CC5212-1

PROCESAMIENTO MASIVO DE DATOS
OTONO 2017

Lecture 2: Introduction to Distributed Systems

Aidan Hogan
aidhog@gmail.com

MASSIVE DATA NEEDS
DISTRIBUTED SYSTEMS ...

Monolithic vs. Distributed Systems

* One machine that's n nmachines that are
times as powerful? equally as powerful?

Parallel vs. Distributed Systems

 Parallel System
often shared memory

Processor Processor Processor

! ! !

Memory

* Distributed System
often shared nothing

Processor

!

Memory
Processor

!

Memory
Processor

!

Memory

What is a Distributed System?

"A distributed system is a system that enables a collection
of independent computers to communicate in order to
solve a common goal”

0010010001011010100

/

100101110100010001001

Disadvantages of Distributed Systems

(Possible) Advantages
e (ost
— Better performance/price

Extensibility

— Add another machine!
Reliability (ideally)

— No central point of failure!
Workload

— Balance work automatically

Sharing

— Remote access to services

(Possible) Disadvantages
e Software
— Need specialised programs
« Networking
— Can be slow
* Maintenance
— Debugging sw/hw a pain
* Security
— Multiple remote users

 Parallelisation
— Not always applicable

WHAT MAKES A GOOD
DISTRIBUTED SYSTEM?

A Good Distributed System ...

Transparency

.. looks like one system

A Good Distributed System ...

Transparency

.. looks like one system

o Abstract/hide:

— Access: How different machines are accessed
— Location: Where the machines are physically
— Heterogeneity: Different software/hardware
— Concurrency: Access by several users
— Etc.

* How?
— Employ abstract addresses, APIs, etc.

A Good Distributed System ...

Flexibility

... can add/remove machines quickly and easily

A Good Distributed System ...

Flexibility

... can add/remove machines quickly and easily

 Avoid:
— Downtime: Restarting the distributed system
— Complex Config.: 12 admins working 24/7
— Specific Requirements: Assumptions of OS/HW
— Etc.
* How?
— Employ: replication, platform-independent SW,
bootstrapping, heart-beats

A Good Distributed System ...

Reliability

... avoids failure / keeps working in case of failure

A Good Distributed System ...

Reliability

.. avoids failure / keeps working in case of failure

 Avoid:
— Downtime: The system going offline
— Inconsistency: Verify correctness

* How?

— Employ: replication, flexible routing, security,
Consensus Protocols

A Good Distributed System ...

Performance
.. does stuff quickly

K
i/
1}
|
||s I
\ b
)
i
s AL

A Good Distributed System ...

Performance
.. does stuff quickly
 Avoid:
— Latency: Time for initial response
— Long runtime: Time to complete response

oading

— Well, avoid basically
* How?

— Employ: network optimisation, enough
computational resources, etc.

A Good Distributed System ...

Scalability

... ensures the infrastructure scales

n
o

)

A Good Distributed System ...

Scalability

... ensures the infrastructure scales

 Avoid:

— Bottlenecks: Relying on one part too much

— Pair-wise messages: Grows quadratically: O(n?)
¢ How?

— Employ: peer-to-peer, direct communication,
distributed indexes, etc.

A Good Distributed System ...

Transparency
.. looks like one system

Flexibility

... can add/remove machines quickly and easily

Reliability
.. avoids failure / keeps working in case of failure

Performance
.. does stuff quickly

Scalability

... ensures the infrastructure scales

A Good Distributed System ...

Why these five in particular? @

Good question. _(V)_/ ®

DISTRIBUTED SYSTEMS.:
CLIENT-SERVER ARCHITECTURE

Client=Server Model

Client makes request to server

Server acts and responds

For example? @ Web, Email, DropBo, ...

