
CC5212-1
PROCESAMIENTO MASIVO DE DATOS

OTOÑO 2019

Lecture 2
Distributed Systems

Aidan Hogan

aidhog@gmail.com

PROCESSING MASSIVE DATA NEEDS

DISTRIBUTED SYSTEMS …

Monolithic vs. Distributed Systems

• One machine that’s n
times as powerful?

• n machines that are
equally as powerful?

Parallel vs. Distributed Systems

• Distributed System

often shared nothing

Memory

Processor Processor Processor

Processor

Memory
Processor

Memory
Processor

Memory

• Parallel System

often shared memory

What is a Distributed System?

A distributed system is a system that enables a collection of independent
computers to communicate in order to solve a common goal.

They have three important properties ...

0010010001011010100

100101110100010001001

What is a Distributed System?
Three properties ...

1. Concurrency
2. Independent failures

3. No global clock

0010010001011010100

100101110100010001001

What is a Distributed System?
Three properties ...

1. Concurrency
2. Independent failures

3. No global clock

0010010001011010100

100101110100010001001

What is a Distributed System?
Three properties ...

1. Concurrency
2. Independent failures

3. No global clock

0010010001011010100

100101110100010001001

CHALLENGES OF DISTRIBUTED SYSTEMS

Two General's Problem

Two General's Problem

• Two generals need to agree a time to attack

– They can send messengers on horse-back

– Messengers can be killed en route

How can the generals coordinate a time for attack?

Two General's Problem

• Two generals need to agree a time to attack

– They can send messengers on horse-back

– Messengers can be killed en route

How can the generals coordinate a time for attack?

12:50

Two General's Problem

• Two generals need to agree a time to attack

– They can send messengers on horse-back

– Messengers can be killed en route

How can the generals coordinate a time for attack?

"12:50" Ok

12:50

Two General's Problem

• Two generals need to agree a time to attack

– They can send messengers on horse-back

– Messengers can be killed en route

How can the generals coordinate a time for attack?

"12:50" Ok

12:50

""12:50" Ok" Ok

Two General's Problem

• Two generals need to agree a time to attack

– They can send messengers on horse-back

– Messengers can be killed en route

How can the generals coordinate a time for attack?

"12:50" Ok

12:50

""12:50" Ok" Ok

"""12:50" Ok" Ok" Ok

Two General's Problem

• Two generals need to agree a time to attack

– They can send messengers on horse-back

– Messengers can be killed en route

How can the generals coordinate a time for attack?

"12:50" Ok

12:50

""12:50" Ok" Ok

"""12:50" Ok" Ok" Ok

...

Two General's Problem

• Two generals need to agree a time to attack

– They can send messengers on horse-back

– Messengers can be killed en route

So how can we solve this problem?

Umm, try to make sure the messengers don't get killed.

WHAT MAKES A GOOD

DISTRIBUTED SYSTEM?

A Good Distributed System …

Transparency
… looks like one system

A Good Distributed System …

Transparency
… looks like one system

• Abstract/hide:
– Access: How different machines are accessed

– Location: Where the machines are physically

– Heterogeneity: Different software/hardware

– Concurrency: Access by several users

– Etc.

• How?
– Employ abstract addresses, APIs, etc.

A Good Distributed System …

Flexibility
… can add/remove machines quickly and easily

A Good Distributed System …

Flexibility
… can add/remove machines quickly and easily

• Avoid:
– Downtime: Restarting the distributed system

– Complex Config.: 12 admins working 24/7

– Specific Requirements: Assumptions of OS/HW

– Etc.

• How?
– Employ: replication, platform-independent SW,

bootstrapping, heart-beats, load-balancing

A Good Distributed System …

Reliability
… avoids failure / keeps working in case of failure

A Good Distributed System …

Reliability
… avoids failure / keeps working in case of failure

• Avoid:

– Downtime: The system going offline

– Inconsistency: Verify correctness

• How?

