
CC5212-1
PROCESAMIENTO MASIVO DE DATOS

OTOÑO 2018

Lecture 2: Distributed Systems

Aidan Hogan

aidhog@gmail.com

PROCESSING MASSIVE DATA NEEDS

DISTRIBUTED SYSTEMS …

Monolithic vs. Distributed Systems

• One machine that’s n
times as powerful?

• n machines that are
equally as powerful?

Parallel vs. Distributed Systems

• Distributed System

often shared nothing

Memory

Processor Processor Processor

Processor

Memory
Processor

Memory
Processor

Memory

• Parallel System

often shared memory

What is a Distributed System?

“A distributed system is a system that enables a collection of
independent computers to communicate in order to solve a

common goal.”

0010010001011010100

100101110100010001001

WHAT MAKES A GOOD

DISTRIBUTED SYSTEM?

A Good Distributed System …

Transparency
… looks like one system

A Good Distributed System …

Transparency
… looks like one system

• Abstract/hide:
– Access: How different machines are accessed

– Location: Where the machines are physically

– Heterogeneity: Different software/hardware

– Concurrency: Access by several users

– Etc.

• How?
– Employ abstract addresses, APIs, etc.

A Good Distributed System …

Flexibility
… can add/remove machines quickly and easily

A Good Distributed System …

Flexibility
… can add/remove machines quickly and easily

• Avoid:
– Downtime: Restarting the distributed system

– Complex Config.: 12 admins working 24/7

– Specific Requirements: Assumptions of OS/HW

– Etc.

• How?
– Employ: replication, platform-independent SW,

bootstrapping, heart-beats, load-balancing

A Good Distributed System …

Reliability
… avoids failure / keeps working in case of failure

A Good Distributed System …

Reliability
… avoids failure / keeps working in case of failure

• Avoid:

– Downtime: The system going offline

– Inconsistency: Verify correctness

• How?

– Employ: replication, flexible routing, security,
Consensus Protocols

A Good Distributed System …

Performance
… does stuff quickly

A Good Distributed System …

Performance
… does stuff quickly

• Avoid:

– Latency: Time for initial response

– Long runtime: Time to complete response

– Well, avoid basically

• How?

– Employ: network optimisation, enough
computational resources, etc.

A Good Distributed System …

Scalability
… ensures the infrastructure scales

A Good Distributed System …

Scalability
… ensures the infrastructure scales

• Avoid:

– Bottlenecks: Relying on one part too much

– Pair-wise messages: Grows quadratically:

• How?

– Employ: peer-to-peer, direct communication,
distributed indexes, etc.

A Good Distributed System …

Transparency
… looks like one system

Flexibility
… can add/remove machines quickly and easily

Reliability
… avoids failure / keeps working in case of failure

Performance
… does stuff quickly

Scalability
… ensures the infrastructure scales

A Good Distributed System …

Transparency
… looks like one system

Flexibility
… can add/remove machines quickly and easily

Reliability
… avoids failure / keeps working in case of failure

Performance
… does stuff quickly

Scalability
… ensures the infrastructure scales

Why these five in particular?

Good question. ¯_(ツ)_/¯

DISTRIBUTED SYSTEMS:
CLIENT–SERVER ARCHITECTURE

Client–Server Model

Client makes request to server

Server acts and responds

For example? Web, Email, DropBox, …

Client–Server Model

Client makes request to server

Server acts and responds

For example? Web, Email, DropBox, …

Server can be a distributed system!

Server ≠ Physical Machine

Client–Server: Thin Client

Server does the hard work

(server sends results | client uses few resources)

For example? Email, Early Web (PHP, etc.)

Client–Server: Fat Client

For example? Javascript, Mobile Apps, Video

Client does the hard work

(server sends raw data | client uses more resources)

Client–Server: Mirror Machine

• User goes to any machine (replicated/mirror)Client goes to any mirror machine

(user-facing services are replicated)

Client goes to “proxy” machine

(proxy machine forwards request and response)

Client–Server: Proxy Machine

Three Layer Architecture

1. Data | 2. Logic | 3. Presentation

Server

Client–Server: Three-Tier Server

Data Logic Presentation

SQL:
Create
query:

all salaries

Add all the
salaries

HTTP:
Total salary

of all
employees

Create
HTML page

DISTRIBUTED SYSTEMS:
PEER-TO-PEER (P2P) ARCHITECTURE

Peer-to-Peer (P2P)

Client–Server

• Client interacts directly with
server

Peer-to-Peer (P2P)

• Peers interact directly with each
other

Peer-to-Peer (P2P)

Client–Server

• Client interacts directly with
server

Peer-to-Peer (P2P)

• Peers interact directly with each
other

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Peer-to-Peer (P2P)

Client–Server

• Client interacts directly with
server

Peer-to-Peer (P2P)

• Peers interact directly with each
other

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Examples of P2P systems?