Client=Server Model

Server can be a distributed system! A

Server # Physical Machine

Client=Server: Thin Client

Server does the hard work
(server sends results | client uses few resources)

For example? @ Email, Early Web (PHP etc.) @

Client=Server: Fat Client

Client does the hard work
(server sends raw data | client uses more resources)

For example? @ Javascript, Mobile Apps, Video @

Client=Server: Mirror Machine

Client goes to any mirror machine
(user-facing services are replicated)

oy
- -

%
%
S, Y .
L W
L

Client=Server: Proxy Machine

Client goes to “proxy” machine
(proxy machine forwards request and response)

Client=Server: Three-Tier Server

Three Layer Architecture
1. Data | 2. Logic | 3. Presentation

Server

Logic

—
Add all the Create
salaries HTML page

SQL: HTTP;
Create | Total salary
guery: of all

all salaries employees

DISTRIBUTED SYSTEMS.:
PEER-TO-PEER ARCHITECTURE

Peer-to-Peer (P2P)

Client-Server Peer-to-Peer (P2)
 Client interacts directly with Peers interact directly with
server each other
- . - —F
- = -

Peer-to-Peer (P2P)

Client-Server Peer-to-Peer (P2)
 Client interacts directly with Peers interact directly with
server each other

Client Client
Client Client
Server Server

Client Client

Client Server Client
Server Server

Client Client

Client Client
Server Server

Peer-to-Peer (P2P)

Peer-to-Peer (P2)

Examples of P2P systems? (2) * Peers interact directly with
each other

Client Client

Server Server

Client Client

Server Server

Client Client

Server Server

Peer-to-Peer (P2P)

Online Banking:

* (Clients interact with a central
banking server

Client Client

Client Server Client

Client

Client

Cryptocurrencies (e.g., BitCoin):

e Peers act both as the bank and
the client

Client Client

Server Server

Client Client

Server Server

Client

Client

Server Server

Peer-to-Peer (P2P)

File Servers (DropBox): P2P File Sharing (e.g., Bittorrent):
* Clients interact with a central ¢ Peers act both as the file
file server server and the client

Client Client
Client Client
Server Server

Client Client
Client Server Client

Server Server

Client Client

Client Client

Server Server

Peer-to-Peer (P2P)

SVN GIT
« (lients interact with a central = Peers have their own
versioning repository repositories, which they synch

Client Client
Client Client
Server Server

Client Client
Client Server Client

Server Server

Client Client

Client Client
Server Server

Peer-to-Peer: Unstructured (flooding)

Peer-to-Peer: Unstructured (flooding)

% Pixie’s new
/ album?

e---g..e

Peer-to-Peer: Unstructured (flooding)

Transparency?

Flexibility?

. __ & \ _____Fy @ o S\ ¥&

Reliability?

-l =

Performance?

1 — L AN]

Scalability?

Peer-to-Peer: Structured (Central)

Ricky Martin’s
new album?

* |n central server, each
peer registers
— Content
— Address

* Peer requests content
from server

* Peers connect directly

Advantages / Disadvantages?

Peer-to-Peer: Structured (Central)

* |n central server, each
peer registers
— Content
— Address

» Peer requests content
from server

» Peers connect directly -

Advantages / Disadvantages? @

Peer-to-Peer: Structured (Hierarchical)

Super-peers and peers

* Super-peers index and
organise the content
of local peers

Advantages / Disadvantages? @

Peer-to-Peer: Structured (Distributed Index)

Often a;

Distributed Hash Table (DHT)
» (key,value) pairs

* Hash on key

* Insert with (key, value)

 Peerindexes keyrange %% \%%
I = ® g o
';L, % @ % (empty)
®

Advantages / Disadvantages? @

Peer-to-Peer: Structured (DHT)

 Circular DHT:

— Only aware of
neighbours

— O(n) lookups

e Shortcuts:
— Skips ahead

— Enables binary-search-
like behaviour

— O(log(n)) lookups

Pixie’s new
album? 111

Peer-to-Peer: Structured (DHT)

* Handle peers leaving
(churn)

— Keep /1 SUCCESSOIrS

* New peers
— Fill gaps
— Replicate

Comparison of P2P Systems

1) Central Directory

» Search follows directory (1 lookup)
* Connections — O(n)

« Single point of failure (SPoF)

» Peers control their data

* No neighbours

2) Unstructured 3) Structured

» Search requires flooding (7 lookups) » Search follows structure (log(n) lookups)
« Connections —» O(r?) * Connections — O(n)

* No central point of failure * No central point of failure

» Peers control their data » Peers assigned data

» Peers control neighbours » Peers assigned neighbours

Individual home PCs running
Napster.

