CC5212-1

PROCESAMIENTO MASIVO DE DATOS
OTONO 2018

Lecture &
NoSQL: Overview

Aidan Hogan
aidhog@gmail.com



Hadoop/MapReduce/Pig/Spark:
Processing Un/Structured Information

Reducer

Tragcgjggmatlons
grunt e ‘Mapper

Ma pReduce .Sort

HDFS Spe

replication
’ Actions Plg



Information Retrieval:
Storing Unstructured Information

stop-words information-overload

Ponhing lemmatisation
compression p(]ger‘(]nh

Hevwords ridr
zipf's-law robots.txt
: uern
importance
site-map DDoS cosine

- link-analysis similarity
CPOWllng search posting-lists

term-frequency elias-encoding

heap’'s-law

relevance



Storing Structured Information??



BIG DATA:
STORING STRUCTURED INFORMATION



Relational Databases

i R REEEER

SRR
>




Relational Databases:
One Size Fits All?

*“One Size Fits All”: An Idea Whose Time Has Come and Gone

Michael Stonebraker
Computer Science and Artificial
Intelligence Laboratory, M.I.T., and
StreamBase Systems, Inc.
stonebraker@csail.mit.edu

Abstract

The last 25 years of commercial DBMS development
can be summed up in a single phrase: “One size fits all”".
This phrase refers to the fact that the traditional DBMS
architecture (originally designed and optimized for
business data processing) has been used to support many
data-centric  applications  with  widely  varying
characteristics and requirements.

In this paper, we argue that this concept is no longer
applicable to the database market, and that the

commercial world will fracture into a collection of

independent database engines, some of which may be
unified by a common front-end parser. We use examples
from the stream-processing market and the data-
warehouse market to bolister our claims. We also briefly
discuss other markets for which the traditional
architecture is a poor fit and argue for a critical
rethinking of the cwrrent factoring of systems services
into products.

Ugur Cetintemel
Department of Computer Science
Brown University, and
StreamBase Systems, Inc.
ugur(@cs.brown.edu

of multiple code lines causes various practical problems,
including:

e a cost problem, because maintenance costs increase
at least linearly with the number of code lines;

e a compatibility problem, because all applications
have to run against every code line;

e a sales problem, because salespeople get confused
about which product to try to sell to a customer; and

e a marketing problem, because multiple code lines
need to be positioned correctly in the marketplace.

To avoid these problems, all the major DBMS vendors
have followed the adage “put all wood behind one
arrowhead”. In this paper we argue that this strategy has
failed already, and will fail more dramatically off into the
future.

The rest of the paper is structured as follows. In
Section 2, we briefly indicate why the single code-line
strategy has failed already by citing some of the key
characteristics of the data warechouse market. In Section



.....

o
m shadows gPrOVee: Yu GZimbra R i € newsgator

LR Disp, WM K Trumba Wl eskobo Wawsisssis & pagefidkes VLTTUCO

Blogmscnent T. :,! ‘t\*““a R shutter h‘y afeed @ PodDater- Feedster (F ] faVOOf "“i".ff’.‘f'_-,._:
- - - - & ] ‘ i
ZAZZLE Tail k. @TagWorld nUYVVO b dogear  Wgyokalike @ ~ ODDPOST QOCOP

Neds . Tald (7] @A bish.  flogr @ BEAIELINN smewnrd PN

theadcloud g,o‘c 9 pix:gogo!
275 catéress RE€NKkOO : exraa
gather AT bows OYOQiv o veppi Rstandpoint T €55 [EEEE

Frapprl. ¥ Jeteys dﬂhhlem o writeooars  @ISHIUTWIRE Cikarma “Gumosme  ®aiset

@memeorandum 5 CalendarHub

supr}z': PULCNG YOUR WER TOGETRLR ‘a pondo g, F]ndory W clipmarks m gOFF|CE ‘
€ MiPeers d) KMM Zoozit blogb‘eat B Ziggs m §SOCi0| Bottfoio wink
rl 9 QO Wordcast ... Pk et A — measure. W M TPl v, L bl e

PR S — " -
F ) N b & Fruitcasy
natloetext CM PODZINGER... RSSMAD feed [1er onanare - a8

flickr Ning Ookles #kzoominfo CASTPOST Yipnd YEPM g
&loob E Bloglines 5 SIS [lroroos ~Ourmedia HQy

it () Yub.com T .. QTEEKY NewsAlloy m} o Alimydataficom
abbncom — : al g S
R, Gecast openomy ajchat™ d@ﬂbo BO:LLYO CllpShaCk
raxpors |lOOKlater.. < PROTOPAGE -
o Noodly whar diigo §) box
\'iz{;‘g_”’T [T deticious é‘”" AlmondRocks  Tagyu 3 m Simpy Gtalkr
LGITY=0M eooSurf Qulible pegasus ‘ﬁb orerser OSQUIDO0:  picturecloud
#d,Clipfire o Basecamp = {OYOn O e wotco e
 facebook | e l@w ?

Lexxe‘ T PXNB measure
rowares y ptvascet exten g arge e beoog) 00K TFH % Things ‘:Technomti' Patial (S Beciorck’ GM ||
(SR R 1 .38




RDBMS: Performance Overheads

e Structured Query Language (SQL):
— Declarative Language
— Lots of Rich Features
— Difficult to Optimise!

e Atomicity, Consistency, Isolation, Durability (ACID):

— Makes sure your database stays correct

* Even if there’s a lot of traffic!

