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Hadoop/MapReduce/Pig/Spark:

Processing Un/Structured Information



Information Retrieval:

Storing Unstructured Information



Storing Structured Information??

?



BIG DATA: 
STORING STRUCTURED INFORMATION



Relational Databases



Relational Databases: 

One Size Fits All?





RDBMS: Performance Overheads

• Structured Query Language (SQL):

– Declarative Language

– Lots of Rich Features

– Difficult to Optimise!

• Atomicity, Consistency, Isolation, Durability (ACID):

– Makes sure your database stays correct

• Even if there’s a lot of traffic!

– Transactions incur a lot of overhead

• Multi-phase locks, multi-versioning, write ahead logging

• Distribution not straightforward



Transactional overhead: the cost of ACID

• 640 transactions per second for 
system with full transactional 
support (ACID)

• 12,700 transactions per section 
for system without logs, 
transactions or lock scheduling



RDBMS: Complexity



ALTERNATIVES TO RELATIONAL 

DATABASES FOR QUERYING BIG 

STRUCTURED DATA?



NoSQL Anybody know anything about NoSQL?



Two types of Alaskan Salmon

• Red Salmon

“No bleach used in 

processing”

• White Salmon

“Guaranteed not to turn

red in the can”



Many types of NoSQL stores

Using the relational model

Relational Databases
with focus on 

scalability to compete 
with NoSQL

while maintaining ACID

Batch analysis of data
Not using the relational model

Real-time

Stores documents 
(semi-structured 

values)

Not only SQL

Maps 

Column 
Oriented

Graph-structured data

In-Memory

Cloud storage



http://db-engines.com/en/ranking



NoSQL



NoSQL: Not only SQL

• Distributed!
– Sharding: splitting data over servers “horizontally”

– Replication

– Different guarantees: typically not ACID

• Often simpler languages than SQL
– Simpler ad hoc APIs

– More work for the application

• Different flavours (for different scenarios)
– Different CAP emphasis

– Different scalability profiles

– Different query functionality

– Different data models



LIMITATIONS OF DISTRIBUTED 

COMPUTING: CAP THEOREM



But first … ACID

For traditional (non-distributed) databases …

1. Atomicity: 

– Transactions all or nothing: fail cleanly

2. Consistency: 

– Doesn’t break constraints/rules

3. Isolation: 

– Parallel transactions act as if sequential

4. Durability

– System remembers changes



What is CAP?

Three guarantees a distributed sys. could make

1. Consistency:

– All nodes have a consistent view of the system

2. Availability:

– Every read/write is acted upon

3. Partition-tolerance:

– The system works even if messages are lost

CA in CAP not the same as CA in ACID!!



A Distributed System (with Replication)

–

– –

–



Consistency

–

– –

–

There’s 891 
users in ‘M’

There’s 891 
users in ‘M’



Availability

–

– –

–

How many users 
start with ‘M’

891



Partition-Tolerance

–

– –

–

891

How many users 
start with ‘M’



The CAP Question

Can a distributed system guarantee

consistency (all nodes have the same up-to-date view),

availability (every read/write is acted upon) and

partition-tolerance (the system works if messages are lost)

at the same time?

What do you think?



The CAP Answer



The CAP Theorem

A distributed system cannot guarantee

consistency (all nodes have the same up-to-date view),

availability (every read/write is acted upon) and

partition-tolerance (the system works if messages are lost)

at the same time!



The CAP “Proof”

–

– –

–

How many users 
start with ‘M’

There’s 891 
users in ‘M’

There’s 891 
users in ‘M’

891

There’s 892 
users in ‘M’



The CAP Triangle

C

A P

Choose
Two



CAP Systems

C

A P
(No intersection)

CA: Guarantees to give a 

correct response but only 
while network works fine
(Centralised / Traditional)

CP: Guarantees responses 

are correct even if there are 
network failures, but response 
may fail (Weak availability)

AP: Always provides a 

“best-effort” response even 
in presence of network 
failures (Eventual consistency)



CA System

–

– –

–

How many users 
start with ‘M’

There’s 891 
users in ‘M’

There’s 891 
users in ‘M’

There’s 892 
users in ‘M’

There’s 892 
users in ‘M’

892



CP System

–

– –

–

How many users 
start with ‘M’

There’s 891 
users in ‘M’

There’s 891 
users in ‘M’

Error

There’s 892 
users in ‘M’



AP System

–

– –

–

How many users 
start with ‘M’

There’s 891 
users in ‘M’

There’s 891 
users in ‘M’

891

There’s 892 
users in ‘M’



BASE (AP)

• Basically Available

– Pretty much always “up”

• Soft State

– Replicated, cached data

• Eventual Consistency

– Stale data tolerated, for a while

In what way does Twitter act as a BASE (AP) system?