The central index
server owned by
Napster.

The home PC’s connect to the
central index server and send it
data about their music libraries.

' Napster

The central index
server owned by
Napster.

Individual home PCs running
Napster.

File Index
00101100010
10010101010

r 11100010
3y

The home PC’s connect to the
central index server and send it

data about their music libraries. %

P2P vs. Client—Server

Advantages / Disadvantages? @

Client-Server Peer-to-Peer
e Data lost in failure/deletes * May lose rare data (churn)
« Search easier/faster « Search difficult (churn)
 Network often faster (to * Network often slower (to

websites on backbones) conventional users)
« Often central host * Multiple hosts

— Data centralised — Data decentralised

— Remote hosts control data — Users (often) control data

— Bandwidth centralised — Bandwidth decentralised

— Dictatorial — Democratic

— Can be taken off-line — Difficult to take off-line

P2P vs. Client—Server

Systems can be hybrid! A

DISTRIBUTED SYSTEMS.:
HYBRID EXAMPLE (BITTORRENT)

Bittorrent: Search Server

BitTorrent
Search
(Server)

“ricky martin”

g

Client—Server

Bittorrent: Tracker

BitTorrent
Peer Tracker

Bittorrent: File-Sharing

Bittorrent: Hybrid

Uploader Downloader

1. Creates torrent file 1. Searches torrent file

2. Uploads torrent file 2. Downloads torrent file

3. Announces on tracker 3. Announces to tracker

4. Monitors for downloaders 4. Monitors for peers/seeds
5. Connects to downloaders 5. Connects to peers/seeds
6. Sends file parts 6. Sends & receives file

7.

parts
Watches illegal movie

Local / Client—Server / Structured P2P / Direct P2P

DISTRIBUTED SYSTEMS.:
IN THE REAL WORLD

Physical Location: Cluster Computing

* Machines (typically) in a central, local
location; e.g., a local LAN in a server room

=

i S
~a

Physical Location: Cluster Computing

Physical Location: Cloud Computing

* Machines (typically) in a central remote
location; e.g., Amazon EC2

<A

<A

v

<A

N ———

Physical Location: Cloud Computing

Amazon EC2

Region: us-east-1

Physical Location: Grid Computing

« Machines in diverse locations

Physical Location: Grid Computing

This globe shows your climate model running
Model date and time: 19/10/1952 00:30

Atmos Model Time 00:30

Atmos Model Date 19/10/1952 —y
Hours Elapsed 0685:15:50 (2.99 s8/TS)
Timestep 826417 of 4147560
Progress 19.93 %

bbc.co.uk/climatechange

Yol 208 P 5T23
Fages T41-508 10

DISTIRIBUTED

ARY A8

c‘rqmad by
climateprediction.net

Physical Location: Grid Computing

274,207,281_ 1

1960 1970 1980 1990 2000

Physical Locations

 Cluster computing:
— Typically centralised, local

* Cloud computing:
— Typically centralised, remote

 Grid computing:
— Typically decentralised, remote

LIMITATIONS OF DISTRIBUTED
SYSTEMS: EIGHT FALLACIES

Eight Fallacies

* By L. Peter Deutsch (1994)
— James Gosling (1997)

" Essentially everyone, when they first build a
distributed application, makes the following
elght assumptions. All prove to be false in the
long run and all cause big trouble and painful
learning experiences.” — L. Peter Deutsch

 Each fallacy is a false statement!