— Transactions incur a lot of overhead
* Multi-phase locks, multi-versioning, write ahead logging

* Distribution not straightforward



Instructions

Transactional overhead: the cost of ACID

1.8M ~
1.6M -+
1.4M A
1.2M A
1.0M -+
8M +
BM -+
AM
2M +

16.2% hand-coded

optimizations

11.9%

logging

16.3%

locking

142%

latching

34.6%

buffer manager

L - — - -useful work

640 transactions per second for
system with full transactional

support (ACID)

12,700 transactions per second
for system without logs,
transactions or lock scheduling

OLTP Through the Looking Glass, and What We Found There

Stavros Harizopoulos Daniel J. Abadi
HP Labs Yale University
Palo Alto, CA New Haven, CT

stavros@hp.com dna@cs.yale.edu

ABSTRACT

Online Transaction Processing (OLTP) databases include a suite
of features — disk-resident B-trees and heap files, locking-based
concurrency control, support for multi-threading — that were
optimized for computer technology of the late 1970°. Advances
in modemn processors, memories, and networks mean that today’s
computers are vastly different from those of 30 years ago, such
that many OLTP databases will now fit in main memory, and
maost OLTP transactions can be processed in milliseconds or less.
Yot databhace architectiire hae chanoesd Litila

Samuel Madden Michael Stonebraker
Massachusetts Institute of Technology
Cambridge, MA

{madden, stonebraker}@csail.mit.edu

1. INTRODUCTION

Modern general purpose online transaction processing (OLTP)
database systems include a standard suite of features: a collection
of on-disk data structures for table storage, including heap files
and B-trees, support for multple concurrent queries via locking-
based concurrency control, log-based recovery, and an efficient
buffer manager. These features were developed to support trans-
action processing in the 1970°s and 1980°s, when an OLTP data-
base was many times larger than the main memory, and when the
ramniitere that ran thees datah cnet himdrede of th Ae T




"

bid by ____—
[ » bid _w, ______"w__ kil
b=y T e
r%_s_,%___ ._.rwm,_ ga # _g__
bl I __E :_@___- i Mk 1 1! —p _L _g___
o bkl &“__w_%___&b_.. ;__;_ _ || _x____ g_.
gP r =: 1) il 1 w...____p._._g.. at sﬁ —g h
_E% =" ™) - _., ﬁ—% Ll __ tll ]
= ,__@.___* cal THNE e gy .g_% ot} | 1 k
P et LW
b1 ik ._____ S ]
> ggr_ - 4 | 1l
e Tﬁ__j | LT | o 1
>l ___,_g__ = __m *_._ MEMTE N THD S bl
S gj&ﬁg s N Rl i
ml P _.__* gl _r_dﬁ___b 11 ma ¥ ._y_
o uid _a _. r_ ull H z l g___z
Q) | T - __ twwl—L *{ —5_ E =E mg__
"~ —“ﬁ._& —‘_a *w_ | = —@__ _g___ —g__
ki t il
bed i &__,_ o

RDBMS



ALTERNATIVES TO RELATIONAL DATABASES
FOR BIG DATA?



N OSQI_ Anybody know anything about NoSQL? @




Many types of NoSQL stores

_ _ Batch analysis of data
Not using the relational model

Using the relational model

Real-time
Relational|
Analytic | Mapr\ [obrare  Netezza PawAccel SAPSybaseiQ
. Teradata gmc  Calpont BM"‘W‘E"
Documents  ~_| Drysd  Orisk  Hadgt Aster Oata Greanphim Voctodiies HP Vertica
Onds ME0E2 39 Sever mo"\‘ Relational Databases
Butass — — scalability to compete
Not only SQL NewSQL Akdban with NoSQL
as-a-Se Amazon ROS MySQL Cluster while maintaining ACID
Maps © — | Aep i?;.“‘“" Drizzle
Datastore GenieDB
SimpleDB ScalArc
Column Graph Schooner MySQL
Oriented Tokutek ScaleBase
Neod) S : I
GraphDB Translatice b |~ Cloud storage
Graph-structured data
»
. Data Grid/Cache Terracotta GigaSpaces  Oracle Coherence memcached
Decentralised BM Otreme Scale  GridGain  ScaleOut Vmware GemFAre InfiniSpan CloudTran




342 systems in ranking, May 2018

Rank Score

May Apr May DBMS Database Model May Apr  May
2018 2018 2017 2018 2018 2017
1. 1 1 Oracle Relational DBMS 1290.42 +0.63 -53.50
2. 2 2. MysQqL Relational DBMS 1223.34 -3.06 -115.65
3. 3. 3. Microsoft SQL Server Relational DBMS 1085.84 -5.67 -127.96
4. 4 4. PostgreSQL Relational DBMS 400.90 +5.43 +34.99
5. 5 5 MongoDB Document store 342.11 +0.70 +10.53
6. 6. 6. DB2 Relational DBMS 185.61 -3.34  -3.23
7. A% A9 Redis Key-value store 135.35 +5.24 +17.90
8. 7. 7. Microsoft Access Relational DEMS 133.11 +0.89 +3.24
9. 8 #1i. Elasticsearch Search engine 130.44 -p.32 +21.82
10. 10, 8. Cassandra Wide column store 117.83 -1.26 -5.28
11. 11, 10, SQLite Relational DEMS 115.45 -0.52 -0.81
12. 12, 12. Teradata Relational DEMS 74.41 +0.74 -1.51
13. 13. 416, Splunk Search engine 65.09 +0.04 +B.40
14, 14, #18. MariaDB Relational DEMS 64.99 +0.44 +14.01
15. 15. Y14,  Solr Search engine 61.51 -1.70 -2.28
16, 16. J13. SAP Adaptive Server Relational DBMS 61.51 -0.12  -5.24
17. 17. «15. HBase Wide column store 59,95 +0.26 +0.44
18. 18. #20. Hive Relational DBMS 56.97 -0.43 +13.49
19, 13, J17. FileMaker Relational DBMS 54,67 -0.33 -1.81
20. 20, W15, SAP HANA Relational DEMS 48,37 -0.52  -0.6B
21. 21. 422, Amazon DynamcDB Multi-model @ 44,19 +1.05 +10.9%9
22, 22, e 21.  Neodj Graph DBMS 40.58 -0.32 +4.44
23. 23, 24, Memcached Key-value store 33.56 -0.23 +4.15
24, 24, o 23. Couchbase Document store 32.41 +0.07 +0.18
25. 25, 25.  Informix Relational DEMS 25.79 -0.82 -2.44
26. 25. A 27. Microsoft Azure SQL Database Relational DEMS 25.21 +0.74 +3.58
27. 27. #28. Vertica Relational DEMS 21.10 +0.32  +0.41
28. 28, s 26. CouchDB Document store 19.42 -0.43 -2.98
29, 28, A4 30.  Firebird Relational DBMS 18.99 +0.35 +0.27
30. 30. #52. Microsoft Azure Cosmos DB Multi-model @ 17.54 +0.35 +12.70

