
CC5212-1
PROCESAMIENTO MASIVO DE DATOS

OTOÑO 2018

Lecture 6
Information Retrieval: Crawling & Indexing

Aidan Hogan

aidhog@gmail.com

MANAGING TEXT DATA

Information Overload

If we didn’t have search …

• Contains all books with
– 25 unique characters

– 80 characters per line

– 40 lines per page

– 410 pages

– 410 x 40 x 80 = 1,312,000 chars

– 251,312,000 books

• Would contain any book
imaginable
– Including a book with the location

of useful books ;)

All information = Zero information

The book that indexes the library

WEB SEARCH/RETRIEVAL

Building Google Web-search

Building Google Web-search

What processes/algorithms does Google
need to implement Web search?

Crawling
1. Parse links from webpages
2. Schedule links for crawling
3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages
2. Index keywords to webpages
3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)
2. How important is it? (PageRank)
3. How many users clicked it?

...

INFORMATION RETRIEVAL:
CRAWLING

How does Google know about the Web?

crawl(list seedUrls)
frontier_i = seedUrls

while(!frontier_i .isEmpty())

new list frontier_i+1

for url : frontier_i

page = downloadPage(url)

frontier_i+1.addAll(extractUrls(page))

store(page)

i++

Download the Web. 

Crawling

What’s missing?

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

for url : frontier_i

page = downloadPage(url)

urlsSeen.add(url)

frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

store(page)

i++

Download the Web. 

Crawling: Avoid Cycles

Performance?

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

for url : frontier_i

page = downloadPage(url)

urlsSeen.add(url)

frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

store(page)

i++

Download the Web. 

Crawling: Avoid Cycles

Performance?

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

for url : frontier_i

page = downloadPage(url)

urlsSeen.add(url)

frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

store(page)

i++

Download the Web. 

Crawling: Avoid Cycles

Performance?

 Majority of time spent waiting for connection
 Disk/CPU usage will be near 0
 Bandwidth will not be maximised

Crawling: Multi-threading Important

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

new list threads

for url : frontier_i

thread = new DownloadPageThread.run(url,urlsSeen,frontier_i+1)

threads.add(thread)

threads.poll()

i++

DownloadPageThread: run(url,urlsSeen,frontier_i+1)
page = downloadPage(url)

synchronised: urlsSeen.add(url)

synchronised: frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

synchronised: store(page)

Crawling: Multi-threading Important

Crawl 1,000 URLs …

Crawling: Important to be Polite!

(Distributed) Denial of Server Attack: (D)DoS

Crawling: Avoid (D)DoSing

… more likely your IP range will be banned

 Christopher Weatherhead
 18 months prison

Crawling: Web-site Scheduler

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

new list threads

for url : schedule(frontier_i) #maximise time between two pages on one site

thread = new DownloadPageThread.run(url,urlsSeen,fronter_i+1)

threads.add(thread)

threads.poll()

i++

DownloadPageThread: run(url,urlsSeen,frontier_i+1)
page = downloadPage(url)

synchronised: urlsSeen.add(url)

synchronised: frontier_i+1.addAll(extractUrls(page) .removeAll(urlsSeen))

synchronised: store(page)

Robots Exclusion Protocol

http://website.com/robots.txt

User-agent: *

Disallow: /

No bots allowed on the website.

User-agent: *

Disallow: /user/

Disallow: /main/login.html

No bots allowed in /user/ sub-folder or login page.

User-agent: googlebot

Disallow: /

Ban only the bot with “user-agent” googlebot.

Robots Exclusion Protocol (non-standard)

User-agent: googlebot

Crawl-delay: 10

Tell the googlebot to only crawl a page from this host no
more than once every 10 seconds.

User-agent: *

Disallow: /

Allow: /public/

Ban everything but the /public/ folder for all agents

User-agent: *

Sitemap: http://example.com/main/sitemap.xml

Tell user-agents about your site-map

Site-Map: Additional crawler information

Crawling: Important Points

• Seed-list: Entry point for crawling

• Frontier: Extract links from current pages for next round

• Seen-list: Avoid cycles

• Threading: Keep machines busy

• Politeness: Don’t annoy web-sites

– Set delay between crawling pages on the same web-site

– Stick to what’s stated in the robots.txt file

– Check for a site-map

Crawling: Distribution

Similar benefits to multi-threading

How might we implement a distributed crawler?

