
CC5212-1
PROCESAMIENTO MASIVO DE DATOS

OTOÑO 2018

Lecture 11
Streaming: Kafka

Aidan Hogan

aidhog@gmail.com



Files



Files

• Batch processing

• Querying



Streams



Streams

• Event processing

• Continuous querying

• Real-time response



Streams: Internet of Things



Streams: Internet of Things

• Event processing
– A light turns on
– It starts to rain

• Continuous querying
– Tell me when temperature reaches 30°
– Update position of vehicle

• Real-time response
– Turn off air conditioning
– Take another route



Applications: Astronomy



Applications: Astronomy

• Event processing
– The telescope moves
– A light source flashes

• Continuous querying
– Find possible supernovae
– Track object across the sky

• Real-time response
– Refocus telescope on important object
– Lower data filter thresholds



Applications: Finance



Applications: Finance

• Event processing
– Company goes public
– Stock drops sharply

• Continuous querying
– Track stocks with gains of 10% in a day
– Create alerts for major buy/sell transactions

• Real-time response
– BUY BUY BUY
– SELL SELL SELL



Applications: Social Media Analytics



• Event processing
– Kitten video goes viral
– Burst of tweets about earthquakes

• Continuous querying
– Track sentiment for company's products
– Monitor popular users tweeting about me

• Real-time response
– Put Emergency Services on alert
– Schedule Quality Control (QC) review

Applications: Social Media Analytics



Applications: Log Monitoring



• Event processing
– Burst of log messages
– Critical error message

• Continuous querying
– Track most critical fixes today
– Monitor memory leaks in new release

• Real-time response
– Disable unsafe feature in a web-site
– Automatically fire new developer

Applications: Log Monitoring



Becoming more important



DISTRIBUTED STREAMING PLATFORM



Available Frameworks



Available Frameworks

https://databaseline.bitbucket.io/an-overview-of-apache-streaming-technologies/

https://databaseline.bitbucket.io/an-overview-of-apache-streaming-technologies/


Application: Emergency Response



Real-Time Emergency Response



Real-Time Emergency Response



Real-Time Emergency Response



APACHE KAFKA



Apache Kafka

• Open Source

• Scala / Java

• Originated in LinkedIn



Kafka Overview

Consumers (Pull)

Producers (Push)



KAFKA: DATA MODEL



Kafka Record

Producers

Consumers

1



Kafka Record

1

Producers

Consumers

• Records represent "events"

• Records are immutable

• Contain id (offset), timestamp, key and value

– Timestamp assigned by application or Kafka



Kafka Ledger

1 2 43 5 6 7 8

Producers

Consumers

...



Kafka Ledger

1 2 43 5 6 7 8

Producers

Consumers

...
• Producers may only append to ledger



Kafka Log

1 2 43 5 6 7 8

Producers

Consumers

...



Kafka Log

1 2 43 5 6 7 8

Producers

Consumers

...
• Producers may only append to log

• Consumers can read from anywhere*

* kind of



KAFKA: TOPICS



Kafka Topics

Topic 1:
Disasters

Topic 2:
News

Topic 3:
Traffic



Kafka Topics

Topic 1:
Disasters

Topic 2:
News

Topic 3:
Traffic

Consumers
Subscribe to Topics

Producers
Publish to Topics



Topic

1 2 43 5 6 ...

1 2 43 5 6 7 8 ...

1 2 43 ...

Partition 1

Partition 2

Partition 3



Topic

1 2 43 5 6 ...

1 2 43 5 6 7 8 ...

1 2 43 ...

Partition 1

Partition 2

Partition 3

• Topic is a distributed (partitioned) log

– Partitioning done by key

– Or can be set manually

• Topics are persistent (on disk)

– Configurable retention policy

• Keep everything

• Delete once consumed

• Keep for a period of time

• Use fixed amount of space



Topic

1 2 43 5 6 ...

1 2 43 5 6 7 8 ...

1 2 43 ...

Partition 1

Partition 2

Partition 3

• Topic is a distributed (partitioned) log

– Partitioning done by key

– Or can be set manually

• Topics are persistent (on disk)

– Configurable retention policy

• Keep everything

• Delete once consumed

• Keep for a period of time

• Use fixed amount of space



Ordering

1 2 43 5 6

1 2 43 5 6 7 8

1 2 43

Partition 1

Partition 2

Partition 3



...

...

Ordering

1 2 43 5 6

1 2 43 5 6 7 8

1 2 43

Partition 1

Partition 2

Partition 3

• Ordering (offset) guaranteed per partition 

– Not across partitions!

– For ordering across partitions, use timestamp



Replication

1 2 43 5 6 ...

1 2 43 5 6 7 8 ...

1 2 43 ...

Partition 1

Partition 2

Partition 3

• Topics can be replicated

– Choose factor per topic

– Automatic load balancing

Partition 1

Partition 2

Partition 3

Partition 3

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1



Replication

1 2 43 5 6 ...

1 2 43 5 6 7 8

1 2 43 ...

Partition 1

Partition 2

Partition 3

• Topics can be replicated

– Choose factor per topic

– Automatic load balancing

Partition 1

Partition 2

Partition 3

Partition 3

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Problem?



