CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTONO 2016

Lecture 4: DFS & MapReduce |

Aidan Hogan
aidhog@gmail.com

Fundamentals of Distributed Systems

external sorts consistency
consensus protocols cap theorem

availability i iosee™

client Server, Smeiones

[IISI"']I"B[' Systems
NEEr 10 Peerasynchronous fallacies

three phase commit
transparency three tier architecture

MASSIVE DATA PROCESSING
(THE GOOGLE WAY ...)

Inside Google circa 1997/98

S P = =

Search Stanford

|‘I[Iresult's > ||:Iusleringnn _Ij Search

Search The Web

[10resuts =| |clusteringon =] Search

Inside Google circa 2015

gle ®

C [www.google.com

Sign in

Google

Google Search I'm Feeling Lucky

Advertising Programs ~ Business Solutions Privacy & Terms +Google About Google Google.ca

Google’s Cooling System

Google’s Recycling Initiative

Google Architecture (ca. 1998)

Information Retrieval
e Crawling

e |nverted indexing
e Word-counts

e Link-counts

e greps/sorts

e PageRank

e Updates

Google Engineering

e Massive amounts of data
 Each task needs communication protocols
e Fach task needs fault tolerance

 Multiple tasks running concurrently

Ad hoc solutions would repeat the same code

Google Engineering

 Google File System
— Store data across multiple machines
— Transparent Distributed File System
— Replication / Self-healing
e MapReduce
— Programming abstraction for distributed tasks
— Handles fault tolerance
— Supports many “simple” distributed tasks!

e BigTable, Pregel, Percolator, Dremel ...

Google Re-Engineering

Google v —

Google File System (GFS)

Google) CliEsbop

MapReduce

Google oy P

GOOGLE FILE SYSTEM (GFS)

What is a File-System?

e Breaks files into chunks (or clusters)
e Remembers the sequence of clusters
e Records directory/file structure

e Tracks file meta-data

— File size

— Last access
— Permissions
— Locks

What is a Distributed File-System

e Same thing, but distributed

What would transparency / flexibility / reliability /
performance / scalability mean for a distributed file system?

 Transparency: Like a normal file-system
* Flexibility: Can mount new machines

e Reliability: Has replication

e Performance: Fast storage/retrieval

e Scalability: Can store a lot of data / support a
lot of machines

Google File System (GFS)

Files are huge

Files often read or appended
— Writes in the middle of a file not (really) supported

Concurrency important
Failures are frequent

Streaming important

GFS: Pipelined Writes

File System (In-Memory)
/blue.txt [3 chunks]

1: {A1, C1, E1}

2:{A1, B1, D1}

3:{B1, D1, E1}
/orange.txt [2 chunks]

Master

64MB per chunk
64 bit label for each chunk
Assume replication factor of 3

|t

1: {B1, D1, E1}
2: {A1, C1, E1}

Al Bl

El

Chunk-servers (slaves)

GFS: Pipelined Writes (In Words)

1. Client asks Master to write a file

2. Master returns a primary chunkserver and
secondary chunkservers

3. Client writes to primary chunkserver and tells it
the secondary chunkservers

4. Primary chunkserver passes data onto
secondary chunkserver, which passes on ...

5. When finished, message comes back through
the pipeline that all chunkservers have written

— Otherwise client sends again

GFS: Fault Tolerance

File System (In-Memory) * 64MB per chunk
/blue _txt [3 chunks] * 64 bit label for each chunk

1: {A1, B1, E1} « Assume replication factor of 3

2: {A1, B1, D1}

3: {B1, D1, E1} Master blue.txt
/orange.txt [2chunks] (150 MB: 3 chunks)
1:{B1, D1, E1} orange.txt
2: A1, D1, E1} - (100MB: 2 chunks)

1

iy

I i
2 2

1

=
wl
HI

Chunk-servers (slaves)

