
CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTOÑO 2016

Lecture 7: Information Retrieval I

Aidan Hogan
aidhog@gmail.com

MANAGING TEXT DATA

Information Overload

If we didn’t have search …

• Contains all books with
– 25 unique characters
– 80 characters per line
– 40 lines per page
– 410 pages
– 410 x 40 x 80 = 1,312,000 chars
– 25ଵ,ଷଵଶ, books

• Would contain any book
imaginable
– Including a book with the location

of useful books ;)

All information = Zero information

The book that indexes the library

SEARCH, QUERY, RETRIEVAL

Search, Query & Retrieval

• Search: the goal/aim of the user
• Query: the expression of a search
• Retrieval: the machine method to “solve” a

query

… roughly speaking

Retrieval

1. Machine has a bunch of information resources
of some sort (let’s call it a set I)
– e.g., documents, movie pages, actor descriptions

2. A user search wants to find some subset of I
– e.g., Irish actors, documents about Hadoop

3. User expresses search criteria as a query Q
– e.g., “irish actors”, “hadoop”, “SELECT ?movie …”

4. Retrieval engine returns results: R is a minimal
subset of I relevant to Q

5. Results R may be ordered by a ranking
– e.g., by most famous Irish actors

Data Retrieval

• Retrieval over
“structured data”

• Typical of databases
– I is a dataset, e.g., a

set of relations
– Q is a structured

query, e.g., SQL
– R is a list of tuples,

possibly ordered

SELECT * FROM actor WHERE country = “Ireland” ORDER BY earnings;

Information Retrieval
• Retrieval over

“unstructured data”
or textual data

• Typical of web search
– I is a set of text

documents, e.g., web
pages

– Q is a keyword query
– R is a list of

documents, e.g.,
relevant pages

“most famous Irish actors”

WEB SEARCH/RETRIEVAL

Inside Google

Google Architecture (ca. 1998)

Information Retrieval

• Crawling
• Inverted indexing
• PageRank

INFORMATION RETRIEVAL:
CRAWLING

How does Google know about the Web?

crawl(list seedUrls)
frontier_i = seedUrls
while(!frontier_i .isEmpty())

new list frontier_i+1
for url : frontier_i

page = downloadPage(url)
frontier_i+1.addAll(extractUrls(page))
store(page)

i++

• Download the Web.

Crawling

What’s missing from this code?

crawl(list seedUrls)
frontier_i = seedUrls
new set urlsSeen
while(!frontier_i .isEmpty())

new list frontier_i+1
for url : frontier_i

page = downloadPage(url)
urlsSeen.add(url)
frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))
store(page)

i++

• Download the Web.

Crawling: Avoid Cycles

What about the performance of this code?

Crawling: Catering for Slow Network

page = downloadPage(url)

• Majority of the time spent will be spent waiting for connection
• Disk and CPU of crawling machine barely occupied
• Bandwidth will not be maximised (stop / start)

Crawling: Multi-threading Important
crawl(list seedUrls)

frontier_i = seedUrls
new set urlsSeen
while(!frontier_i .isEmpty())

new list frontier_i+1
new list threads
for url : frontier_i

thread = new DownloadPageThread.run(url,urlsSeen,fronter_i+1)
threads.add(thread)

threads.poll()
i++

DownloadPageThread: run(url,urlsSeen,frontier_i+1)
page = downloadPage(url)
synchronised: urlsSeen.add(url)
synchronised: frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))
synchronised: store(page)

Crawling: Multi-threading Important

Crawling: Important to be Polite!

• (Distributed) Denial of Server Attack: (D)DoS

Crawling: Avoid (D)DoSing

• But more likely your IP range will be banned
by the web-site (DoS attack)

Christopher
Weatherhead

Imprisoned for 18
months!

Crawling: Web-site Scheduler
crawl(list seedUrls)

frontier_i = seedUrls
new set urlsSeen
while(!frontier_i .isEmpty())

new list frontier_i+1
new list threads
for url : schedule(frontier_i) #maximise time between two pages on one site

thread = new DownloadPageThread.run(url,urlsSeen,fronter_i+1)
threads.add(thread)

threads.poll()
i++

DownloadPageThread: run(url,urlsSeen,frontier_i+1)
page = downloadPage(url)
synchronised: urlsSeen.add(url)
synchronised: frontier_i+1.addAll(extractUrls(page) .removeAll(urlsSeen))
synchronised: store(page)

Robots Exclusion Protocol

http://website.com/robots.txt

User-agent: *
Disallow: /

No bots allowed on the website.

User-agent: *
Disallow: /user/
Disallow: /main/login.html

No bots allowed in /user/ sub-folder or login page.

User-agent: googlebot
Disallow: /

Ban only the bot with “user-agent” googlebot.