Peer-to-Peer (P2P)

File Servers (DropBox):

• Clients interact with a central file
server

P2P File Sharing (e.g., Bittorrent):

• Peers act both as the file server
and the client

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Peer-to-Peer (P2P)

Online Banking:

• Clients interact with a central
banking server

Cryptocurrencies (e.g., Bitcoin):

• Peers act both as the bank and
the client

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Peer-to-Peer (P2P)

SVN

• Clients interact with a central
versioning repository

GIT

• Peers have their own
repositories, which they sync.

Client Client

Client Client

ClientClient Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Client

Server

Peer-to-Peer: Unstructured (flooding)

Ricky Martin’s
new album?

Peer-to-Peer: Unstructured (flooding)

Pixie’s new
album?

Peer-to-Peer: Unstructured (flooding)

Pixie’s new
album?Transparency?

Flexibility?

Reliability?

Performance?

Scalability?

Peer-to-Peer: Structured (Central)

• In central server, each
peer registers

– Content

– Address

• Peer requests content
from server

• Peers connect directly

Ricky Martin’s
new album?

Advantages / Disadvantages?

Peer-to-Peer: Structured (Central)

• In central server, each
peer registers

– Content

– Address

• Peer requests content
from server

• Peers connect directly

Advantages / Disadvantages?

Peer-to-Peer: Structured (Hierarchical)

Super-peers and peers

• Super-peers index and
organise the content of
local peers

Advantages / Disadvantages?

Peer-to-Peer: Structured (Distributed Index)

Often a:

Distributed Hash Table (DHT)

• pairs

• Hash on

• Insert with

• Peer indexes range

Hash: 000 Hash: 111

Advantages / Disadvantages?

Peer-to-Peer: Structured (DHT)

• Circular DHT:

– Only aware of
neighbours

– O(n) lookups

• Shortcuts:

– Skips ahead

– Enables binary-search-
like behaviour

– O(log(n)) lookups

000

001

010

011
100

101

110

111

Pixie’s new
album? 111

Peer-to-Peer: Structured (DHT)

• Handle peers leaving
(churn)

– Keep n successors

• New peers

– Fill gaps

– Replicate

000

001

010

011
100

101

110

111

Comparison of P2P Systems

• Search requires flooding (n lookups)

• Connections → O(n2)

• No central point of failure

• Peers control their data

• Peers control neighbours

• Search follows structure (log(n) lookups)

• Connections → O(n)

• No central point of failure

• Peers assigned data

• Peers assigned neighbours

• Search follows directory (1 lookup)

• Connections → O(n)

• Single point of failure (SPoF)

• Control over data

• No neighbours

1) Central Directory

2) Unstructured 3) Structured

Dangers of SPoF: not just technical

Dangers of SPoF: not just technical

P2P vs. Client–Server

Client–Server

• Data lost in failure/deletes

• Search easier/faster

• Network often faster (to
websites on backbones)

• Often central host
– Data centralised

– Remote hosts control data

– Bandwidth centralised

– Dictatorial

– Can be taken off-line

Peer-to-Peer

• May lose rare data (churn)

• Search difficult (churn)

• Network often slower (to
conventional users)

• Multiple hosts
– Data decentralised

– Users (often) control data

– Bandwidth decentralised

– Democratic

– Difficult to take off-line

Advantages / Disadvantages?

P2P vs. Client–Server

Client–Server

• Data lost in failure/deletes

• Search easier/faster

• Network often faster (to
websites on backbones)

• Often central host
– Data centralised

– Remote hosts control data

– Bandwidth centralised

– Dictatorial

– Can be taken off-line

Peer-to-Peer

• May lose rare data (churn)

• Search difficult (churn)

• Network often slower (to
conventional users)

• Multiple hosts
– Data decentralised

– Users (often) control data

– Bandwidth decentralised

– Democratic

– Difficult to take off-line

Advantages / Disadvantages?

Systems can be hybrid!

DISTRIBUTED SYSTEMS:
HYBRID EXAMPLE (BITTORRENT)

Bittorrent: Search Server

BitTorrent
Search
(Server)

“ricky martin”

Client–Server

Bittorrent: Tracker

BitTorrent
Peer Tracker

(or DHT)

Bittorrent: File-Sharing

Bittorrent: Hybrid

Uploader

1. Creates torrent file

2. Uploads torrent file

3. Announces on tracker

4. Monitors for downloaders

5. Connects to downloaders

6. Sends file parts

Downloader

1. Searches torrent file

2. Downloads torrent file

3. Announces to tracker

4. Monitors for peers/seeds

5. Connects to peers/seeds

6. Sends & receives file parts

7. Watches illegal movie

Local / Client–Server / Structured P2P / Direct P2P

DISTRIBUTED SYSTEMS:
IN THE REAL WORLD

Physical Location: Cluster Computing

• Machines (typically) in a central, local location;
e.g., a local LAN in a server room