– Employ: replication, flexible routing, security,
Consensus Protocols

A Good Distributed System …

Performance
… does stuff quickly

A Good Distributed System …

Performance
… does stuff quickly

• Avoid:

– Latency: Time for initial response

– Long runtime: Time to complete response

– Avoid basically

• How?

– Employ: network optimisation, enough
computational resources, etc.

A Good Distributed System …

Scalability
… ensures the infrastructure scales

A Good Distributed System …

Scalability
… ensures the infrastructure scales

• Avoid:

– Bottlenecks: Relying on one part too much

– Pair-wise messages: Grows quadratically:

• How?

– Employ: peer-to-peer, direct communication,
distributed indexes, etc.

A Good Distributed System …

Transparency
… looks like one system

Flexibility
… can add/remove machines quickly and easily

Reliability
… avoids failure / keeps working in case of failure

Performance
… does stuff quickly

Scalability
… ensures the infrastructure scales

DISTRIBUTED SYSTEMS:
CLIENT–SERVER ARCHITECTURE

Client–Server Model

Client makes request to server

Server acts and responds

For example? Web, Email, DropBox, …

Client–Server: Thin Client

Server does the hard work

(server sends results | client uses few resources)

For example? Email, Early Web (PHP, etc.)

Client–Server: Fat Client

For example? Javascript, Mobile Apps, Video

Client does the hard work

(server sends raw data | client uses more resources)

Three Layer Architecture

1. Data | 2. Logic | 3. Presentation

Server

Client–Server: Three-Tier Server

Data Logic Presentation

SQL:
Create
query:

all salaries

Add all the
salaries

HTTP:
Total salary

of all
employees

Create
HTML page

Three Layer Architecture

1. Data | 2. Logic | 3. Presentation

Client–Server: Three-Tier Server

Server can be a distributed system!

Server ≠ Physical Machine

Server

Data Logic Presentation

SQL:
Create
query:

all salaries

Add all the
salaries

HTTP:
Total salary

of all
employees

Create
HTML page

DISTRIBUTED SYSTEMS:
PEER-TO-PEER (P2P) ARCHITECTURE

Peer-to-Peer (P2P)

Client–Server

• Client interacts directly with
server

Peer-to-Peer (P2P)

• Peers interact directly with each
other

Peer-to-Peer (P2P)

Client–Server

• Client interacts directly with
server

Peer-to-Peer (P2P)

• Peers interact directly with each
other

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Peer-to-Peer (P2P)

Client–Server

• Client interacts directly with
server

Peer-to-Peer (P2P)

• Peers interact directly with each
other

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Examples of P2P systems?

Peer-to-Peer (P2P)

File Servers (DropBox):

• Clients interact with a central file
server

P2P File Sharing (e.g., Bittorrent):

• Peers act both as the file server
and the client

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Peer-to-Peer (P2P)

Online Banking:

• Clients interact with a central
banking server

Cryptocurrencies (e.g., Bitcoin):

• Peers act both as the bank and
the client

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Peer-to-Peer (P2P)

SVN:

• Clients interact with a central
versioning repository

GIT:

• Peers have their own
repositories, which they sync.

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Peer-to-Peer: Unstructured (flooding)

Ricky Martin’s
new album?

Peer-to-Peer: Unstructured (flooding)

Pixie’s new
album?

Peer-to-Peer: Structured (Central)

• In central server, each
peer registers

– Content

– Address

• Peer requests content
from server

• Peers connect directly

Ricky Martin’s
new album?

Advantages / Disadvantages?

Dangers of SPoF: not just technical

Dangers of SPoF: not just technical

Peer-to-Peer: Structured (Hierarchical)

Super-peers and peers

• Super-peers index and
organise the content of
local peers

Advantages / Disadvantages?

Peer-to-Peer: Structured (Distributed Index)

Often a:

Distributed Hash Table (DHT)

• pairs

• Hash on

• Insert with

• Peer indexes range

Hash: 000 Hash: 111

Advantages / Disadvantages?