Replication

• Topics can be replicated

– Choose factor per topic

– Automatic load balancing

Partition 1

Partition 2

Partition 3

Partition 3

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Problem?

Order?



Leader

• Topics can be replicated

– Choose factor per topic

– Automatic load balancing

• One machine is the leader

– The others are followers

– Leader automatically elected

– Ensures order per partition

– Reads/writes to leader

Partition 1

Partition 2

Partition 3

Partition 3

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 2

Partition 1



P
ro

d
u

ce
rs

Leader Replication and Reads

Partition 1

Partition 2

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 3



P
ro

d
u

ce
rs

Consumer Groups

Partition 1

Partition 2

Partition 3

Group 2

Group 1



P
ro

d
u

ce
rs

Partition 1

Partition 2

Partition 3

• Write to one consumer in each group

– Allows to partition consumers

– Load balancing within each group

Group 2

Group 1

Consumer Groups



KAFKA: WRITE GUARANTEES



P
ro

d
u

ce
rs

Writes: Asynchronous (No Guarantee)

Partition 1

Partition 2

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 3



P
ro

d
u

ce
rs

Writes: Leader Commit

Partition 1

Partition 2

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 3



P
ro

d
u

ce
rs

Writes: Leader Commit + Quorum (2)

Partition 1

Partition 2

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 3



Write Guarantees

• Asynchronous

– No guarantee

– Very low latency

• Leader Commit

– Persistent on leader

– Medium latency (disk write + network ack)

• Leader Commit + Quorum n

– Persistent on leader + n machines

– High latency (disk writes + network acks)



KAFKA: READ GUARANTEES



Kafka tracks consumer offset

1 2 43 5 6 7 8 ...

C1

C1: 1-2

1
2



Kafka tracks consumer offset

1 2 43 5 6 7 8 ...

C1

C1: 3-4

1
2
3
4



Kafka tracks consumer offset

1 2 43 5 6 7 8 ...

C1

C1: 5-6

1
2
3
4
5
6



Read Guarantees

• At least once

– Each value processed at least once

– Consumer offset updated on consumer ACK

• At most once

• Effectively once

• Exactly once



Read: At Least Once (Default)

1 2 43 5 6 7 8 ...

C1

1
2

C1: 1-2

①

②



Read: At Least Once (Default)

1 2 43 5 6 7 8 ...

C1

C1: 1-2

1
2



Read: At Least Once (Default)

1 2 43 5 6 7 8 ...

C1

①

1
2
3

C1: 1-2



Read: At Least Once (Default)

1 2 43 5 6 7 8 ...

C1

①

1
2
3
3
4

C1: 1-2 C1: 3-4 ②



Read: At Least Once (Default)

1 2 43 5 6 7 8 ...

C1

①

1
2
3
3
4
5
6

C1: 3-4 ②C1: 5-6



Read Guarantees

• At least once

• At most once

– Each value processed at most once

– Consumer offset updated immediately

• Effectively once

• Exactly once



Read: At Most Once

1 2 43 5 6 7 8 ...

C1

C1: 1-2

1
2

①

②



Read: At Most Once

1 2 43 5 6 7 8 ...

C1

C1: 3-4

1
2
3

①

②



Read: At Most Once

1 2 43 5 6 7 8 ...

C1

C1: 5-6

1
2
3
5
6

①

②



Read Guarantees

• At least once

• At most once

• Effectively once

– At least once but ...

– Consumer takes care of duplicates

• Exactly once



Read: Effectively Once

1 2 43 5 6 7 8 ...

C1

1
2

C1: 1-2

①

②

Distinct



Read: Effectively Once

1 2 43 5 6 7 8 ...

C1

C1: 1-2

1
2



Read: Effectively Once

1 2 43 5 6 7 8 ...

C1

①

1
2
3

C1: 1-2

Distinct



Read: Effectively Once

1 2 43 5 6 7 8 ...

C1

①

1
2
3
3
4

C1: 1-2 C1: 3-4 ②

Distinct



Read: Effectively Once

1 2 43 5 6 7 8 ...

C1

①

1
2
3
4
5
6

C1: 3-4 ②C1: 5-6

Distinct



Read Guarantees

• At least once

• At most once

• Effectively once

• Exactly once 

– Consumer tracks their own offset

– Data and offset updated as a single transaction



KAFKA: STREAMS AND CONNECTORS



Kafka Overview

Consumers

Producers

Conn ectors

Stream



Kafka Overview

• Producer API:
– Append records to topics (push)

• Consumer API:
– Read records from topics (pull)

• Connector API:
– Read/write to external components 

• For example, a database or other streaming platforms

• Stream API:
– Read records from input topics

– Append records to output topics



OPTIMISATIONS AND OTHER FEATURES



Kafka Optimisations

• Log Compaction
– Repeated sequential values are suppressed

• Direct Disk-to-Network
– When data don't need to be loaded into JVM

• Consumer / Producer Quotas
– Set limits to avoid saturating the system

• ...



Kafka Streams API

• Aggregation (e.g., count messages)

• Joins (e.g., "unify" two streams)

• Windowing (define retention period)

• Continuous Querying (KSQL) 



Available Frameworks

https://databaseline.bitbucket.io/an-overview-of-apache-streaming-technologies/

https://databaseline.bitbucket.io/an-overview-of-apache-streaming-technologies/


Questions?