http://db-engines.com/en/ranking



NoSQL

Key-Value
Stores

Size

Column
Families

Document
Databases

Graph
Databases

>

Complexity



NoSQL: Not only SQL

* Distributed!
— Sharding: splitting data over servers “horizontally
— Replication
— Different guarantees: typically not ACID

12

* Often simpler languages than SQL
— Simpler ad hoc APIs
— More work for the application

 Different flavours (for different scenarios)
— Different CAP emphasis
— Different scalability profiles
— Different query functionality
— Different data models



LIMITATIONS OF DISTRIBUTED COMPUTING:
CAP THEOREM



But first ... ACID

For traditional (non-distributed) databases ...

1. Atomicity:

— Transactions all or nothing: fail cleanly

2. Consistency:

— Doesn’t break constraints/rules

3. Isolation:
— Parallel transactions act as if sequential

4, Durability

— System remembers changes



What is CAP?

Three guarantees a distributed sys. could make

1. Consistency:

— All nodes have a consistent view of the system

2. Availability:

— Every read/write is acted upon

3. Partition-tolerance:
— The system works even if messages are |ost

CA in CAP not the same as CA in ACID!! A



A Distributed System (with Replication)




Consistency

There’s 891
There’s 891 usersin ‘M’

users in ‘M’




Availability

How many users
start with ‘M’




Partition-Tolerance

How many users
start with ‘M’




The CAP Question

Can a distributed system guarantee
CONSIStENCY (all nodes have the same up-to-date view),
availability (every read/write is acted upon) and
partition-tolerance (the system works if messages are lost)

at the same time?

What do you think?



The CAP Answer




The CAP Theorem

A distributed system cannot guarantee

consistency (all nodes have the same up-to-date view),
availabil Ity (every read/write is acted upon) d nd

Pad rtition-tolerance (the system works if messages are lost)
at the same time!



The CAP “Proot”

There’s 891
usersin ‘M’

.*
.
.
.
.
»
.
.
. )
.
.
.
*
*
*
R
*

4 *
4 *
LA
.’0
[
*
= .
I..
&~
. ¢
-
- *
* 0
.0
.O
Ol
.l
K-
4
oA
&~
* @
*
*
*
*
*

1
VA
‘-,, ' " There’s 892
— ‘ : users in ‘M’

.
.®
“““
e
n ®

v
/ % s

----

"sessmwmnmnn O -

How many users
start with ‘M’




The CAP Triangle

Choose
Two




CAP Systems

CA Guarantees to give a CP Guarantees responses
! correct response but only ; :
while network works fine
: (Centralised / Traditional)

u
NN NN NN NN NN NN NN NN NN EENNENENNEEEENNEEERREEERRAW,
*
*
.
*
*
*
*
*
‘e
*

i are correct even if there are i
: network failures, but response
i may fail (Weak availability)

u

------------------------------------------------------------
o*
.
*
*
o*
*

(No intersection)

AP: Always provides a :
: “best-effort” response even in
presence of network failures

: (Eventual consistency)



CA SySte m There’s 892

users in ‘M’

.*
.
.
.
.
»
.
.
. :
.
.
.
*
*
*
R
*

-
U
g
*

Q 0
. 0
0 0
o ’.
.' o
o
" o
L ..
g
o
R
0
o
e
o
.
- L]
o .
4 L]
Q
0 o)
. O
0
0
o
o

I
N

‘!‘i’ | W There’s 892

' 7 users in ‘M’

.
.
““““

n ®

How many users
start with ‘M’




C P S\/Ste m There’s 891

users in ‘M’

.*
.
.
.
.
» o
.
.
. )
. "
.
.
*
*
*
R

*

~
y
g
»

g 0
g Q
g 0
D RS
-
Q
e 0
- *
Ll .Q
v e
RS
g
Q
oA
0
D
-
: -
. n
* L/
Q 0
g 0
0
Q
Q
0

(I
7p

‘ ,’ “ . There’s 892

y G o users in ‘M’

How many users
start with ‘M’




A P SySte m There’s 891

users in ‘M’

.*
.
.
.
.
» .
.
.
.
.
.
.
*
*
*
R
*

-
U
g
*

0 0
. 0
. 0
~ ’.
.' o
o
" o
Ll ..
g
o
R
0
o
e
o
.
- L]
o .
4 -
Q
0 o)
. O
0
0
G
o

1
N
’s’ ' " There’s 892
s ’ users in ‘M’

L
.
.
.
.
.
- o
L ,
L]
-
L]
]
g
]
“,
L

.
.
.....