High-fanout creates a “partition”

Users may see retweets of celebrity tweets 
before the original tweet.

Later when the original tweet arrives the 
timeline will be reordered and made consistent.



CAP in practical distributed systems

C

A P

1. Fix P
2. Choose trade-off point 

between C and A



PARTITION TOLERANCE



Faults



Fail–Stop Fault

• A machine fails to respond or times-out 
– often hardware or load

– need at least f + 1 replicated machines 

• f = number of fail-stop failures

Word
Count

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

…



Byzantine Fault

• A machine responds incorrectly/maliciously

Word
Count

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

…

el 4.575.144

po 2.160.185

sé 2.073.216

ni 1.844.613

al 1.479.936

…

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

…

How many working machines do we need in the general case to be 

robust against Byzantine faults?



Byzantine Fault

• A machine responds incorrectly/maliciously
– Need at least 2f +1 replicated machines

• f = number of (possibly Byzantine) failures

Word
Count

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

…

el 4.575.144

po 2.160.185

sé 2.073.216

ni 1.844.613

al 1.479.936

…

de 4.575.144

la 2.160.185

en 2.073.216

el 1.844.613

y 1.479.936

…



Distributed Consensus

Colour of the dress?



Consensus.

Distributed Consensus

Strong consensus: All nodes need to agree

Blue

Blue

Blue

Blue

Blue



Distributed Consensus

Strong consensus: All nodes need to agree

Blue

Blue

Blue

White

Blue

No consensus.



Distributed Consensus

Majority consensus: A majority of nodes need to agree

Blue

Blue

Blue

White

White

Consensus.



Distributed Consensus

Majority consensus: A majority of nodes need to agree

Blue

Blue

White

White

White

Consensus.



Distributed Consensus

Majority consensus: A majority of nodes need to agree

Blue

Blue

Green

White

White

No consensus.



Distributed Consensus

Plurality consensus: A plurality of nodes need to agree

Blue

Blue

Green

White

Orange

Consensus.



Distributed Consensus

Plurality consensus: A plurality of nodes need to agree

Blue

Blue

Green

White

White

No consensus.



Distributed Consensus

Quorum consensus: n nodes need to agree

Blue

Blue

Blue

White

White

n = 3 Consensus.

n = 4 No consensus.



Distributed Consensus

Quorum consensus: n nodes need to agree

Blue

Blue

Green

White

White

n = 2 Consensus.
(First 2 machines asked, 

but not unique!)



Distributed Consensus

Quorum consensus: n nodes need to agree

Blue

Blue

Green

White

White

n = 2 Consensus.
(First 2 machines asked, 

but not unique!)



Distributed Consensus

Quorum consensus: n nodes need to agree

Blue

Blue

Green

White

White

Value of n needed for unique consensus with N nodes? n  > N/2



Distributed Consensus

Consensus off: Take first answer

Blue

Blue

Green

White

Orange

Consensus.



CP

AP

Distributed Consensus

Strong consensus: All nodes need to agree

Majority consensus: A majority of nodes need to agree

Plurality consensus: A plurality of nodes need to agree

Quorom consensus: “Fixed” n nodes need to agree

Consensus off: Take first answer

CP vs. AP?



More replication

Less replication

Distributed Consensus

Strong consensus: All nodes need to agree

Majority consensus: A majority of nodes need to agree

Plurality consensus: A plurality of nodes need to agree

Quorom consensus: “Fixed” n nodes need to agree

Consensus off: Take first answer

Scale?