1. The network is reliable

Machines fail,
connections fail,
firewall eats messages

» flexible routing
* retry messages
» acknowledgements!

2. Latency Is zero

There are significant
communication delays

e avoid “races”

 |ocal order # remote
order

» acknowledgements

e minimise remote calls
— batch data!

* avoid waiting
— multiple-threads

3. Bandwidth is infinite

Limited in amount of
data that can be
transferred

 avoid resending data
» avoid bottlenecks
 direct connections
 caching!!

4. The network is secure

Network is vulnerable to i

hackers, eavesdropping, Sen:_l\t/ledical
. ISTOr

viruses, etc. '

{«_»
i‘®$

send sensitive data
directly

Isolate hacked nodes

— hack one node # hack
all nodes

authenticate messages
* Secure connections

5. Topology doesn't change

How machines are
physically connected
may change (“‘churn”)!

* avoid fixed routing
— next-hop routing?

* abstract physical
addresses

e flexible content

structure -
Message M5 thru
M2, M3, M4

6. There Is one administrator

Different machines
nave different
nolicies!

e Beware of firewalls!

e Don't assume most
recent version

— Backwards compat.

®

®

AN

/

7

—

e

/
\
e

y
N

s
N

/. Transport cost Is zero

It costs time/money to
transport data: not just

bandwidth

(Again)
* minimise redundant
data transfer

— avoid shuffling data
— caching

* direct connection

* compression?

8. The network is homogeneous

Devices and
connections are not
uniform

* interoperability!

* route for speed
— not hops

* |load-balancing

Fight Fallacies (to avoid)

©© N o bk W=

The network is reliable

Latency Is zero

Severity of fallacies vary

Bandwidth is infinite

'he network Is secure
‘opology doesn't change
‘here is one administrator
‘ransport cost Is zero

'he network is homogeneous

Within Twitter?

Web?

Bittorrent?

in different scenarios!

®
®

®

Discussed later: Fault Tolerance

LAB Il PREVIEW:
JAVA RMI OVERVIEW

Why is Java RMI Important?

We can use it to quickly build distributed
systems using some standard Java skills.

What is Java RMI?

 RMI = Remote Method Invocation
 Remote Procedure Call (RPC) for Java
* Predecessor of CORBA (in Java)

e Stub / Skeleton model (TCP/IP)

<Netw0rk> Skeleton

What is Java RMI?

Stub (Client):

— Sends request to skeleton:

marshalls/serialises and
transfers arguments

— Demarshalls/deserialises
response and ends call

Skeleton (Server):

— Passes call from stub onto
the server implementation

— Passes the response back to
the stub

<Netw0rk> Skeleton

Stub/Skeleton Same Interface!

package org.mdp.dir;

v import java.io.Serializable;[]

= II,-'**
* This is the interface that will be registered in the server.
* In RMI, a remote interface is called a stub (on the client-side)
* or a skeleton (on the server-side).
*
* An implementation is created and registered on the server.
&
* Remote machines can then call the methods of the interface.
*
* Note: every method *must* throw RemoteException!
&
* Note: every object passed or returned *must*® be Serializable!
*
* @author Aidan
&

*/
public interface UserDirectoryStub extends Remote, Serializableq
public boolean createUser(User u) throws RemoteException;

public Map<String,User> getDirectory() throws RemoteException;

public User removelUserWithMame(String un) throws RemoteException;

Server

Server Implements Skeleton

package ocrg.mdp.dir;
+ import java.util.HashMap;[]

* This is the implementation of UserDirecteryStub.[]
public class UserDirectoryServer implements UserDirectoryStub {

private static final long seriglVersionUID = -6825896167995177546L;
private Map<String,User:> directory;

= ublic UserDirectoryServer

g directory = newryHashHagigtring,Llser}{]l; PrObIem?