P e
us®

v
/ % s

----

"EEsssmmnmnn g

How many users
start with ‘M’




BASE (AP)

* Basically Available

— Pretty much always “up”

* Soft State
— Replicated, cached data

* Eventual Consistency

— Stale data tolerated, for a while

In what way does Twitter act as a BASE (AP) system? @



High-fanout creates a “partition”

"4| @ladygaga @&
71 3| million followers

Users may see retweets of celebrity tweets
before the original tweet.

*ﬁ 28 million followers

@barackobama @&

23 million followers




CAP in practical distributed systems

1. FixP
2. Choose trade-off point
between C and A




PARTITION TOLERANCE






Fail-Stop Fault

* A machine fails to respond or times-out

— often hardware or load

— need at least f+ 1 replicated machines
* f=number of fail-stop failures

QL;;I

de
la
en
el

R RN DN D

.575.
.160.
.073
. 844
.479.

144
185

.216
.613

936




Byzantine Fault

* A machine responds incorrectly/maliciously

How many working machines do we need in the general case to be

robust against Byzantine faults?

el
PO
sé
ni
al

(el o\ S A TN

.575.
.185
.073.
.844.

.160

479

144

216
613

. 936

AR R

An R

de 4.575.144
la 2.160.185
en 2.073.216
el 1.844.613
vy 1.479.936

de
la
en
el

R RN DN D

.575.
.160
.073
.844.
.479

144

.185
.216

613

.936




* A machine responds incorrectly/maliciously

Byzantine Fault

— Need at least 2f +1 replicated machines

* f=number of (possibly Byzantine) failures

el
PO
sé
ni
al

(el o\ S A TN

.575.
.185
.073.
.844.

.160

479

144

216
613

. 936

A

de 4.575.144
la 2.160.185
en 2.073.216
el 1.844.613
vy 1.479.936

de
la
en
el

R RN DN D

.575.
.160
.073
.844.
.479

144

.185
.216

613

.936




DISTRIBUTED CONSENSUS



Distributed Consensus

Colour of the dress? @




Distributed Consensus

Strong consensus: All nodes need to agree

Blue

AN

Blue ‘ Blue

<A < 1l

Blue

Blue E
& 11111
é I

Consensus.




Distributed Consensus

Strong consensus: All nodes need to agree

White

< i

Blue

‘ Blue

<

Blue

Blue g
& 11111
é I

No consensus.




Distributed Consensus

Majority cOoNnsensus: A majority of nodes need to agree

White ‘ Blue
\
<A

White

Blue
I I
‘!!(amm

Blue

Consensus.




Distributed Consensus

Majority cOoNnsensus: A majority of nodes need to agree

White ‘ Blue
/Ay

White

Consensus.




Distributed Consensus

Majority cOoNnsensus: A majority of nodes need to agree

White ‘ Blue
\
<A

White

Green
S 1 S 1
é s 11111

Blue

No consensus.




Distributed Consensus

PIuraIity consensus: A plurality of nodes need to agree

White

< i

Orange

‘ Blue

<

Blue

Green
S 1
‘!! s 11111

Consensus.




Distributed Consensus

Plurality consensus: A plurality of nodes need to agree

White ‘ Blue
\
<A

White

Green
S 1 S 1
é s 11111

Blue

No consensus.




Distributed Consensus

QuUOrum CONSEensuUs: n nodes need to agree

White ‘ Blue

\
<A
White

Blue
I I
é I

Blue

n = 3 Consensus.

n =4 No consensus.




Distributed Consensus

QuUOrum CONSEensuUs: n nodes need to agree

White ‘ Blue

\
<A
White
Green E
<A <A

Blue

n = 2 Consensus.
(First 2 machines asked,
but not unique!)




Distributed Consensus

QuUOrum CONSEensuUs: n nodes need to agree

White ‘ Blue

\
AT
White

-] o
<A <A
! I

Value of n needed for unique consensus with N nodes? @ n>N/2

Blue




Distributed Consensus

Consensus off: Take first answer

White

< 1l

Orange

‘ Blue

< 1l

Green

Blue

e < 1l

Consensus.




CP vs. AP? ®

Strong consensus: All nodes need to agree CP
Majority CONSEeNSUS: A majority of nodes need to agree

Plurality CONSensus: A plurality of nodes need to agree

Quorom consensus: “Fixed” n nodes need to agree

Consensus off: Take first answer P:



Distributed Consensus

Scale? @

Strong consensus: All nodes need to agree More replication
Majority CONSEeNSUS: A majority of nodes need to agree

Plurality coONsSensus: A plurality of nodes need to agree

Quorom consensus: “Fixed” n nodes need to agree

Consensus off: Take first answer Less replication



Distributed Consensus

Choice is application dependent:
Many NoSQL stores allow you to choose
level of consensus/replication



NoSQL: KEY=VALUE STORE



The Dat

Not using the relational model

Real-time

Stores documents

abase Landscape

Batch analysis of data

Relational|

[infobeight  Netezza ParAccel ws,mb

Teradata emc Calpont  IBM InfoSphere
Hadapt Aster Data Greenplum  VectorWise HP Vertica

(semi-structured —_ Orade IMBDB2 SQL Server JustOne
values) MySQL ngres PostgreSQL )
SAP Sybase ASE EnterpeiseD8
" et Tl
Not only SQL { NowSQL et un
Amazon RDS MySQL Cluster
7 SQL Azure Chustrix
Maps © b Drizzle
GenieDB
| e
Column
Oriented
Translattice

Using the relational model

Relational Databases
with focus on
scalability to compete
with NoSQL
while maintaining ACID

