
CC5212-1

PROCESAMIENTO MASIVO DE DATOS

OTOÑO 2017

Lecture 6: Information Retrieval I

Aidan Hogan

aidhog@gmail.com

Postponing …

MANAGING TEXT DATA

Information Overload

If we didn’t have search …

• Contains all books with

– 25 unique characters

– 80 characters per line

– 40 lines per page

– 410 pages

– 410 x 40 x 80 = 1,312,000 chars

– 251,312,000 books

• Would contain any book

imaginable

– Including a book with the

location of useful books ;)

All information = Zero information

The book that indexes the library

WEB SEARCH/RETRIEVAL

Building Google Web-search

Building Google Web-search

What processes/algorithms does Google

need to implement Web search?

Crawling
1. Parse links from webpages

2. Schedule links for crawling

3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages

2. Index keywords to webpages

3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)

2. How important is it? (PageRank)

3. How many users clicked it?

...

INFORMATION RETRIEVAL:

CRAWLING

How does Google know about the Web?

crawl(list seedUrls)
frontier_i = seedUrls

while(!frontier_i .isEmpty())

new list frontier_i+1

for url : frontier_i

page = downloadPage(url)

frontier_i+1.addAll(extractUrls(page))

store(page)

i++

Download the Web. 

Crawling

What’s missing?

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

for url : frontier_i

page = downloadPage(url)

urlsSeen.add(url)

frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

store(page)

i++

Download the Web. 

Crawling: Avoid Cycles

Performance?

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

for url : frontier_i

page = downloadPage(url)

urlsSeen.add(url)

frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

store(page)

i++

Download the Web. 

Crawling: Avoid Cycles

Performance?

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

for url : frontier_i

page = downloadPage(url)

urlsSeen.add(url)

frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

store(page)

i++

Download the Web. 

Crawling: Avoid Cycles

Performance?

 Majority of time spent waiting for connection

 Disk/CPU usage will be near 0

 Bandwidth will not be maximised

Crawling: Multi-threading Important

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

new list threads

for url : frontier_i

thread = new DownloadPageThread.run(url,urlsSeen,fronter_i+1)

threads.add(thread)

threads.poll()

i++

DownloadPageThread: run(url,urlsSeen,frontier_i+1)
page = downloadPage(url)

synchronised: urlsSeen.add(url)

synchronised: frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

synchronised: store(page)

Crawling: Multi-threading Important

Crawl 1,000 URLs …

Crawling: Important to be Polite!

(Distributed) Denial of Server Attack: (D)DoS

Crawling: Avoid (D)DoSing

… more likely your IP range will be banned

 Christopher Weatherhead

 18 months prison

Crawling: Web-site Scheduler

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

new list frontier_i+1

new list threads

for url : schedule(frontier_i) #maximise time between two pages on one site

thread = new DownloadPageThread.run(url,urlsSeen,fronter_i+1)

threads.add(thread)

threads.poll()

i++

DownloadPageThread: run(url,urlsSeen,frontier_i+1)
page = downloadPage(url)

synchronised: urlsSeen.add(url)

synchronised: frontier_i+1.addAll(extractUrls(page) .removeAll(urlsSeen))

synchronised: store(page)

Robots Exclusion Protocol

http://website.com/robots.txt

User-agent: *

Disallow: /

No bots allowed on the website.

User-agent: *

Disallow: /user/

Disallow: /main/login.html

No bots allowed in /user/ sub-folder or login page.

User-agent: googlebot

Disallow: /

Ban only the bot with “user-agent” googlebot.

Robots Exclusion Protocol (non-standard)

User-agent: googlebot

Crawl-delay: 10

Tell the googlebot to only crawl a page from this host no
more than once every 10 seconds.

User-agent: *

Disallow: /

Allow: /public/

Ban everything but the /public/ folder for all agents

User-agent: *

Sitemap: http://example.com/main/sitemap.xml

Tell user-agents about your site-map

Site-Map: Additional crawler information

Crawling: Important Points

• Seed-list: Entry point for crawling

• Frontier: Extract links from current pages for next round

• Seen-list: Avoid cycles

• Threading: Keep machines busy

• Politeness: Don’t annoy web-sites

– Set delay between crawling pages on the same web-site

– Stick to what’s stated in the robots.txt file

– Check for a site-map

Crawling: Distribution

Similar benefits to multi-threading

How might we implement a distributed crawler?

1 2 3 4 5

for url : frontier_i-1

map(url,count)

What will be the bottleneck as machines increase?

Bandwidth or politeness delays

Crawling: All the Web?

Can we crawl all the Web?

Crawling: All the Web?

Can we crawl all the Web?

Can Google crawl all the Web?

Crawling: Inaccessible (Bow-Tie)

Broder et al. “Graph structure in the web,” Comput. Networks, vol. 33, no. 1-6, pp. 309–320, 2000

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

• Dynamically-generated content

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

• Dynamically-generated content

• Password-protected

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

• Dynamically-generated content

• Password-protected

• Dark Web

Crawling: Inaccessible (Deep Web)

What is the Deep Web?