Robots Exclusion Protocol (non-standard)

User-agent: googlebot
Crawl-delay: 10

Tell the googlebot to only crawl a page from this host no
more than once every 10 seconds.

User-agent: *
Disallow: /
Allow: /public/

Ban everything but the /public/ folder for all agents

User-agent: *
Sitemap: http://example.com/main/sitemap.xml

Tell user-agents about your site-map

Site-Map

Crawling: Important Points

• Seed-list: Entry point for crawling
• Frontier: Extract links from current pages for next

round
• Threading: Keep machines busy; mitigate waits

for connection
• Seen-list: Avoid cycles
• Politeness: Don’t annoy web-sites

– Set a politeness delay between crawling pages on the
same web-site

– Stick to what’s stated in the robots.txt file
– Check for a site-map

Crawling: Distribution

• Similar benefits to multi-threading

• Local frontier and seen-URL list!

1 2 3 4 5

How might we implement a distributed crawler?

for url : frontier_i-1
map(url,count)

What will be the bottleneck as machines increase?

Crawling: Other Options

• Breadth-first: As per the pseudo-code, crawl
in rounds
– Extract one-hop from seed URLs …
– Extract n-hop from seed URLs

• Depth-first: Follow first link in first page, first
link in second page, etc.

• Best/topic-first: Rank the URLs according to
topic, number of in-links, etc.

• Hybrid: A mix of strategies

Possible advantages of breadth vs. depth first?

Crawling: Inaccessible (Bow-Tie)

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J.
Wiener, “Graph structure in the web,” Comput. Networks, vol. 33, no. 1-6, pp. 309–320, 2000

Crawling: Inaccessible (Deep-Web)

• Deep-web:
– Dynamically-generated content
– Password protected / firewalled
– Dark Web

Image from http://www.legaltechnology.com/wp-content/uploads/2013/07/OpenText-EIM-Summary.pdf

Remember: 46% of
statistics are made up

on the spot.

Apache Nuche

• Open-source crawling framework!
• Compatible with Hadoop!

https://nutch.apache.org/

INFORMATION RETRIEVAL:
INVERTED-INDEXING

Inverted Index

• Inverted Index: A map from words to
documents
– “Inverted” because usually documents map to words
– At the core of all keyword search applications

Inverted Index: Example

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

1

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.
1 10 18 21 23 28 37 43 47 55 59 68 71 76

Inverted Index: Example Search

Word Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

• AND: Posting lists intersected (optimised!)
• OR: Posting lists unioned
• PHRASE: AND + check locations

american drama

Inverted Index Flavours

• Record-level inverted index: Maps words to
documents without positional information

• Word-level inverted index: Additionally maps
words with positional information

Inverted Index: Word Normalisation

• Word normalisation: grammar removal, case,
lemmatisation, accents, etc.

• Query side and/or index side

drama america

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

Inverted Index: Space

• Not so many unique words …
– but lots of new proper nouns
– Heap’s law:
– UW(n) ≈ Knβ

– English text
• K ≈ 10
• β ≈ 0.6

Number of words in text

N
um

be
r o

f u
ni

qu
e

w
or

ds
 in

 te
xt

Inverted Index: Space

• As text size grows in a given document
– (n words) …
– Unique words (i.e., inverted index keys) grow sub-

linearly: O(nβ) for β ≈ 0.6
– Positions of occurrence grow linearly O(n)

Inverted Index: Common Words
• Many occurrences of few words

– Few occurrences of many words
– Zipf’s law
– In English text:

• “the” 7%
• “of” 3.5%
• “and” 2.7%
• 135 words cover

half of all
occurrences

Zipf’s law: the most popular word will occur twice as often as the second most popular
word, thrice as often as the third most popular word, n times as often as the n-most
popular word.

Inverted Index: Common Words

• Expect long posting lists for common words
• Also expect more queries for common words

Inverted Index: Common Words

• Perhaps implement stop-words?
• Most common words contain least information

• Perhaps implement block-addressing?
the drama in america

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.

Term List Posting Lists

a (1,[1,…]), (2,[…]), …

american (1,[1,…]), (5,[…]), …

and (1,[2, …]), (2,[…]), …

by (1,[2, …]), (2,[…]), …

… …

Block 1 Block 2

What is the
effect on

phrase search?

Search Implementation

• Vocabulary keys:
– Hashing: O(1) lookups (assuming good hashing)

• no range queries
• relatively easy to update (though rehashing expensive!)

– Sorting/B-Tree: O(log(u)) lookups, u unique words
• range queries
• tricky to update (standard methods for B-trees)

– Tries: O(l) lookups, l length of the word
• range queries, compressed, auto-completion!
• referencing becomes tricky (esp. on disk)

Memory Sizes

• Vocabulary keys:
– Often will fit in memory!
– Posting lists may be kept on disk

• (hot regions cached)

The Long Tail

What would this mean for a cache?