L

\

Cloud storage

Graph-structured data

JA\

SPRAIN Cloud

~em AN Enoblc-

ment

Data Grid/Cache

In-Memory

IBM eXtreme Scale  GridGan




Key—Value Store Model

It’s just a Map / Associate Array / Dictionary ©
* put (key,value)

* get (key)

e delete (key)

Key

Afghanistan Kabul

Albania Tirana

Algeria Algiers

Andorra la Vella Andorra la Vella
Angola Luanda

Antigua and Barbuda St. John’s



But You Can Do a Lot With a Map

Key

country:Afghanistan capital@city:Kabul,continent:Asia,pop:31108077#2011
country:Albania capital@city:Tirana,continent:Europe,pop:3011405#2013
city:Kabul country:Afghanistan,pop:3476000#2013

city:Tirana country:Albania,pop:3011405#2013

user:10239 basedIn@city:Tirana,post:{103,10430,201}

... actually you can model any data in a map (but possibly with a lot
of redundancy and inefficient lookups if unsorted).



THE CASE OF AMAZON



The Amazon Scenario

Products Listings: prices, details, stock

a_rp_azo n ai - presenter

Shop by
Department - Aidan's Amazon.com  Today

Cards Sell Help

1-16 of 19,088 results for "presenter”

rac

Office Products 7 Point and zoom in presentations with Myo Armband
Office Presentation Remotes Shop now »

Office Presentation Pointers
Computers & Accessories »
Tablet Accessories
Computer Mice
Cell Phones & Accessories » Logitech Wireless Presenter R400
Cell Phone Accessories by Logitech

Related Searches: logitech presenter, mpow presenter, wireless presenter.

Software »
Presentations

$44.29 54558 Prime
Get it by Wednesday, May 27

+ See All 29 Departments

International Shipping

Ship to Ireland Logitech Professional Presenter RB00D with Green Laser Pointer

\ by Logitech

Eligible for Free Shipping

Free Shipping by &mazon $57.49 579.99 Prime

Get it by Wednesday, May 27

Brand
Kensingten
Logitech
Targus
Satechi
Infiniter

Kensington Wireless Presenter with Laser Pointer
August

b Kancinatan



The Amazon Scenario

Customer info: shopping cart, account, etc.

& Shopping Cart A 2 customer

See more items like
those in your Cart

Shopping Cart Items--To Buy Now

Itemn added

Item added
on May 22,
2009

sve for fater)

Delete )

The Principles of Beautiful Web Design - Jason Beaird;
Paperback

Condition: New

In Stock

Betligible for FREE Super Saver Shipping
M1 Add gift-wrap/note (1 (Learn mors)

i i - Steve Krug; Paperback
Condition: New
In Stock

."Elig.b!. for FREE Super Saver Shipping

[ Add gift-wrap/note (I (Learm more)

subtotal = $88.77
Make any changes below? \M)

Price:

$26.37
You Save:
$13.58 (34%)

$26.40
You Save:
$13.60 (34%)

Qty:

1



The Amazon Scenario

Recommendations, etc.:

Customers Who Bought This Item Also Bought

LOOX NSDE!

Oliver Twist (Dover Thrift David Copperfield (Dover JANE EYRE
Editions) Thrift Editions) > Charlotte Bronte
> Charles Dickens > Charles Dickens Yot oo (1,045)
Yordoke’s (213) YRR (196) Paperback
Paperback Paperback $2.99

$3.50 $5.00




The Amazon Scenario

 Amazon customers:

Mum ber af accaunts (in millians)

300

250

200

150

100

50

1993

e

1999+

2000

2001

2003

2007

2008

2009

2010

2011

2012

2013

270

2014



The Amazon Scenario

aMaZoin

webservices™



The Amazon Scenario

Databases struggling ...

But many Amazon services don’t need:
e SQL (a simple map often enough)

or even:

* transactions, strong consistency, etc.



Key—Value Store: Amazon Dynamo(DB

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized. loosely coupled, service
oriented architecture consisting of hundreds of services. In this

i there is a particular need for storage technologies

platform, which provides services for many web sites worldwide,
is implemented on top of an infi of tens of th ds of
servers and network components located in many datacenters

Goals:

that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are

Enilimn  mabmensds masban aes flemsinn ae dese csebasn s bales

e Scalability (able to grow
* High availability (reliable
e Performance (fast

Mum ber of accounts (in millions)

300

1998

1999+

2000

Don’t need full SQL, don’t need full ACID

2001

2003

2007

2008

2009

2010

2on

2012

2013

2014



Key—Value Store: Distribution

How might we distribute a key—value store over multiple machines? @

y:Afgh pitals y:Kabul, pop:31108077#2011
country:Albania capital@city:Tirana,continent:Europe, pop:3011405#2013
city:Kabul country:Afghanistan,pop:3476000#2013
ity:Til :Albani 111405#2013
user:10239 city: st:{103,10430,201}

mod(hash(key), m)

B < Il B < Il B < Il B < Il



Key—Value Store: Distribution

What happens if a machine leaves or joins afterwards?

How can we avoid rehashing everything?

untry:Afgh pital @city:Kabul,continent:Asia,pop:31108077#2011
country:Albania capital@city:Tirana,continent:Europe, pop:3011405#2013
cccccccccc country:Afghanistan,pop:3476000#2013

ity:Til :Albani 111405#2013
user:10239 city: st:{103,10430,201}

mod(hash(key), m)




Consistent Hashing

Avoid re-hashing everything
* Hash using aring

e Each machine picks n pseudo-random points on the ring
* Machine responsible for arc after its point

* |f a machine leaves, its range moves to previous machine
* |f machine joins, it picks new points
* Objects mapped to ring ©

How many keys (on average) would @
need to be moved if a machine
joins or leaves?