• Dynamically-generated content

• Password-protected

• Dark Web

46% of statistics made up on the spot

Crawling: All the Web?

Can we crawl all the Web?

Can Google crawl all the Web?

Can Google crawl itself?

Apache Nutch

• Open-source crawling framework!

• Compatible with Hadoop!

https://nutch.apache.org/

https://nutch.apache.org/

INFORMATION RETRIEVAL:

INVERTED-INDEXING

Inverted Index

• Inverted Index: A map from words to documents
– “Inverted” because usually documents map to words

Examples of applications?

Inverted Index: Example

Term List Posting List

a (1,2,…)

american (1,5,…)

and (1,2,…)

by (1,2,…)

directed (1,2,…)

drama (1,16,…)

… …

Inverted index:

1

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Example Search

Inverted index:

• AND: Intersect posting lists

• OR: Union posting lists

• PHRASE: ???

american drama

Term List Posting List

a (1,2,…)

american (1,5,…)

and (1,2,…)

by (1,2,…)

directed (1,2,…)

drama (1,16,…)

… …

How should we implement PHRASE?

Inverted Index: Example

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

1

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.
1 10 18 21 23 28 37 43 47 55 59 68 71 76

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index Flavours

Record-level inverted index:

Maps words to documents

without positional information

Word-level inverted index:

Additionally maps words with

positional information

Inverted Index: Word Normalisation

drama america

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Inverted Index: Word Normalisation

drama america

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ America , American , americas , americanise } → { america }

Inverted Index: Word Normalisation

drama america

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ America , American , americas , americanise } → { america }

Lemmatisation uses knowledge of the word to normalise:

{ better , goodly , best } → { good }

Inverted Index: Word Normalisation

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ America , American , americas , americanise } → { america }

Lemmatisation uses knowledge of the word to normalise:

{ better , goodly , best } → { good }

Synonym expansion

{ film , movie } → { movie }

drama america

Inverted Index: Word Normalisation

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ America , American , americas , americanise } → { america }

Lemmatisation uses knowledge of the word to normalise:

{ better , goodly , best } → { good }

Synonym expansion

{ film , movie } → { movie }

drama america

 Language specific!

 Use same normalisation on query and document!

Inverted Index: Space

Record-level inverted index:

Maps words to documents

without positional information

Word-level inverted index:

Additionally maps words with

positional information

Space?

Space?

Inverted Index: Unique Words

Not so many unique words …

– Heap’s law:

– English text

• K ∈ [10,100]

• β ∈ [0.4,0.6]

Number of words in text

N
u

m
b

er
 o

f
u

n
iq

u
e

w
o

rd
s

in
 t

ex
t

Raw words versus unique words

Inverted Index: Space

Record-level inverted index:

Maps words to documents

without positional information

Word-level inverted index:

Additionally maps words with

positional information

Space?

Space?

Inverted Index: Common Words

Many occurrences of few words

/ Few occurrences of many words

– Zipf’s law

– In English text:
• “the” 7%

• “of” 3.5%

• “and” 2.7%

• 135 words cover
half of all
occurrences

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

Inverted Index: Common Words

Many occurrences of few words

/ Few occurrences of many words

– Zipf’s law

– In English text:
• “the” 7%

• “of” 3.5%

• “and” 2.7%

• 135 words cover
half of all
occurrences

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

• Expect long posting lists for common words

Inverted Index: Common Words

• Perhaps implement stop-words?
• Most common words contain least information

the drama in america

Inverted Index: Common Words

• Perhaps implement stop-words?

• Perhaps implement block-addressing?

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.

Term List Posting Lists

a (1,[1,…]), (2,[…]), …

american (1,[1,…]), (5,[…]), …

and (1,[2, …]), (2,[…]), …

by (1,[2, …]), (2,[…]), …

… …

Block 1 Block 2

What is the effect on

phrase search?

Small blocks ~ okay

Big blocks ~ not okay

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Common Words

Many occurrences of few words

/ Few occurrences of many words

– Zipf’s law

– In English text:
• “the” 7%

• “of” 3.5%

• “and” 2.7%

• 135 words cover
half of all
occurrences

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

• Expect long posting lists for common words

• Expect more queries for common words

The Long Tail of Search

The Long Tail of Search

How to optimise for this? Caching for common queries like “coffee”

If interested …

Search Implementation

• Vocabulary keys:

– Hashing: O(1) lookups (assuming good hashing)

• no range queries

• relatively easy to update (though rehashing expensive!)

– Sorting/B-Tree: O(log(u)) lookups, u unique words

• range queries

• tricky to update (standard methods for B-trees)

– Tries/FST: O(l) lookups, l length of the word

• range queries, compressed, auto-completion!