GFS: Fault Tolerance (In Words)

e Master sends regular “Heartbeat” pings

e |f a chunkserver doesn’t respond
1. Master finds out what chunks it had
2. Master assigns new chunkserver for each chunk

3. Master tells new chunkserver to copy from a specific
existing chunkserver

e Chunks are prioritised by number of remaining
replicas, then by demand

GFS: Direct Reads
I’m looking for

File System (In-Memory) /blue.txt
/blue.txt [3 chunks]

1: {Al, C1, E1}
2:{A1, B1, D1}
3:{B1, D1, E1} Master
/orange.txt [2 chunks]

<€
1: {B1, D1, E1}
2:{A1, C1, E1} - /blue.txt [3 chunks]
1: {A1, C1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}

L

2

NI

-

Chunk-servers (slaves)

GFS: Direct Reads (In Words)

1. Client asks Master for file
2. Master returns location of a chunk

— Returns a ranked list of replicas

3. Client reads chunk directly from chunkserver
4. Client asks Master for next chunk

Software makes transparent for client!

GFS: Modification Consistency

Masters assign leases to one
replica: a “primary replica”

Client wants to change a file:

1.

2.

3.

Client asks Master for the
replicas (incl. primary)
Master returns replica info to
the client

Client sends change data

Client asks primary to
execute the changes

Primary asks secondaries to
change

Secondaries acknowledge to
primary

Primary acknowledges to
client

o Client

Master

13

Secondary
Replica A

l

Primary
Replica

l

Secondary
Replica B

Legend:

—= (Control

ﬁ Data

Data & Control Decoupled

GFS: Rack Awareness

=
=
=
T
-
-
-
-

GFS: Rack Awareness

GFS: Rack Awareness

Files:
/orange.txt
1: {A1, A4, B3}
2: {A5, B1, B5}

Rack A Rack B
Switch Switch

o Az o [[[]T 11 Racks:

t 1 || ' A: {Al, A2, A3, A4, AS}

; L1111 l_ 1] I B: {B1, B2, B3, B4, B5}
| O 1111 l |W"|

2 | |

GFS: Rack Awareness (In Words)

 Make sure replicas not on same rack
— In case rack switch fails!

e But communication can be slower:
— Within rack: pass one switch (rack switch)
— Across racks: pass three switches (two racks and a core)

e (Typically) pick two racks with low traffic

— Two nodes in same rack, one node in another rack
e (Assuming 3x replication)

e Only necessary if more than one rack! ©

GFS: Other Operations

Rebalancing: Spread storage out evenly

Deletion:

e Just rename the file with hidden file name
— To recover, rename back to original version
— Otherwise, three days later will be wiped

Monitoring Stale Replicas: Dead slave reappears
with old data: master keeps version info and will
recycle old chunks

GFS: Weaknesses?

What do you see as the core weaknesses of the
Google File System?

e Master node single point of failure
— Use hardware replication
— Logs and checkpoints!
e Master node is a bottleneck
— Use more powerful machine
— Minimise master node traffic
e Master-node metadata kept in memory

— Each chunk needs 64 bytes
— Chunk data can be queried from each slave

GFS: White-Paper

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Google*

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.
While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google's
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier

HADOOP DISTRIBUTED FILE SYSTEM
(HDFS)

Google Re-Engineering

Google)

Google File System (GFS)

HDFS

e HDFS-to-GFS @
— Data-node = Chunkserver/Slave | HIDES]

— Name-node = Master
e HDFS does not support modifications

e Otherwise pretty much the same except ...
— GFS is proprietary (hidden in Google)
— HDFS is open source (Apache!)