Physical Location: Cluster Computing

Physical Location: Cloud Computing

• Machines (typically) in a central remote
location; e.g., Amazon EC2

Physical Location: Cloud Computing

Physical Location: Grid Computing

• Machines in diverse locations

Physical Location: Grid Computing

Physical Location: Grid Computing

Physical Locations

• Cluster computing:

– Typically centralised, local

• Cloud computing:

– Typically centralised, remote

• Grid computing:

– Typically decentralised, remote

EIGHT FALLACIES OF

DISTRIBUTED COMPUTING

Eight Fallacies

• By L. Peter Deutsch (1994)
– James Gosling (1997)

“Essentially everyone, when they first build a
distributed application, makes the following eight
assumptions. All prove to be false in the long run and
all cause big trouble and painful learning
experiences.” — L. Peter Deutsch

• Each fallacy is a false statement!

1. The network is reliable

Machines fail,
connections fail, firewall
eats messages

• flexible routing

• retry messages

• acknowledgements!

2. Latency is zero

M1:
Store X

M1

M2:
Copy X

from M1

M2

There are significant
communication delays

• avoid “races”

• local order ≠ remote
order

• acknowledgements

• minimise remote calls
– batch data!

• avoid waiting
– multiple-threads

3. Bandwidth is infinite

M1:
Copy X
(10GB)

M1

M2

Limited in amount of
data that can be
transferred

• avoid resending data

• avoid bottlenecks

• direct connections

• caching!!

M1:
Copy X
(10GB)

4. The network is secure

M1:
Send Medical

History

M1

Network is vulnerable to
hackers, eavesdropping,
viruses, etc.

• send sensitive data
directly

• isolate hacked nodes
– hack one node ≠ hack all

nodes

• authenticate messages

• secure connections

5. Topology doesn’t change

Message M5 thru
M2, M3, M4

How machines are
physically connected
may change (“churn”)!

• avoid fixed routing
– next-hop routing?

• abstract physical
addresses

• flexible content
structure

M2

M3

M4

M5

M1

6. There is one administrator

Different machines
have different policies!

• Beware of firewalls!

• Don’t assume most
recent version

– Backwards compat.

7. Transport cost is zero

It costs money/energy to
transport data: not just
bandwidth

(Again)

• minimise redundant
data transfer
– avoid shuffling data

– caching

• direct connection

• compression?

8. The network is homogeneous

Devices and connections
are not uniform

• interoperability!

• route for speed

– not hops

• load-balancing

Eight Fallacies (to avoid)

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn’t change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

Severity of fallacies vary
in different scenarios!

Within Twitter?

Web?

Bittorrent?

Discussed later: Fault Tolerance

LAB II PREVIEW:
JAVA RMI OVERVIEW

Why is Java RMI Important?

We can use it to quickly build distributed systems
using some standard Java skills.

What is Java RMI?

• RMI = Remote Method Invocation

• Remote Procedure Call (RPC) for Java

• Predecessor of CORBA (in Java)

• Stub / Skeleton model (TCP/IP)

Client

Stub Network

Server

Skeleton

What is Java RMI?

Stub (Client):

– Sends request to skeleton:
marshalls/serialises and
transfers arguments

– Demarshalls/deserialises
response and ends call

Skeleton (Server):

– Passes call from stub onto the
server implementation

– Passes the response back to
the stub

Client

Stub Network

Server

Skeleton

Stub/Skeleton Same Interface!

Client Server

Server Implements Skeleton

Server

Synchronisation:
(e.g., should use
ConcurrentHashMap)

Problem?

Server

Registry

Server Registry

• Server (typically) has a Registry: a Map

• Adds skeleton implementations with key (a string)

SkelImpl1“sk1”

“sk2” SkelImpl2

“sk3” SkelImpl3

Server Creates/Connects to Registry

OR

Server

Server Registers Skeleton Implementation

Server

Server

Registry

Client Connecting to Registry

• Client connects to registry (port, hostname/IP)!

• Retrieves skeleton/stub with key

Client

Network

SkelImpl1“sk1”

“sk2” SkelImpl2

“sk3” SkelImpl3
“sk2”

SkelImpl2

Stub2

Client Connecting to Registry

Client

Server

Client Calls Remote Methods

• Client has stub, calls method, serialises arguments

• Server does processing

• Server returns answer; client deserialises result

Client
Network

SkelImpl2Stub2

concat (“a”,”b”)

“ab”

Client Calls Remote Methods

Client

Java RMI: Remember …

1. Remote calls are pass-by-value, not pass-by-
reference (objects not modified directly)

2. Everything passed and returned must be
Serialisable (implement Serializable)

3. Every stub/skel method must throw a remote
exception (throws RemoteException)

4. Server implementation can only throw
RemoteException

Questions?