Amazon Dynamo: Hashing

e Consistent Hashing (128-bit MD5)




Amazon Dynamo: Replication

* A setreplication factor (e.g., 3)
» Commonly primary / secondary replicas

— Primary replica elected from secondary replicas in
the case of failure of primary

Al Bl C1 D1 El

e




Amazon Dynamo: Replication

* Replication factor of n”?

— Easy: pick n next buckets (different machines!)




Amazon Dynamo: Object Versioning

* Object Versioning (per bucket)

— PUT doesn’t overwrite: pushes version

— GET returns most recent version

== e

Yersioning Enabled



Amazon Dynamo: Object Versioning

* Object Versioning (per bucket)
— DELETE doesn’t wipe
— GET will return not found

@ m 404 No Object Found

Wersioning Enabled Wersioning Enabled




Amazon Dynamo: Object Versioning

* Object Versioning (per bucket)
— GET by version

S, -
8%

Before GET After GET




Amazon Dynamo: Object Versioning

* Object Versioning (per bucket)
— PERMANENT DELETE by version ... wiped

£

Eefore DELETE After DELETE



Amazon Dynamo: Model

* Named table with primary key and a value
* Primary key is hashed / unordered

Countries

Afghanistan capital:Kabul,continent:Asia,pop:31108077#2011

Albania capital:Tirana,continent:Europe,pop:3011405#2013

Kabul country:Afghanistan,pop:3476000#2013
Tirana country:Albania,pop:3011405#2013



Amazon Dynamo: CAP

Two options for each table:

* AP: Eventual consistency,
High availability

* CP: Strong consistency,
Lower availability

What'’s _an AP
system again?



Amazon Dynamo: Consistency

* Gossiping
— Keep-alive messages sent between nodes with state
— Dynamo largely decentralised (no master node)

 Quorums:
— Multiple nodes responsible for a read (R) or write (W)
— At least R or W nodes acknowledge for success
— Higher R or W = Higher consistency, lower availability

e Hinted Handoff

— For transient failures
— A node “covers” for another node while it is down



Amazon Dynamo: Consistency

e \ector Clock:

— A list of pairs indicating a node and time stamp

— Used to track branches of revisions

write
handled by Sx

v

D1 ([Sx,1])

write
handled by Sx

A\ 4

D2 ([Sx,2))

write write
handled by Sy handled by Sz

D3 ([Sx,2],[Sy,1]) 4 ([Sx,2],[Sz,1])

reconciled
and wntten by

D5 ([Sx,3],[Sy,1][Sz,1])



Amazon Dynamo: Consistency

* Two versions of one shopping cart:

Shopping Cart Shopping Cart
Price Quantity Price Quantity
WD My Passport Ultra 2TB Portable $90.99 ! i - AKG Perception P120 Professional $99.00 i i
- External USB 3.0 Hard Drive with You save: 1 Studio Microphone, Sliverby AKGPro oo
Auto Backup - Red by Western Digital $49.00 (35%) Audio 530,00 (23%)
In Stock Cnly 2 left in stock.
Eligible for FREE Shipping Shipped from: Sam Ash
This is a gift Learn more Gift options not available. Learn more
Delete Save for later Delete Save for later
Logitech Wireless Presenter R400 by $44.29 1 Logitech Wireless Presenter R400 by  $44.29 bt
Logitech You save: Logitech You save:
In Stock 570 (11%) In Stock S5.70 (11%)
Eligible for FREE Shipping : Eligible: for FREE Shipping
This is a gift Learn more This is a gift Learn more
Delete Save for later Delete Save for later
Subtotal (2 items): $135.28 Subtotal (2 items): $143.29
Total savings: $54.70 Total savings: $35.70

How best to merge multiple conflicting versions of a value @
(known as reconciliation)?

Application knows best

(... and must support multiple versions being returned)



Amazon Dynamo: Consistency

S S W ———

country:Afghanistan capital @city:Kabul,continent:Asia,pop:31108077#2011 country:Afghanistan capital@city:Kabul,continent:Asia,pop:31108077#2011
country:Albania capital @city:Tirana,continent:Europe,pop:3011405#2013 country:Albania capital@city:Tirana,continent:Europe,pop:301140542013
city:Kabul country:Afghanistan,pop:3476000#2013 city:Kabul country:Afghanistan,pop:3476000#2013

city:Tirana country:Albania,pop:3011405#2013 city:Tirana country:Albania,pop:301140542013

user:10239 basedIn@city:Tirana,post:{103,10430,201,408} user:10239 basedIn@city:Tirana,post:{103,10430,201}

How can we efficiently verify that two copies of a block of
data are the same (and find where the differences are)?



Amazon Dynamo: Merkle Trees

e Merkle tree:
— A hash tree

* Leaf node compute hashes from data
* Non-leaf nodes have hashes of their children
* Can find differences between two trees level-by-level

128

hash:
[0x0010)

64 192

hash: hash:
[ 0x1001 ) [0x1011]

32 160

hash:

hash: 7 [0x1011]
[ 0x1001 ]

(128-160) (160-192)

hash: hash:
[0x1100] [0x0111]




Aside: Merkle Trees also used in ...




Read More ...

>

amazon
webservices

#smazon DynamoDB

"

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is ong of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
15 implemented on top of an infrasiructure of tens of thousands of
servers and network components located in many datacenters

One of the lessons our organization has learned from operating
Amaron’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon wses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for siorage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are

Frilimax astveaals ssccitas sse Flasaiss as dsks ssadsasn soes keiss

[P



OTHER KEY—VALUE STORES



Other Key—Value Stores

sriak

A -—
COMCAST Dsymantee &
at&t

B
BOEING @Y'] &m Ao I .




