunks]
1: {B1, D1, E1}
2: {A1, D1, E1}

blue.txt

(150 MB: 3 chunks)

orange.txt

(100 MB: 2 chunks)

Master



GFS: Direct Reads

Chunk-servers (slaves)

• 64 MB per chunk
• 64 bit label for each chunk
• Assume replication factor of 3 

1

1 12

2

2

3

3

3

1

1 122

2

File System (In-Memory)
/blue.txt [3 chunks]
1: {A1, C1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}
/orange.txt [2 chunks]
1: {B1, D1, E1}
2: {A1, C1, E1}

A1 B1 C1 D1 E1

Master

I’m looking for 
/blue.txt

1 2 3



GFS: Primary Replicas

Chunk-servers (slaves)

• 64 MB per chunk
• 64 bit label for each chunk
• Assume replication factor of 3 

1

1 12

2

2

3

3

3

1

1 122

2

File System (In-Memory)
/blue.txt [3 chunks]
1: {A1, C1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}
/orange.txt [2 chunks]
1: {B1, D1, E1}
2: {A1, C1, E1}

A1 B1 C1 D1 E1

Master

2

I want to 
change block 2 
of /blue.txt

/blue.txt [3 chunks]
2: {A1, B1, D1}

22 2

COMMIT

COMMIT COMMIT

ACK ACK

ACK



GFS: Primary Replicas

Chunk-servers (slaves)

• 64 MB per chunk
• 64 bit label for each chunk
• Assume replication factor of 3 

1

1 12

2

2

3

3

3

1

1 122

2

File System (In-Memory)
/blue.txt [3 chunks]
1: {A1, C1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}
/orange.txt [2 chunks]
1: {B1, D1, E1}
2: {A1, C1, E1}

A1 B1 C1 D1 E1

Master

2

I want to 
change block 2 
of /blue.txt

/blue.txt [3 chunks]
2: {A1, B1, D1}

22 2



GFS: Rack Awareness



GFS: Rack Awareness

Rack A
Switch

Rack B
Switch

Rack C
Switch

Core
Switch

Core
Switch



GFS: Rack Awareness

Rack A
Switch

Rack B
Switch

Core
Switch

1

1

1

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

Files:
/orange.txt

1: {A1, A4, B3}
2: {A5, B1, B5}

2

22

Racks:
A: {A1, A2, A3, A4, A5}
B: {B1, B2, B3, B4, B5}



GFS: Other Operations

Rebalancing: 
Spread storage out evenly 

Deletion:
Just rename the file with hidden file name

To recover, rename back to original version
Otherwise, three days later will be wiped 

Monitoring Stale Replicas: 
Dead slave reappears with old data? 

Master keeps version info



GFS: Weaknesses?

What are the main weaknesses of GFS?

Master node single point of failure
• Use hardware replication
• Logs and checkpoints

Master-node metadata kept in memory
Each chunk needs 64 bytes to address
• Chunk data can be queried from each slave
• Keep each chunk large (fewer chunks)

Master node is a bottleneck
• Use more powerful machine 
• Minimise master node traffic



Hadoop Distributed File System

• Open source version of GFS

• HDFS-to-GFS translation guide …
– Data-node = Chunkserver/Slave

– Name-node = Master

• Same idea except …
– GFS is proprietary (hidden in Google)

– HDFS is open source (Apache!)



Implementing on thousands of machines

Crawling
1. Parse links from webpages

2. Schedule links for crawling

3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages

2. Index keywords to webpages

3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)

2. How important is it? (PageRank)

3. How many users clicked it?

...

Build distributed abstractions

• write(file f )

• read(file f )

• delete(file f )

• append(file f, data d)

HDFS/GFS

We done?



Implementing on thousands of machines



GOOGLE’S MAPREDUCE



MapReduce: White-Paper



You

Slave 1 Slave 2 Slave 3 Slave 4

2♠×391, 3♠×192, 4♠×266, ..., Q♥×123, K♥×321, A♥×402



Moving to word count ...

How could we do a distributed word count?

Count parts in memory on different machines and merge?

But if the data don’t fit in memory (e.g., 4-grams)?

And how to do that merge (sum counts for word w across machines)?