HDFS Interfaces

T W R R R . Amwe AR T W e wme wee o

| {- C '[1,".? http://localhost: 5007 5/browseDirectory.jsp?nament
| BN T . TR TR .V O . BB Taa . B
Contents of directory /

| Goto : || | go |

[rame || Type |Size | Replication|Block Size |Modification Time |Permission |Owner |[Group ||
|||g [etir || 2010-10-04 14:42 [rwxr-xr-x |[omallassi [supergroup||
||| [etir || 2010-10-04 14:40 [rwxr-xr-x |[omallassisupergroup||

Go back o DFS home

' Local logs

Log directory

Hadoop, 2010.

| = Hadoop Command Line

e —

c: \Hadoop\hadoop 1.1.0-SHAPSHOTA\bin>hadoop fs
8 2612-18-25

drusrwsrwy

ad_tutoriall.

—Fu-r-——r——
—ru-r-——r——
drwxr-sr-x
drusxr—xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-sr-x
drwxr-xr-x
drwxr-xr-x

“FW-r——r——

000/job_201210251258_0001_conf.xml

c:\Hadoopihadoop-1.1.8-SHAPSHOT\bin>o

mohammad
mohammad
mohammad
mohammad
mohammad
mohammad
mohammad
mohammad
mohammad
mohammad
mohammad
mohammad
mohammad
mohammad
ar

mohammad
mohammad
hadoop

[N

supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup

supergroup
supergroup
supergroup

99271

SO

16685
219&@

~-lsr /

2012-10-25
2012-10-25
2012-16-25
2012-10-25
2012-10-25
2012-16-25
2012-10-25
2012-10-25
2012-16-25
2012-10-25
2012-10-25
2012-16-25
2012-10-25

2012-16-25
2 2012-16-25
0 2012-16-25

hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop
hadoop

I T I Il o L I O R

1 hadoop

- hadoop
1 hadoop

supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup
supergroup

supergroup

supergroup

supergroup
supergroup

SO

r——r 1 hadoo 16685 2012-10-25 15:98
@0@/]0b 201210251258 @@@1 1351160842525_mohammad_tutoriall. jar
21940 2012-10-25 15:58 /mapred/history/done/version-1/1localhost_1351150120448_/2012/10/25/000

0 2012-10-25 17:01 /mapred/system
4 2012-10-25 17:01 /mapred/system/jobtracker.info

2012-16-25 83

2012-10-25
2012-10-25
2012-10-25
2012-10-25
2012-10-25
2012-10-25
2012-16-25

Adirl

/dirl/sample.log

/hdfs

Fhdfs/tmp

Fhdfs/tmp/mapred

fhdfs/tmp/mapred/staging

/hdfs/ tmp/mapred/staging/mohammad
/hdfs/tmp/mapred/staging/mohammad/ .staging
/mapout

/mapout/mrl

fmapout/mrl/_SUCCESS

/mapout/mrl/_logs
fmapout/mrl/_logs/history
fmapout/mrl/_logs/history/job_201210251258_0001_13511608842525_mohamm

/mapout/mrl/_logs/history/job _201210251258_0001_conf.xml
/mapout/mrl/part-00000
/mapred
/mapred/history
fmapred/history/done
/mapred/history/done/version-1
/mapred/history/done/version-1/localhost_1351150120448_
/mapred/history/done/version-1/localhost_1351150120448_/2012
/mapred/history/done/version-1/localhost_1351150120448_/2012/10

m

/mapred/history/done/version-1/localhost_1351150120448_/2012/10/25
/mapred/history/done/version-1/localhost_1351150120448_/2012/16/25/000

/mapred/history/done/version-1/localhost_1351150120448_/2012/10/25/000

17:11

A B ME e AE S

GOOGLE’S MAP-REDUCE

Google Re-Engineering

Google v —

Google File System (GFS)

Google) CliEsbop

MapReduce

MapReduce in Google

1

2

3.
4.

Divide & Conquer:

. Word count

How could we do a distributed top-k word count?

. Total searches per user
PageRank
Inverted-indexing

MapReduce: Word Count

==y

Al Bl C1
a-k I-q
e e
i'.’%% L i:%w
a 10,023 lab 8,123 rag 543
aa 6,234 label 983 rat 1,233

Better partitioning
method?