Distributed Consensus

Strong consensus: All nodes need to agree

Majority consensus: A majority of nodes need to agree

Plurality consensus: A plurality of nodes need to agree

Quorom consensus: “Fixed” n nodes need to agree

Consensus off: Take first answer

Choice is application dependent:
Many NoSQL stores allow you to choose

level of consensus/replication



NOSQL: KEY–VALUE STORE



The Database Landscape

Using the relational model

Relational Databases
with focus on 

scalability to compete 
with NoSQL

while maintaining ACID

Batch analysis of data
Not using the relational model

Real-time

Stores documents 
(semi-structured 

values)

Not only SQL

Maps 

Column 
Oriented

Graph-structured data

In-Memory

Cloud storage



Key–Value Store Model

Key Value

Afghanistan Kabul

Albania Tirana

Algeria Algiers

Andorra la Vella Andorra la Vella

Angola Luanda

Antigua and Barbuda St. John’s

… ….

It’s just a Map / Associate Array 
• put(key,value)

• get(key)

• delete(key)



But You Can Do a Lot With a Map

Key Value

country:Afghanistan capital@city:Kabul,continent:Asia,pop:31108077#2011

country:Albania capital@city:Tirana,continent:Europe,pop:3011405#2013

… …

city:Kabul country:Afghanistan,pop:3476000#2013

city:Tirana country:Albania,pop:3011405#2013

… …

user:10239 basedIn@city:Tirana,post:{103,10430,201}

… …

… actually you can model any data in a map (but possibly with a 
lot of redundancy and inefficient lookups if unsorted).



THE CASE OF AMAZON



The Amazon Scenario

Products Listings: prices, details, stock



The Amazon Scenario

Customer info: shopping cart, account, etc.



The Amazon Scenario

Recommendations, etc.:



The Amazon Scenario

• Amazon customers:



The Amazon Scenario



The Amazon Scenario

Databases struggling …

But many Amazon services don’t need:

• SQL (a simple map often enough)

or even:

• transactions, strong consistency, etc.



Key–Value Store: Amazon Dynamo(DB)

Goals: 

Scalability (able to grow) 

High availability (reliable)

Performance (fast)

Don’t need full SQL, don’t need full ACID



Key–Value Store: Distribution

Or a custom partitioner … 

How might we distribute a key–value store over multiple machines?



Key–Value Store: Distribution

Or a custom partitioner … 

What happens if a machine leaves or joins afterwards?

How can we avoid rehashing everything?



Consistent Hashing

Avoid re-hashing everything

• Hash using a ring

• Each machine picks n pseudo-random points on the ring

• Machine responsible for arc after its point

• If a machine leaves, its range moves to previous machine

• If machine joins, it picks new points

• Objects mapped to ring 

How many keys (on average) would 

need to be moved if a machine

joins or leaves?



Amazon Dynamo: Hashing

• Consistent Hashing (128-bit MD5)



Key–Value Store: Replication

• A set replication factor (here 3)

• Commonly primary / secondary replicas

– Primary replica elected from secondary replicas 

in the case of failure of primary

k v

k v

A1 B1 C1 D1 E1

k v

k vk v

k v



Amazon Dynamo: Replication

• Replication factor of n

– Easy: pick n next buckets (different machines!)



Amazon Dynamo: Object Versioning

• Object Versioning (per bucket)

– PUT doesn’t overwrite: pushes version

– GET returns most recent version



Amazon Dynamo: Object Versioning

• Object Versioning (per bucket)

– DELETE doesn’t wipe

– GET will return not found



Amazon Dynamo: Object Versioning

• Object Versioning (per bucket)

– GET by version



Amazon Dynamo: Object Versioning

• Object Versioning (per bucket)

– PERMANENT DELETE by version … wiped



Amazon Dynamo: Model

Countries

Primary Key Value

Afghanistan capital:Kabul,continent:Asia,pop:31108077#2011

Albania capital:Tirana,continent:Europe,pop:3011405#2013

… …

• Named table with primary key and a value

• Primary key is hashed / unordered

Cities

Primary Key Value

Kabul country:Afghanistan,pop:3476000#2013

Tirana country:Albania,pop:3011405#2013

… …



Amazon Dynamo: CAP

Two options for each table:

• AP: Eventual consistency, 

High availability 

• CP: Strong consistency, 

Lower availability

What’s a CP 
system again?

What’s an AP 
system again?