• referencing becomes tricky (on disk)

Tries? FSTs? (in class)

Memory Sizes

• Term list (vocabulary keys) small:

– Often will fit in memory!

• Posting lists larger:

– On disk / Hot regions cached

Term List Posting List

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Compression techniques

• Numeric compression important

Term List Posting Lists

country (1), (2), (3), (4), (6), (7), …

… …

Compression techniques: High Level

• Interval indexing

– Example for record-level indexing

• Could also be applied for block-level indexing, etc.

Term List Posting List

country (1), (2), (3), (4), (6), (7), …

… …

Term List Posting List

country (1–4), (6–7),

… …

Compression techniques: High Level

• Gap indexing

– Example for record-level indexing

• Could also be applied for block-level indexing, etc.

Term List Posting List

country (1), (3), (4), (8), (9), …

… …

Term List Posting Lists

country (1), 2, 1, 4, 1

… …

Benefit? Repeated small numbers easier to compress!

Compression techniques: Bit Level

• Variable length coding: bit-level techniques

• For example, Elias γ (gamma) encoding

– Assumes many small numbers

z: integer to
encode

n = ⌊log2(z)⌋ coded
in unary

a zero marker next n binary
numbers

final Elias γ code

1 0 0

2 1 0 0 100

3 1 0 1 101

4 11 0 00 11000

5 11 0 01 11001

6 11 0 10 11010

7 11 0 11 11011

8 111 0 000 1110000

… … … … …

<1,2,1,1,4,8,5>Can you decode “01000011000111000011001”?

Compression techniques: Bit Level

• Variable length coding: bit-level techniques

• For example, Elias δ (delta) encoding

– Better for some distributions

z: integer to
encode

n = ⌊log2(z)⌋ coded
in Elias γ

next n binary
numbers

final Elias δ code

1 0 0

2 100 0 1000

3 100 1 1001

4 101 00 10100

5 101 01 10101

6 101 10 10110

7 101 11 10111

8 11000 000 11000000

… … … …

<1,9,3,1,17>Can you decode “0110000011001011001001”?

Compression techniques: Byte Level

• Use variable length byte codes

• Use last bit of byte to indicate if the number ends

• For example:

• 0010010 = 18, 1010001= 81, 100010010= 274

00100100 10100010 00000101 00100100

Parametric compression

• Previous methods “non-parametric”

– Don’t take an input value

• Other compression techniques parametric:

– for example, Golomb-3 code:

z: integer to encode n = ⌊(z-1)/3⌋ coded
in unary

Zero separator binary remainder final Golomb-3 code

1 0 0 00

2 0 10 010

3 0 11 011

4 1 0 0 100

5 1 0 10 1010

6 1 0 11 1011

7 11 0 00 1100

8 11 0 010 11010

… … … …

Other Optimisations

• Top-Doc: Order posting lists to give likely “top

documents” first: good for top-k results

• Selectivity: Load the posting lists for the most rare

keywords first; apply thresholds

• Sharding: Distribute over multiple machines

How to distribute? (in class)

Extremely Scalable/Efficient

When engineered correctly 

AN INVERTED INDEX SOLUTION

• Inverted Index

– They built one so you don’t have to!

– Open Source in Java

Apache Lucene

(Apache Solr)

• Built on top of Apache Lucene

• Lucene is the inverted index

• Solr is a distributed search platform, with

distribution, fault tolerance, etc.

• (We will work with Lucene)

Apache Lucene: Indexing Documents

… continued …

Apache Lucene: Indexing Documents

… continued …

Apache Lucene: Searching Documents

Apache Lucene: Searching Documents

RECAP

Recap

• Crawling:

– Cycles, multi-threading, politeness, DDoS, robots

exclusion, sitemaps, distribution, deep web

• Inverted Indexing:

– boolean queries, record-level vs. word-level vs.

block-level, word normalisation, lemmatisation,

space, Heap’s law, Zipf’s law, stop-words, tries,

hashing, long tail, compression, interval coding,

variable length encoding, Elias encoding, top doc,

sharding, selectivity

CONTROL

Monday, 24th April

• 1.5 hours

• Four questions, all mandatory

1. Distributed systems

2. GFS

3. MapReduce/Hadoop

4. PIG

• One page of notes (back and front)

CLASS PROJECTS

Course Marking

• 50% for Weekly Labs (~3% a lab!)

• 35% for Controls

• 15% for Small Class Project

Class Project

• Done in threes

• Goal: Use what you’ve learned to do something cool/fun (hopefully)

• Expected difficulty: A bit more than a lab’s worth

– But without guidance (can extend lab code)

• Marked on: Difficulty, appropriateness, scale, good use of

techniques, presentation, coolness, creativity, value

– Ambition is appreciated, even if you don’t succeed: feel free to bite

off more than you can chew! I will take this into account.

• Process:

– Start thinking up topics

– If you need data or get stuck, I will (try to) help out

• Deliverables: 4 minute presentation & short report

Questions?