Peer-to-Peer: Structured (DHT)

• Circular DHT:

– Only aware of
neighbours

– O(n) lookups

• Shortcuts:

– Skips ahead

– Enables binary-search-
like behaviour

– O(log(n)) lookups

000

001

010

011
100

101

110

111

Pixie’s new
album? 111

Peer-to-Peer: Structured (DHT)

• Handle peers leaving
(churn)

– Keep n successors

• New peers

– Fill gaps

– Replicate

000

001

010

011
100

101

110

111

DISTRIBUTED SYSTEMS:
HYBRID EXAMPLE (BITTORRENT)

Bittorrent: Search Server

BitTorrent
Search
(Server)

“ricky martin”

Client–Server

Bittorrent: Tracker

BitTorrent
Peer Tracker

(or DHT)

Bittorrent: File-Sharing

Bittorrent: Hybrid

Uploader

1. Creates torrent file

2. Uploads torrent file

3. Announces on tracker

4. Monitors for downloaders

5. Connects to downloaders

6. Sends file parts

Downloader

1. Searches torrent file

2. Downloads torrent file

3. Announces to tracker

4. Monitors for peers/seeds

5. Connects to peers/seeds

6. Sends & receives file parts

7. Watches illegal movie

Local / Client–Server / Structured P2P / Direct P2P

DISTRIBUTED SYSTEMS:
IN THE REAL WORLD

Physical Location: Cluster Computing

• Machines (typically) in a central, local location;
e.g., a local LAN in a server room

Physical Location: Cluster Computing

Physical Location: Cloud Computing

• Machines (typically) in a central remote
location; e.g., Amazon EC2

Physical Location: Cloud Computing

Physical Location: Grid Computing

• Machines in diverse locations

Physical Location: Grid Computing

Physical Location: Grid Computing

Physical Locations

• Cluster computing:

– Typically centralised, local

• Cloud computing:

– Typically centralised, remote

• Grid computing:

– Typically decentralised, remote

LAB II PREVIEW:
DISTRIBUTED SYSTEM

Messaging System

Distributed messaging system

• Central server (optional; IP known globally)

• Peer machines (IP unknown to other machines initially)

How can we design a system
such that:
• Peers find the IPs of other peers
• Peers can send and receive

messages to/from other peers

LAB II PREVIEW:
JAVA RMI OVERVIEW

Why is Java RMI Important?

We can use it to quickly build distributed systems
using some standard Java skills.

What is Java RMI?

• Server: has Java code implemented

• Client: wants to call Java code on server
(possibily sending arguments and receiving a return value)

Client

Network

Server

What is Java RMI?

• RMI = Remote Method Invocation

• Stub / Skeleton model (TCP/IP)

Client

Stub Network

Server

Skeleton

What is Java RMI?

Stub (Client):

– Sends request to skeleton:
marshalls/serialises and
transfers arguments

– Demarshalls/deserialises
response and ends call

Skeleton (Server):

– Passes call from stub onto the
server implementation

– Passes the response back to
the stub

Client

Stub Network

Server

Skeleton

Stub/Skeleton Same Interface!

Client Server

Server Implements Skeleton

Server

Synchronisation:
(e.g., should use

)

Problem?

Server

Registry

Server Registry

• Server (typically) has a Registry: a Map

• Adds skeleton implementations with key (a string)

Server Creates/Connects to Registry

OR

Server

Server Registers Skeleton Implementation

Server

Server

Registry

Client Connecting to Registry

• Client connects to registry (port, hostname/IP)!

• Retrieves skeleton/stub with key

Client

Network

Client Connecting to Registry

Client

Server

Client Calls Remote Methods

• Client has stub, calls method, serialises arguments

• Server does processing

• Server returns answer; client deserialises result

Client
Network

“ab”

Client Calls Remote Methods

Client

Java RMI: Remember …

1. Remote calls are pass-by-value, not pass-by-
reference (objects not modified directly)

2. Everything passed and returned must be
Serialisable (implement Serializable)

3. Every stub/skel method must throw a remote
exception (throws RemoteException)

4. Server implementation can only throw
RemoteException

Questions?