Amazon Dynamo: Consistency

• Gossiping
– Keep-alive messages sent between nodes with state

– Dynamo largely decentralised (no master node)

• Quorums:
– Multiple nodes responsible for a read (R) or write (W)

– At least R or W nodes acknowledge for success

– Higher R or W = Higher consistency, lower availability

• Hinted Handoff
– For transient failures 

– A node “covers” for another node while it is down



Amazon Dynamo: Consistency

• Vector Clock: 

– A list of pairs indicating a node and time stamp

– Used to track branches of revisions



Amazon Dynamo: Consistency

• Two versions of one shopping cart:

Application knows best 
(… and must support multiple versions being returned)

How best to merge multiple conflicting versions of a value 

(known as reconciliation)?



Amazon Dynamo: Consistency

How can we efficiently verify that two copies of a block of

data are the same (and find where the differences are)?



Amazon Dynamo: Merkle Trees

• Merkle tree: 
– A hash tree

• Leaf node compute hashes from data

• Non-leaf nodes have hashes of their children

• Can find differences between two trees level-by-level



Read More …



OTHER KEY–VALUE STORES



Other Key–Value Stores



Other Key–Value Stores



Other Key–Value Stores



Other Key–Value Stores

Evolved into a 

tabular store …



TABLULAR / COLUMN FAMILY



Key–Value = a Distributed Map

Countries

Primary Key Value

Afghanistan capital:Kabul,continent:Asia,pop:31108077#2011

Albania capital:Tirana,continent:Europe,pop:3011405#2013

… …

Tabular = Multi-dimensional Maps 

Countries

Primary Key capital continent pop-value pop-year

Afghanistan Kabul Asia 31108077 2011

Albania Tirana Europe 3011405 2013

… … … … …



Bigtable: The Original Whitepaper

MapReduce

authors



Bigtable used for …

…



Bigtable: Data Model

“a sparse, distributed, persistent, multi-

dimensional, sorted map.”

• sparse: not all values form a dense square

• distributed: lots of machines

• persistent: disk storage (GFS)

• multi-dimensional: values with columns

• sorted: sorting lexicographically by row key

• map: look up a key, get a value



Bigtable: in a nutshell

(row, column, time) → value

• row: a row id string 
– e.g., “Afganistan”

• column: a column name string 
– e.g., “pop-value”

• time: an integer (64-bit) version time-stamp
– e.g., 18545664

• value: the element of the cell
– e.g., “31120978”



Bigtable: in a nutshell

Primary Key capital continent pop-value pop-year

Afghanistan t1 Kabul t1 Asia

t1 31143292
t1 2009

t2 31120978

t4 31108077 t4 2011

Albania t1 Tirana t1 Europe
t1 2912380 t1 2010

t3 3011405 t3 2013

… … … … …

31108077

(row, column, time) → value

(Afganistan,pop-value,t4) →



Bigtable: Sorted Keys

Primary Key capital pop-value pop-year

Asia:Afghanistan t1 Kabul

t1 31143292
t1 2009

t2 31120978

t4 31108077 t4 2011

Asia:Azerbaijan … … … … … …

… … … … … … …

Europe:Albania t1 Tirana
t1 2912380 t1 2010

t3 3011405 t3 2013

Europe:Andorra … … … … … …

… … … … … … …

S
O
R
T
E
D

Benefits of sorted vs. hashed keys?

Range queries and …



Bigtable: Tablets

Primary Key capital pop-value pop-year

Asia:Afghanistan t1 Kabul

t1 31143292
t1 2009

t2 31120978

t4 31108077 t4 2011

Asia:Azerbaijan … … … … … …

… … … … … … …

Europe:Albania t1 Tirana
t1 2912380 t1 2010

t3 3011405 t3 2013

Europe:Andorra … … … … … …

… … … … … … …

A
S
I
A

E
U
R
O
P
E

… locality of processing

Benefits of sorted vs. hashed keys?