If interested in long tails …

Compression techniques

• Numeric compression important

Term List Posting Lists

country (1), (2), (3), (4), (6), (7), …

… …

Compression techniques: High Level

• Interval indexing
– Example for record-level indexing

• Could also be applied for block-level indexing, etc.

Term List Posting Lists

country (1), (2), (3), (4), (6), (7), …

… …

Term List Posting Lists

country (1–4), (6–7),

… …

Compression techniques: High Level

• Gap indexing
– Example for record-level indexing

• Could also be applied for block-level indexing, etc.

Term List Posting Lists

country (1), (3), (4), (8), (9), …

… …

Term List Posting Lists

country (1), 2, 1, 4, 1

… …

What’s the benefit? Repeated small numbers easier to compress

Compression techniques: Bit Level
• Variable length coding: bit-level techniques
• For example, Elias γ (gamma) encoding

– Assumes many small numbers
z: integer to
encode

n = ⌊log2(z)⌋ coded
in unary

a zero marker next n binary
numbers

final Elias γ code

1 0 0

2 1 0 0 100

3 1 0 1 101

4 11 0 00 11000

5 11 0 01 11001

6 11 0 10 11010

7 11 0 11 11011

8 111 0 000 1110000

… … … … …

<1,2,1,1,4,8,5>Can you decode “01000011000111000011001”?

Compression techniques: Bit Level
• Variable length coding: bit-level techniques
• For example, Elias δ (delta) encoding

– Better for some distributions
z: integer to
encode

n = ⌊log2(z)⌋ coded
in Elias γ

next n binary
numbers

final Elias δ code

1 0 0

2 100 0 1000

3 100 1 1001

4 101 00 10100

5 101 01 10101

6 101 10 10110

7 101 11 10111

8 11000 000 11000000

… … … …

<1,9,3,1,17>Can you decode “0110000011001011001001”?

Compression techniques: Byte Level

• Use variable length byte codes
• Use last bit of byte to indicate if the number ends

• For example:

• 0010010 = 18, 1010001= 81, 100010010= 274

00100100 10100010 00000101 00100100

Parametric compression

• Previous methods “non-parametric”
– Don’t take an input value

• Other compression techniques parametric:
– for example, Golomb-3 code:

z: integer to
encode

n = ⌊(z-1)/3⌋ coded
in unary

binary remainder final Golomb-3
code

1 0 0 00

2 0 10 010

3 0 11 011

4 1 0 100

5 1 10 1010

6 1 11 1011

7 11 00 1100

8 11 010 11010

Other Optimisations

• Top-Doc: Order posting lists to give likely “top
documents” first: good for top-k results

• Selectivity: Load the posting lists for the most
rare keywords first; apply thresholds

• Sharding: Distribute an index over multiple
machines

How might an inverted index be split over multiple machines?

Extremely Scalable/Efficient

• When engineered correctly

AN INVERTED INDEX SOLUTION

• Inverted Index
– They built one so you don’t have to!

• Open Source in Java

Apache Lucene

(Apache Solr)

• Built on top of Apache Lucene
• Lucene is the inverted index
• Solr is a distributed search platform, with

distribution, fault tolerance, etc.
• (We will work with Lucene)

Apache Lucene: Indexing Documents

… continued …

Apache Lucene: Indexing Documents
… continued …

Apache Lucene: Searching Documents

Apache Lucene: Searching Documents

RECAP

Recap

• Information overload in Big Data

• Search: user intent
• Query: user expression of search
• Retrieval: machine methods to execute search

Recap

• Crawling:
– Avoid cycles, multi-threading, politeness, DDoS,

robots exclusion, sitemaps, distribution, breadth-first,
topical crawlers, deep web

• Inverted Indexing:
– boolean queries, record-level vs. word-level vs. block-

level, word normalisation, lemmatisation, space,
Heap’s law, Zipf’s law, stop-words, tries, hashing, long
tail, compression, interval coding, variable length
encoding, Elias encoding, top doc, sharding, selectivity

CLASS PROJECTS

Course Marking

• 45% for Weekly Labs (~3% a lab!)
• 35% for Final Exam
• 20% for Small Class Project

Class Project
• Done in pairs (typically …)

• Goal: Use what you’ve learned to do something cool/fun (hopefully)

• Expected difficulty: A bit more than a lab’s worth
– But without guidance (can extend lab code)

• Marked on: Difficulty, appropriateness, scale, good use of techniques,
presentation, coolness, creativity, value
– Ambition is appreciated, even if you don’t succeed: feel free to bite

off more than you can chew! I will take this into account.

• Process:
– Pair up (default random) by next Wednesday’s lab (May 4th)
– Start thinking up topics
– If you need data or get stuck, I will (try to) help out

• Deliverables: 5/7 minute presentation & short report

Questions