1 2 3 4 5

for url : frontier_i-1

map(url,count)

What will be the bottleneck as machines increase?

Bandwidth or politeness delays

Crawling: All the Web?

Can we crawl all the Web?

Crawling: All the Web?

Can we crawl all the Web?

Can Google crawl all the Web?

Crawling: Inaccessible (Bow-Tie)

Broder et al. “Graph structure in the web,” Comput. Networks, vol. 33, no. 1-6, pp. 309–320, 2000

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

• Dynamically-generated content

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

• Dynamically-generated content

• Password-protected

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

• Dynamically-generated content

• Password-protected

• Dark Web

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

• Dynamically-generated content

• Password-protected

• Dark Web

46% of statistics made up on the spot

Crawling: All the Web?

Can we crawl all the Web?

Can Google crawl all the Web?

Can Google crawl itself?

Apache Nutch

• Open-source crawling framework!

• Compatible with Hadoop!

https://nutch.apache.org/

https://nutch.apache.org/

INFORMATION RETRIEVAL:
INVERTED INDEXING

Inverted Index

• Inverted Index: A map from words to documents
– “Inverted” because usually documents map to words

Examples of applications?

Inverted Index: Example

Inverted index:

1

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Example Search

Inverted index:

• AND: Intersect posting lists

• OR: Union posting lists

• PHRASE: ???

american drama

How should we implement PHRASE?

Inverted Index: Example

Inverted index:

1

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.
1 10 18 21 23 28 37 43 47 55 59 68 71 76

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Flavours

Record-level inverted index:

Maps words to documents
without positional information

Word-level inverted index:

Additionally maps words with
positional information

Inverted Index: Word Normalisation

Inverted index:

How can we solve this problem?

Inverted Index: Word Normalisation

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ , , , } → { }

Inverted Index: Word Normalisation

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ , , , } → { }

Lemmatisation uses knowledge of the word to normalise:
{ , , } → { }

Inverted Index: Word Normalisation

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ , , , } → { }

Lemmatisation uses knowledge of the word to normalise:
{ , , } → { }

Synonym expansion
{ , } → { }

drama america

Inverted Index: Word Normalisation

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ , , , } → { }

Lemmatisation uses knowledge of the word to normalise:
{ , , } → { }

Synonym expansion
{ , } → { }

drama america

 Language specific!
 Use same normalisation on query and document!

Inverted Index: Space

Record-level inverted index:

Maps words to documents
without positional information

Word-level inverted index:

Additionally maps words with
positional information

Space?

Space?

Inverted Index: Unique Words

Not so many unique words …

– Heap’s law:

– English text

• K ∈ [10,100]

• β ∈ [0.4,0.6]

Number of words in text

N
u

m
b

er
 o

f
u

n
iq

u
e

w
o

rd
s

in
 t

ex
t

Raw words versus unique words

Inverted Index: Space

Record-level inverted index:

Maps words to documents
without positional information

Word-level inverted index:

Additionally maps words with
positional information

Space?

Space?

Inverted Index: Common Words

Many occurrences of few words

/ Few occurrences of many words

– Zipf’s law

– In English text:
• “ ” 7%

• “ ” 3.5%

• “ ” 2.7%

• 135 words cover
half of all
occurrences

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

Inverted Index: Common Words

Many occurrences of few words

/ Few occurrences of many words

– Zipf’s law

– In English text:
• “ ” 7%

• “ ” 3.5%

• “ ” 2.7%

• 135 words cover
half of all
occurrences

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

Expect long posting lists for common words

Inverted Index: Common Words

• Perhaps implement stop-words?
• Most common words contain least information

Inverted Index: Common Words

• Perhaps implement stop-words?

• Perhaps implement block-addressing?

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.

Block 1 Block 2

What is the effect on
phrase search?