Input
Distr. File Sys.

Map()

(Partition/Shuffle)
(Distr. Sort)

Reduce()

Output

MapReduce (in more detail)

1. Input: Read from the cluster (e.g., a DFS)
— Chunks raw data for mappers

— Maps raw data to initial (key, , value,.) pairs

What might Input do in the word-count case?

2. Map: For each (key. , value,) pair, generate

zero-to-many (key, ., value,,,) pairs

— key,,/value;, can be diff. type to key,,, /value

What might Map do in the word-count case?

MapReduce (in more detail)

3. Partition: Assign sets of key, , values to reducer
machines

How might Partition work in the word-count case?

4. Shuffle: Data are moved from mappers to
reducers (e.g., using DFS)

5. Comparison/Sort: Each reducer sorts the data
by key using a comparison function

— Sort is taken care of by the framework

MapReduce

6. Reduce: Takes a bag of (key,,,, value
pairs with the same key, . value, and
produces zero-to-many outputs for each bag

map)

— Typically zero-or-one outputs

How might Reduce work in the word-count case?

7. Output: Merge-sorts the results from the
reducers / writes to stable storage

MapReduce: Word Count PseudoCode

function map (String name, String documsnt) :
// name: document name
// document: document contents
for each word w in document:
emit (w, 1)

function reduce (String word, Iterator partialCounts) :
S/ word: a word
// partialCounts: a 1list of aggregated partial counts
sum = 0
for each pc in partialCounts:
sum += ParseInt (pc)
emit (word, sum)

MapReduce: Scholar Example

GOUSIE' scholar chile || Search Authors || Search Schalar My Citations

LAuthors 1-10 Mest =

Ricardo Baeza-Yates

Yahoo! Research - Univ. Pompeu Fabra - Univ.
de Chile. Spain & Chile

Verified email at upf.edu

Cited by 25583

Ricardo Uauy

Institute of Mutrition INTA U Chile and Pediatrics
Department Catholic University

Werified email at inta.cl

Cited by 25089

JUAN CARLOS CASTILLA ZEMNOBI
Pontificia Universidad Catdlica de Chile
Cited by 188032

onzalo Mavarra

University of Chile

Werified email at decouchile.dl
Cited by 123443

Susana Eyheramendy

Professor of Statistics, Pontificia Universidad
Catolica de Chile

erified email at mat.puc.d

Cited by 8778

Fablo A Marquet

Professor of Ecology, Pontificia Universidad
Catolica de Chile

Werified email at bio.pucd

Cited by 7812

Criuzar J de D

Professor of Transport Engineering, Pontificia
Universidad Catolica de Chile

Werified email at ing.pucd

Cited by 5838

Jose Joaquin Brunner

Profesor investigador Universidad Diego
Paortales, Chile

‘Verified email at cpoe.dl

Cited by 8803

MapReduce: Scholar Example

Assume that in Google Scholar we have inputs like:
paper, citedBy papery

How can we use MapReduce to count the total
incoming citations per paper?

MapReduce as a Dist. Sys.

* Transparency: Abstracts physical machines

* Flexibility: Can mount new machines; can run
a variety of types of jobs

e Reliability: Tasks are monitored by a master
node using a heart-beat; dead jobs restart

 Performance: Depends on the application
code but exploits parallelism!

e Scalability: Depends on the application code
but can serve as the basis for massive data
processing!

MapReduce: Benefits for Programmers

 Takes care of low-level implementation:
— Easy to handle inputs and output
— No need to handle network communication
— No need to write sorts or joins

e Abstracts machines (transparency)
— Fault tolerance (through heart-beats)
— Abstracts physical locations
— Add / remove machines
— Load balancing

Benefits for Programmers

MapReduce

important things ...

Time for more

AL

LN T g e i
!