Other Key—Value Stores

& redis

StackExchange=




Other Key—Value Stores
/ (%95 §

cassandra A

>
accenture Answers.com

High performance. Delivered.




Other Key—Value Stores

/W

fﬂl‘fﬂ“l"lﬂﬂ

WIS -

Evolved into a
tabular store ...

) e |




TABULAR / COLUMN FAMILY



Key—Value = a Distributed Map

Afghanistan capital:Kabul,continent:Asia,pop:31108077#2011

Albania capital:Tirana,continent:Europe,pop:3011405#2013

Tabular = Multi-dimensional Maps

Countries

Afghanistan Kabul Asia 31108077 2011
Albania Tirana Europe 3011405 2013



Bigtable: The Original Whitepaper

MapReduce

authors

Bigtable: A Distributed Storage System for Structured Data

1lson C. Hsieh, Deborah A. Wallach

Mlke Eurruws, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{ fay jeff sanjay, wilsonh kerr, m3b,tushar, fikes gruber } @ google com

Google, Inc.

Abstract

Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,

] . gives clients
dynamic control over data layout aru:l format, and we de-
scribe the design and implementation of Bigtable.

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason abou
data represented in the un
dexﬁd usmg row and column

overview of the client APL. Sec-



Bigtable used for

Oogleea rth Google Arja|ytics

Go ,SIC chikoo
Search EE 50 personal results and 419 000 other results (0681 seconds - S
~ \ Getquotes | Stock screener
-1308"’\8 439013 Wikipedia, the free encyclopedia
on wikipec orgAwk LMV anilk & 2 ol = v
9 3.0 R Ay 5 2:AAPL) - Add to Portfolio - Discuss AAPL

Sapodila |5 known as chikoo ("FTT " or chitu, “STT._") in Indka and Pakistan and sapota \ .

in some parts of India (Tamé Nady, Kerala, Kamataka, Andhra 1119'50 Mkt Cap: ~ 93.25B P/E: 2058 Dividend: &
Maps Descriotion - Other names - See 8iso - Referonces 128.24 52Wk High: 202.96 F P/E: - Yield: -

% v ake 4‘-{, a7 ;.‘ tmes ast visit 4 A..L.x 00.59 52Wk Low: 100.59 Beta: 2.37 Shares: 885.85M
Videos o . 580.00 AvgVol:  33.11M EPS: 511 Inst. Own:  B6%

-, ) - Sep 30, 7:08AM EDT
News = Images for chikoo - Report images P
Historical Prices @ Linkto chart
Shopping
[ Nasdag [ DowJones [ sap 500 [ Hra [ cooc [ paum [ uava  more.
Recipes
Sy 10y Max Sep 05, 2008: Price: 160,18 Yol: 28.10m
More Shilpa Singhat 200
| »/V\q‘/«l\v\
Moliain View, CA \ / V'\4 M
Al
Change ocation ‘\'\I—] /
| "| //\4
: 5 : v F
All results . .Y
\/ i

Sites with images AN\
Reiated searches = } i i i | i | i

Chikoo - a §|m91§ file organizer for the Mac s S
More search lools codingturtie com/chikoo i i i i i T i i 130

¥ Chikoo. a simple file organizer for the Mac. Download (30-day trial). Viersion 0.9.1

OrKut —



Bigtable: Data Model

“a sparse, distributed, persistent, multi-
dimensional, sorted map.”

e sparse: not all values form a dense square
* distributed: lots of machines

e persistent: disk storage (GFS)

* multi-dimensional: values with columns

e sorted: sorting lexicographically by row key
* map: look up a key, get a value



Bigtable: in a nutshell

Primary Key value only!

(row, column, time) = value
(Afganistan,pop-value,t,) - 31108077

Primary Key continent pop-value 1 pop-year

I 1 t, 311432921 I
! . o It 2009
:Afghanlstan t, Kabul t, Asia | t, 31120978 :_ I
I T, 311080771 t,  2011)
' t 2912380y t 2010
Albania t, Tiran t, Europe | - : -

a ¢, 3011405, t, 2013



Bigtable: Sorted Keys

Prinary Key

31143292
t, 2009
Asia:Afghanistan t, Kabul t2 31120978
t, 31108077 t, 2011
Asia:Azerbaijan
. . it 2912380 t, 2010
Europe:Albania t, Tirana
t, 3011405 t, 2013
Europe:Andorra
Benefits of sorted vs. hashed keys? @

Range queries and ...



Bigtable: Tablets

Asia:Afghanistan t, Kabul t2

Asia:Azerbaijan

Europe:Albania t, Tirana

Europe:Andorra

Benefits of sorted vs. hashed keys?

Range queries and ...

31143292
31120978
31108077

2912380
3011405

t

t,

Prinary Key

2009

2011

2010
2013

®

.. locality of processing



A real-world example of locality/sorting

Primary Key

£ IMDb Home
~ com.imdb t; en t, IMDB - Movies b
Mob . o+,
~ com.imdb/title/tt2724064/ t, en t, Sharknado t,
com.imdb/title/tt3062074/ t;, en t, Sharknado II t,

t Wikipedia t,
org.wikipedia t, multi o

t, Wikipedia Home t,
org.wikipedia.ace t, ace t, Wikipedia bahsa

Acéh




Bigtable: Distribution

ty 31143292
t, 2009

Asia:Afghanistan  t; Kabul t, 31120978

t, 31108077 t, 2011
Asia:Azerbaijan

t, 2912380 t, 2010
Europe:Albania =) Tirana

t, 3011405 t, 2013

Europe:Andorra ...