Count parts on-disk on different machines and merge?

Again, how to do that merge?



Distributed word count

1 23

A1 B1 C1

a-k r-zl-q

A1 B1 C1

(a,10023)
(aa,6234)
…

(lab,8123)
(label,983)
…

(rag,543)
(rat,1233)
…

Input
File on Distr. File System

Partition

Distr. Sort/Count

Output
File on Distr. File System

Better partitioning?



Distributed word count

Can we abstract any general framework?

Can we be more specific for reduce?



MapReduce

Can we abstract any general framework?

In general, we must assume bags/multisets (sets with duplicates)



MapReduce: Main Idea

Can we abstract any general framework?

← But how to implement this 
part in a distributed system

1. Partition by map key
2. Sort (in parallel) by map key
3. Apply reduce 



MapReduce: Word count

1 23

A1 B1 C1

%3=0 %3=2%3=1

A1 B1 C1

(a,10023)
(abba,6234)
…

(abs,8123)
(acad,983)
…

(about,543)
(add,1233)
…

Input
File on Distr. File System

Partition

Distr. Sort

Output
File on Distr. File System

Map

Reduce



MapReduce (in more detail)

1. Input: Read from the cluster (e.g., a DFS)

– Chunks raw data for mappers

– Maps raw data to initial (keyin,valuein) pairs

2. Map: For each (keyin,valuein) pair, generate zero-to-
many (keymap,valuemap) pairs

– keyin /valuein can be diff. type to keymap /valuemap

What might Input contain in the word-count case?

What might Map do in the word-count case?



MapReduce (in more detail)

3. Partition: Assign sets of keymap values to reducer 
machines

4. Shuffle: Data are moved from mappers to reducers 
(e.g., using DFS)

5. Comparison/Sort: Each reducer sorts the data by key 
using a comparison function

– Sort is taken care of by the framework

How might Partition work in the word-count case?



MapReduce (in more detail)

6. Reduce: For each keymap, takes the bag of valuemap
entries with that key, and produces zero-to-many 
outputs, i.e., (keyreduce,valuereduce) pairs

7. Output: Writes the results from the reducers to the 
distributed file system

How might Reduce work in the word-count case?



MapReduce: Word count pseudo-code



MAPREDUCE: UNDER THE HOOD



1. Input

2. Map

4. Shuffle

5. Merge Sort

7. Output

3. Partition [Sort]

6. Reduce

MapReduce



perro sed que

que decir que

la que sed

(0,perro sed que)

(13,que decir que)

(26,la que sed)

(perro,1)

(que,1)

(sed,1)

(decir,1)

(que,1)

(que,1)

(sed,1)

(que,1)

(la,1)

(perro,1)

(que,1)

(que,1)

(que,1)

(que,1)

(decir,1)

(sed,1)

(sed,1)

(la,1)

(decir,{1})

(sed,{1,1})

(que,{1,1,1,1})

(pero,{1})

(la,{1})

(perro,1)

(sed,1)

(que,1)

(que,1)

(decir,1)

(que,1)

(la,1)

(que,1)

(sed,1)

(decir,1)

(sed,2)

(perro,1)

(que,4)

(la,1)

(sed,1)

(decir,1)

(sed,1)

(perro,1)

(que,1)

(que,1)

(que,1)

(que,1)

(la,1)

Input Map
Partition / 

[Sort]
Shuffle Merge Sort Reduce Output

MapReduce: Counting Words



(“Combine”)

1. Input

2. Map

4. Shuffle

5. Merge Sort

7. Output

3. Partition [Sort]

6. Reduce

MapReduce: Combiner



(perro,1)

(que,1)

(sed,1)

(decir,1)

(que,1)

(que,1)

(sed,1)

(que,1)

(la,1)

(perro,1)

(que,1)

(que,1)

(que,2)

(decir,1)

(sed,1)

(sed,1)

(la,1)

(decir,{1})

(sed,{1,1})

(que,{1,1,2})

(pero,{1})

(la,{1})

(perro,1)

(sed,1)

(que,1)

(que,1)

(decir,1)

(que,1)

(la,1)

(que,1)

(sed,1)

(decir,1)

(sed,2)

(perro,1)