Range queries and …



A real-world example of locality/sorting

Primary Key language title links

com.imdb t1 en

t1 IMDb Home
t1 …

t2 IMDB - Movies

t4 IMDb t4 …

com.imdb/title/tt2724064/ t1 en t2 Sharknado t2 …

com.imdb/title/tt3062074/ t1 en t2 Sharknado II t2

… … … … … … …

org.wikipedia t1 multi
t1 Wikipedia t1 …

t3 Wikipedia Home t3 …

org.wikipedia.ace t1 ace t1 Wikipèdia bahsa Acèh … …

… … … … … … …



Bigtable: Distribution

Split by tablet

Horizontal range partitioning



Bigtable: Column Families

• Group logically similar columns together
– Accessed efficiently together

– Access-control and storage: column family level

– If of same type, can be compressed

Primary Key pol:capital demo:pop-value demo:pop-year

Asia:Afghanistan t1 Kabul

t1 31143292
t1 2009

t2 31120978

t4 31108077 t4 2011

Asia:Azerbaijan … … … … … …

… … … … … … …

Europe:Albania t1 Tirana
t1 2912380 t1 2010

t3 3011405 t3 2013

Europe:Andorra … … … … … …

… … … … … … …



Bigtable: Versioning

• Similar to Apache Dynamo

– Cell-level

– 64-bit integer time stamps

– Inserts push down current version

– Lazy deletions / periodic garbage collection

– Two options:

• keep last n versions

• keep versions newer than t time



Bigtable: SSTable Map Implementation

• 64k blocks (default) with index in footer (GFS)

• Index loaded into memory, allows for seeks

• Can be split or merged, as needed

Primary Key pol:capital demo:pop-value demo:pop-year

Asia:Afghanistan t1 Kabul

t1 31143292
t1 2009

t2 31120978

t4 31108077 t4 2011

Asia:Azerbaijan … … … … … …

… … … … … … …

Asia:Japan … … … … … …

Asia:Jordan … … … … … …

… … … … … … …

Block 0 / Offset 0 / Asia:Afghanistan

Block 1 / Offset 65536 / Asia: Japan

0

65536

Index:

Writes?



Bigtable: Buffered/Batched Writes

GFS

In-memory

Tablet log

Memtable

WRITE

READ

Tablet

SSTable1 SSTable2 SSTable3

Merge-sort

What’s the danger?



Bigtable: Redo Log

• If machine fails, Memtable redone from log

GFS

In-memory

Tablet

SSTable1 SSTable2 SSTable3Tablet log

Memtable



Bigtable: Minor Compaction

• When full, write Memtable as SSTable

GFS

In-memory

Tablet log

Tablet

SSTable1 SSTable2 SSTable3

Memtable

SSTable4

Memtable

Problem with performance?



Bigtable: Merge Compaction

• Merge some of the SSTables (and the Memtable)

GFS

In-memory

Tablet log

Tablet

SSTable1 SSTable2 SSTable3

Memtable

SSTable4

Memtable

SSTable1

READ



Bigtable: Major Compaction

• Merge all SSTables (and the Memtable)

• Makes reads more efficient!

GFS

In-memory

Tablet log

Tablet

SSTable1 SSTable2 SSTable3

SSTable4

SSTable1

READ

SSTable1

Memtable



Bigtable: A Bunch of Other Things

• Hierarchy and locks: how to find and lock tablets

• Locality groups: Group multiple column families 

together; assigned a separate SSTable

• Select storage: SSTables can be persistent or in-

memory

• Compression: Applied on SSTable blocks; custom 

compression can be chosen

• Caches: SSTable-level and block-level

• Bloom filters: Find negatives cheaply …



Read More …



Aside: Bloom Filter

• Create a bit array of length m (init to 0’s)

• Create k hash functions that map an object to an index of 

m (with even distribution)

• Index o: set m[hash1(o)], …, m[hashk(o)] to 1

• Query o: 
– any m[hash1(o)], …, m[hashk(o)] set to 0 ≡ not indexed

– all m[hash1(o)], …, m[hashk(o)] set to 1 ≡ might be indexed

Reject “empty” 
queries using very 

little memory!



Tabular Store: Apache HBase



Tabular Store: Cassandra



The Database Landscape

Using the relational model

Relational Databases
with focus on 

scalability to compete 
with NoSQL

while maintaining ACID

Batch analysis of data
Not using the relational model

Real-time

Stores documents 
(semi-structured 

values)

Not only SQL

Maps 

Column 
Oriented

Graph-structured data

In-Memory

Cloud storage



Questions?