¥
) , , Synchronisation:
& * Return true if successful, false otherwise.[]
= public boolean createUser(User u) { (e,g,, ShOUld use

if(u.getUsername()==null)
return false; ConcurrentHashMap)

[Thanks to Tomas Vera ©]

directory.put{u.getUsername(}, u);

System.out.println({"New user registered! Bienvendic a ...'\n\t"+u);
return true;
¥
+ * Returns the current directory of users.[]

= public Map<String, User:> getDirectory() {
return directory;

h

® * Just an option to clean up if necessaryl[]
= public User removeUserWithName(String un) {
System.out.println({"Removing username ""+un+"'. Chac!™);

return directory.remove(un);
} Server

Server Regqistry

 Server (typically) has a Registry: a Map
» Adds skeleton /mplementations with key (a string)

Registry

“sk3” | Skellmpl3

“sk2” | Skellmpl2

“sk1” | Skellmpll

Server Creates/Connects to Registry

[/ create registry
Registry registry = LocateRegistry.createRegistry(port);

OR

// connect to registry
Registry registry = LocateRegistry.getRegistry(hostname, port);

Server

Server Registers Skeleton
Implementation As a Stub

// create a remote stub to make it
// ready for incoming calls
Remote stub = UnicastRemoteObject.exportObject(new UserDirectoryServer(),8);

// register stub in registry under a key stub-name
String stubname = "mensaje”;
registry.bind{stubname, stub);

Server

Client Connecting to Reqistry

 Client connects to registry (port, hostname/IP)!
* Retrieves skeleton/stub with key

e
o

Registry
“sk3” | Skellmpl3

Skellmpl2 “sk2” | Skellmpl2

“sk1” | Skellmpl1

Client Connecting to Reqistry

String hostname = "server.com”;
int port = 1935;
String stubname = "mensaje”;

// first need to connect to the remote registry on the giwven
// IP and port
Registry registry = LocateRegistry.getRegistry(hostname, port);

/{ then need to find the interface we're locking for
UserDirectoryStub stub = (UserDirectoryStub) registry.loockup(stubname);

Client Calls Remote Methods

 Client has stub, calls method, serialises arguments
« Server does processing
 Server returns answer; client deserialises result

Concat (lla”’” b”)

Skellmpl2

Client Calls Remote Methods

// now we can use the stub to call remote methods!!
Map<5tring,User> users = stub.getDirectory();
System.err.println(users.toString());

User u = new User("aidhog”, "Aidan Hogan", "18.8.114.59", 1589);
stub.createlUser{u);

users = stub.getDirectory();
System.err.println{users.toString());

stub.removeUserWithName("aidhog");

users = stub.getDirectory();
System.err.println{users.toString());

Java RMI: Remember ...

1.

Remote calls are pass-by-value, not pass-
by-reference (objects not moditied
directly)

Everything passed and returned must be
Serialisable (implement Serializable)

Every stub/skel method mustthrow a
remote exception (throws
RemoteException)

Server implementation can only throw
RemoteException

RECAP

Topics Covered (Lab)

 External Merge Sorting
— When it doesn't fit in memory, use the disk!
— Split data into batches
— Sort batches in memory
— Write batches to disk
— Merge sorted batches into final output

Topics Covered

* What is a (good) Distributed System?

* Client=Server model
— Fat/thin client
— Mirror/proxy servers
— Three-tier

* Peer-to-Peer (P2P) model
— Central directory
— Unstructured
— Structured (Hierarchical/DHT)
— BitTorrent

Topics Covered

 Physical locations:
— Cluster (local, centralised) vs.
— Cloud (remote, centralised) vs.
— Grid (remote, decentralised)
8 fallacies
— Network isn't reliable
— Latency is not zero
— Bandwidth not infinite,
— efc.

Java: Remote Method Invocation

* Java RMI:
— Remote Method Invocation
— Stub on Client Side
— Skeleton on Server Side
— Registry maps names to skeletons/servers
— Server registers skeleton with key
— Client finds skeleton with key, casts to stub
— Client calls method on stub

— Server runs method and serialises result to
client

Questions?