(que,4)

(la,1)

(sed,1)

(decir,1)

(sed,1)

(perro,1)

(que,1)

(que,2)

(que,1)

(la,1)

Map
Partition / 

[Sort]
Shuffle Merge Sort Reduce Output

(sed,1)

(perro,1)

(que,1)

(decir,1)

(que,2)

(sed,1)

(que,1)

(la,1)

CombineInput

(0,perro sed que)

(13,que decir que)

(26,la que sed)

MapReduce: Combiner



(“Combine”)

1. Input

2. Map

4. Shuffle

5. Merge Sort

7. Output

3. Partition [Sort]

6. Reduce

MapReduce: Combiner

Combiner reduces data shuffled here!



MAPREDUCE:
MORE COMPLEX TASKS



Supermarket Example

Supermarket boss wants to know:

Do we sell more in the morning hours 

or the evening hours?



MapReduce: Supermarket Example

Compute total sales per hour of the day?



MapReduce: Supermarket Example

... one possible solution.



Implementing on thousands of machines

Crawling
1. Parse links from webpages

2. Schedule links for crawling

3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages

2. Index keywords to webpages

3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)

2. How important is it? (PageRank)

3. How many users clicked it?

...

Build distributed abstractions

• write(file f )

• read(file f )

• delete(file f )

• append(file f, data d)

• mapreduce(function map, function reduce, file in, file out)

We done?



MapReduce: Benefits for Programmers

• Takes care of low-level implementation:

– Easy to handle inputs and output

– No need to handle network communication

– No need to write sorts or joins

• Abstracts machines (transparency)

– Fault tolerance (through heart-beats)

– Abstracts physical locations

– Add / remove machines

– Load balancing



MapReduce: Benefits for Programmers

(Time for more important things)



HADOOP OVERVIEW



Hadoop: Open Source MapReduce



HDFS / Hadoop Core Architecture

Client

NameNode JobTracker

DataNode 1

DataNode 2

…

DataNode n

JobNode 1

JobNode 2

…

JobNode n



PROGRAMMING WITH HADOOP

(REFERENCE MATERIAL FOR LAB)



1. Input/Output (cmd)
> hdfs dfs



1. Input/Output (Java)
Creates a file 

system for 
default 

configuration

Check if the file 
exists; if so 

delete

Create file and 
write a 

message

Open and read 
back



1. Input (Java)



2. Map
Mapper<InputKeyType,

InputValueType,
MapKeyType,

MapValueType>

(input) key: file offset.
(input) value: line of the file.
context: handles output and 

logging.

Emit output



(Writable for values)

Same order

(not needed in the 
running example)



(WritableComparable for keys/values)

Needed for default 
partition function

Needed to sort keys

New Interface

Same as before

(not needed in the 
running example)



3. Partition

PartitionerInterface

(This happens to be the default 
partition method!)

(not needed in the 
running example)



4. Shuffle



5. Sort/Comparison

Methods in 
WritableComparator

(not needed in the 
running example)



6. Reduce Reducer<MapKey, MapValue,
OutputKey, OutputValue>

key: as emitted from 
map

values: iterator over 
all values for that key

context for output

Write to output



7. Output / Input (Java)
Creates a file 

system for 
default 

configuration

Check if the file 
exists; if so 

delete

Create file and 
write a 

message

Open and read 
back



7. Output (Java)



Control Flow

Create a JobClient, a JobConf
and pass it the main class

Set the type of map and 
output keys and values in the 

configuration

Set input and output paths

Set the mapper class

Set the reducer class
(and optionally “combiner”)

Run and wait for job to 
complete.



More in Hadoop: Combiner

• Map-side “mini-reduction”

• Keeps a fixed-size buffer in memory

• Reduce within that buffer
– e.g., count words in buffer

– Lessens bandwidth needs

• In Hadoop: can simply use Reducer class 



More in Hadoop: Counters

Context has a group of maps 
of counters



More in Hadoop: Distributed Cache

• Some tasks need “global knowledge”

– For example, a white-list of conference venues and 
journals that should be considered in the citation 
count

– Typically small

• Use a distributed cache:

– Makes data available locally to all nodes

– Use sparingly!!



Questions?