Small blocks ~ okay
Big blocks ~ not okay

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Common Words

Many occurrences of few words

/ Few occurrences of many words

– Zipf’s law

– In English text:
• “ ” 7%

• “ ” 3.5%

• “ ” 2.7%

• 135 words cover
half of all
occurrences

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

Expect long posting lists for common words
Expect more queries with common words

The Long Tail of Search

The Long Tail of Search

How to optimise for this? Caching for common queries like “ ”

If interested …

Search Implementation

• Vocabulary keys:

– Hashing: O(1) lookups (assuming ideal hashing)

• no range queries

• relatively easy to update (though rehashing expensive!)

– Sorting/B-Tree: O(log(u)) lookups, u unique words

• range queries

• tricky to update (standard methods for B-trees)

– Tries: O(l) lookups, l length of the word

• range queries, compressed, auto-completion!

• referencing becomes tricky (on disk)

Tries? (in class)

Memory Sizes

• Term list (vocabulary keys) small:

– Often will fit in memory!

• Posting lists larger:

– On disk / Hot regions cached

Compression techniques

• Numeric compression important

Compression techniques: High Level

• Interval indexing

– Example for record-level indexing

• Could also be applied for block-level indexing, etc.

– –

Compression techniques: High Level

• Gap indexing

– Example for record-level indexing

• Could also be applied for block-level indexing, etc.

Benefit? Repeated small numbers easier to compress!

Compression techniques: Bit Level

• Variable length coding: bit-level techniques

• For example, Elias γ (gamma) encoding
– Assumes many small numbers

⌊ ⌋ γ

< >Can you decode “ ”?

Compression techniques: Bit Level

• Variable length coding: bit-level techniques

• For example, Elias δ (delta) encoding
– Better for some distributions

⌊ ⌋
γ

⌊ ⌋ δ

< >Can you decode “ ”?

Compression techniques: Bit Level

• Previous methods “non-parametric”
– Don’t take an input value

• Other compression techniques parametric:
– for example, Golomb-3 code:

⌊ ⌋

Compression techniques: Byte Level

• Use variable length byte codes

• Use last bit of byte to indicate if the number ends

• For example:

Other Optimisations

• Top-Doc: Order posting lists to give likely “top
documents” first: good for top-k results

• Selectivity: Load the posting lists for the most rare
keywords first; apply thresholds

• Sharding: Distribute over multiple machines

How to distribute? (in class)

Extremely Scalable/Efficient

When engineered correctly 

LUCENE: TEXT INDEXING

• Inverted Index

– They built one so you don’t have to!

– Open Source in Java

Apache Lucene

(Apache Solr)

• Built on top of Apache Lucene

• Lucene is the inverted index

• Solr is a distributed search platform, with
distribution, fault tolerance, etc.

• We will work with Lucene in the lab

Apache Lucene: Indexing Documents

… continued …

Apache Lucene: Indexing Documents

… continued …

Apache Lucene: Searching Documents

Apache Lucene: Searching Documents

CONTROL: FRIDAY

Friday, 18th April

• 2 hours

• Four questions, all mandatory

1. Distributed systems/GFS

2. MapReduce/Hadoop

3. PIG

4. Spark

• One page of notes (back and front)

CLASS PROJECTS

Course Marking

• 55% for Weekly Labs (~5% a lab!)

• 15% for Class Project

• 30% for 2x Controls

Assignments each week

Controls

Working in groups

Only need to pass overall!

No final exam!

Working in groups!

Class Project

• Done in threes

• Goal: Use what you’ve learned to do something cool/fun (hopefully)

• Expected difficulty: A bit more than a lab’s worth

– But without guidance (can extend lab code)

• Marked on: Difficulty, appropriateness, scale, good use of techniques,

presentation, coolness, creativity, value

– Ambition is appreciated, even if you don’t succeed

• Process:
– Start thinking up topics / find interesting datasets!

• Deliverables: 4 minute presentation & short report

NEXT WEEK

Exercise

• I will not be here next week

• Exercise (groups of two):
– Find movies with rating greater than X, with number of votes greater

than Y, where all actors are male|female

– In MapReduce (Java), Pig, Spark!

Questions?