Split by tablet ﬁ
l

Horizontal range partitioning



Bigtable: Column Families

primary Key

31143292
It 2009
Asia:Afghanistan  t; Kabul t2 31120978
t, 31108077  t, 2011
Asia:Azerbaijan
. . IEq 2912380 t, 2010
Europe:Albania t; Tirana
t, 3011405  t 2013

Europe:Andorra

* Group logically similar columns together
— Accessed efficiently together
— Access-control and storage: column family level
— |If of same type, can be compressed



Bigtable: Versioning

e Similar to Apache Dynamo
— Cell-level
— 64-bit integer time stamps
— Inserts push down current version
— Lazy deletions / periodic garbage collection

— Two options:
* keep last n versions

* keep versions newer than t time



Bigtable: SSTable Map Implementation

65536

Index:

64k blocks (default) with index in footer (GFS)
Index loaded into memory, allows for seeks Writes? @

Can be split or merged, as needed

31143292

I t, 2009 I
J Asia:Afghanistan t, Kabul t2 31120978
: t, 31108077 t, 2011

=Asia:Azerbaijan

| Asia:Japan

i
|Asia:Jordan

. . . .
H H . .
. H H H

I I N . .- I NN N S .-

Block @ / Offset @ / Asia:Afghanistan
Block 1 / Offset 65536 / Asia: Japan



Bigtable: Buffered/Batched Writes

What's the danger? @

Merge-sort

<

Memtable
In-memory
s
Tablet log J SSTablel SSTable2 SSTable3
-

D

Tablet




Bigtable: Redo Log

* |f machine fails, Memtable redone from log

Memtable

Tablet log J SSTablel SSTable2 SSTable3
f: ‘e

Tablet



Bigtable: Minor Compaction

* When full, write Memtable as SSTable

Problem with performance? @

Memtable

Tablet log J SSTablel SSTable2 SSTable3

%

SSTable4

Tablet




Bigtable: Merge Compaction

* Merge some of the SSTables (and the Memtable)

Memtable

In-memory

GFS

Tablet log J SSTable2 SSTable3

SSTablel

Tablet




Bigtable: Major Compaction

 Merge all SSTables (and the Memtable)
e Makes reads more efficient!

Memtable
In-memory

GFS
Tablet log J

SSTablel

Tablet




Bigtable: A Bunch of Other Things

e Hierarchy and locks: how to find and lock tablets

e [ocality groups: Group multiple column families
together; assigned a separate SSTable

e Select storage: SSTables can be persistent or in-
memory

e Compression: Applied on SSTable blocks; custom
compression can be chosen

e Caches: SSTable-level and block-level

* Bloom filters: Find negatives cheaply ...



Read More ...

Google

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay jeff sanjay.wilsonh kerr,m3b,tushar fikes,gruber } @google.com

Google, Inc.

Abstract

Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.

Section 2 describes the data model in more detail, and



Aside: Bloom Filter

e Create a bit array of length m (init to 0’s)
e Create k hash functions that map an object to an index of m
* Indexx: set m[hash,(x]], ..., m[hash,(x)] to 1

ix,yz}




Aside: Bloom Filter

e Create a bit array of length m (init to 0’s)
e Create k hash functions that map an object to an index of m
* Indexx: set m[hash,(x]], ..., m[hash,(x)] to 1

ix,yz}

* Query w:
— any m[hash,(w)], ..., m[hash,(w)] set to 0 = @
— all m[hash,(w)], ..., m[hash,(w)] setto 1 =



Reject “empty”
gueries using very
little memory!

Aside: Bloom Filter

e Create a bit array of length m (init to 0’s)
e Create k hash functions that map an object to an index of m
* Indexx: set m[hash,(x]], ..., m[hash,(x)] to 1

ix,yz}

* Query w:
— any m[hash,(w)], ..., m[hash,(w)] set to 0 = not indexed
— all m[hash,(w)], ..., m[hash,(w)] set to 1 = might be indexed



Tabular Store: Apache HBase

HBASKEK




Tabular Store: Cassandra

cassandra




Database Landscape

_ _ Batch analysis of data
Not using the relational model

Using the relational model

Real-time
Relational|
Analytic | Mapr\ [obrare  Netezza PawAccel SAPSybaseiQ
. Teradata gmc  Calpont BM"‘W‘E"
Documents  ~_| Drysd  Orisk  Hadgt Aster Oata Greanphim Voctodiies HP Vertica
Onds ME0E2 39 Sever mo"\‘ Relational Databases
Butass — — scalability to compete
Not only SQL NewSQL Akdban with NoSQL
as-a-Se Amazon ROS MySQL Cluster while maintaining ACID
Maps © — | Aep i?;.“‘“" Drizzle
Datastore GenieDB
SimpleDB ScalArc
Column Graph Schooner MySQL
Oriented Tokutek ScaleBase
Neod) S : I
GraphDB Translatice b |~ Cloud storage
Graph-structured data
»
. Data Grid/Cache Terracotta GigaSpaces  Oracle Coherence memcached
Decentralised BM Otreme Scale  GridGain  ScaleOut Vmware GemFAre InfiniSpan CloudTran




PROJECTS



Course Marking

* 55% for Weekly Labs (~“5% a lab!)
* 15% for Class Project
* 30% for 2x Controls

Assignments each week - ‘ Only need to pass overall!

Controls it [ No final exam!

Working in groups i = Working in groups!




Class Project

* Doneinthrees
* Goal: Use what you’ve learned to do something cool/fun (hopefully)
e Expected difficulty: A bit more than a lab’s worth

— But without guidance (can extend lab code)

 Marked on: Difficulty, appropriateness, scale, good use of techniques,
presentation, coolness, creativity, value

— Ambition is appreciated, even if you don’t succeed

* Process:
— Start thinking up topics / find interesting datasets!

* Deliverables: 4 minute presentation & short report






Questions?