A
AL

&

TR

e L2 +,
R S R
S
e L 0+ ‘.‘.f‘
.—..v.o..++¢¢N#Hﬂomoo+M..H+eﬂ%+.n+ﬂ+ﬁ+ﬂ+u+ﬂ..ﬂ+haﬂ+.rﬁ-ooo 258
A T T e
e e i i L R
L e el
2 AR S S S R I L MR
ke et e e e bt b b
G St R R M e e D o L DL L B S I
e SR S SCT SIS
e tatatetetatetata byttt b bt e le
e el et Tyt i,
S e eSS iotds 2o =]
e R R e 2 i =
e petatetetatatels otetieleied !
et teleTele raretetets 5
eraatiaretatels e lataty ’
.Q.“‘ ’."“ﬂ““”ﬁi .. _
et

S

HADOOP OVERVIEW

Hadoop Architecture

NameNode

DataNode 1

DataNode 2

DataNode n

Client

JobTracker

JobNode 1

JobNode 2

JobNode n

HDFS: Traditional / SPOF

NameNode

1. NameNode appends
edits to log file

2. SecondaryNameNode
copies log file and
image, makes

copy dfs/blue.txt
rm dfs/orange.txt
rmdir dfs/

mkdir new/

mv new/ dfs/

fsimage

SecondaryNameNode checkpoint, copies
image back
3. NameNode loads
DataNode 1 image on start-up and

makes remaining edits

SecondaryNameNode not
DataNode n a backup NameNode

What is the secondary name-node?

Name-node quickly logs all file-system actions
in a sequential (but messy) way

Secondary name-node keeps the main
fsimage file up-to-date based on logs

When the primary hame-node boots back up,
it loads the fsimage file and applies the
remaining log to it

Hence secondary name-node helps make
boot-ups faster, helps keep file system image
up-to-date and takes load away from primary

Hadoop: High Availability
1

Active NameNode Active NameNode

JournalManager JournalManager

fsimage

JournalNode 1

fs edits fs edits

JournalNode n

PROGRAMMING WITH HADOOP

> hdfs dfs

cluster.dcc.uchile.cl - PuTTY

1. Input/Output (Java)

1
public class HDFSHellowWorld { Creates a file i
system for |
default E

|

|

configuration

I
1
|
public static final String theFilename = "hello.txt"; {
public static final S5tring message = "Hello, world!\n"; 21
1

1

I

| Check if the file
,E exists; if so
|

Path filenamePath = new Path(theFilename);

try £ Jtad
if (fs.exists(filenamePath)) { et delete
/! remove the file first 7 hmmmmmmmmm————— !
fs.delete(filenamePath, false);
L -

] I
I
FSDataOutputStream out = fs.create(filenamePath); ! :
out.writelUTF(message}); @ === |leccccaaa -1 write a :
1
i I
I I
1 [

out.close(); message

FsDatalnputStream in = fs.open(filenamePath); .
String messageln = in.readUTF(); i
System.out.print(messageln); ——_ Open and read :
in.close(): : back I

[

} catch (IOException ioe) { e
System.err.println("I0Exception during coperation: " + ioe.toString());
System.exit(l);

1. Input (Java)

InputFormat: Description:

TextlnputFormat Default format; reads lines of
text files

KeyValuelnputFormat Parses lines into key, val pairs

SequenceFilelnputFormat A Hadoop-specific high-
performance binary format

Key:

The byte offset of the
line

Everything up to the first
tab character

user-defined

Value:

The line
contents

The remainder
of the line

user-defined

Mapper<inputKeyType,
InputValueType,
MapKeyType,

2. Map

2.

public static class CitationCountMapper Extend4 Mapper<Object, Text, Text, Intwritahleb{\

private final Intliritable one = new IntlWritable(l);
private Text paperTitle = new Text();

(input) key: file offset.
(input) value: line of the file.
context: handles output and

logging.

.'" b
* @throws InterruptedException
b _."'.
@lverride
ublic void map(Obje

String line = ing();
String[] paper(CitedByPaper = line.split(SPLIT REGEX);
paperTitle.set(paperCitedByPaper[@]);

|nutput.write[paperTitle, une]ﬂ

~
} S

(Writable for values)

package ejemplo;
import java.io.Datalnput;
import java.ic.Datalutput;

import java.ic.IOException;

import org.apache.hadoop.io.Writable;

b

publi Writable {

publltngrlng ClLiNgraper; :
public String citingWenue;
public int mentions;

public WritableCitation(String citingPaper, String citingVenue, int menticns) {
this.citingPaper = citingPaper;
this.citingWenue = citingWenue;
this.menticns = mentions;

i

public wvoid write(Datalutput out) throws IOException {
out.writellTF{citingPaper);

out.writeUTF(citingVenue); ke ___

out.writelnt(mentions); -_--"‘------_________

in} throws IOException { =TT
citingPaper = in.readUTF(); rmm——————T
citingVenue = in.readUTF();

mentions = in.readInt();

-
_____———
-

public String toString() {
return citingPaper +"\t" + citingVenue + "\t" + mentions;

) (not needed in the

running example)

(WritableComparable for keys/values)

public class WritableComparableCitation implements WritableComparable<WritableComparableCitation: {
public String citingPaper; e ————
public String citingVenue; --_'-——-_____ f e

public int mentions; -H New Interface i

I pmh
i publi
I publi
publi
itingWenue.compareTo(other.citingVenue);
if{comp == @){ ,,/
comp = Integer.compare(mentions, other.mentions); R
i i a P2
R
R
R4
R4
NS i
| i Needed for default 1
- 1 1 1
rrrrr citingvenuel | partition function
L —— I
i -~
— — ”'
-~
public int hashCode() { ="
return citingPaper.hashCode() ° citingVWenue. hashCode() ® mentions: -
¥

(not needed in the

running example)

3. Partition

package ejemplo;

'import org.apache.hadoop.mapred. JobConf;[]

@verride
public int getPar

return Math.abs(key.hashCode() % machines);

} SR e e
S ———————————————————————— —
@override \
public void configure(JobConf arge) { b
L \
\
\
¥ \
\
\
\
\
_________ e e

i (This happens to be the default
i partition method!)

(not needed in the

running example)

4. Shuffle

5. Sort/Comparision

public class WritableComparableCitation implements WritableComparable<WritableComparableCitation> {
public String citingPaper;
public String citingVenue;
public int mentions;

public WritableComparableCitation(5tring citingPaper, String citingVenue, int mentions) {[]

public void write(Datalutput out) throws IOException {[] e
public void readFields(Datalnput in) throws IOException {[]

public String toString() {[]

public int compareTo(WritableComparableCitation other) {
int comp = citingPaper.comparelo(other.citingPaper);

if(comp==8){ bbbt

comp = citingVenue.comparelof{other.citingVenue); : Methods |n
|

if(comp == 8){
} comp = Integer.comporel(mentions, other.mentions}); L Writab|eCOmparat0r
} M N N NN NN NN NN N SN BN BN BN B BN SN NN BN B BN N S S

return comp;

}

public boolean equals{Object o) {
if(o==null) return false;
if{o==this) return true;
if (!{o instanceof WritableComparableCitation)) return false;
WritableComparableCitation wcp = (WritableComparableCitation)o;
return citingPaper.equals(wcp.citingPaper) 8& this.citingVenue.equals{wcp.citingWVenue)
8% this.mentions == wecp.menticns;

}

public int hashCode() {
return citingPaper.hashCode() ~ citingVenue.hashCode() * mentiocns;

}

(not needed in the

running example)

6. REd uce E Reducer<MapKey, MapValue, 1!
1 |
1 i

OutputKey, OutputVaIue>

key: as emitted from

l,l':-C:-C
¥

I
I
I
* @throws InterruptedException :
s l.l' 1
J I
I

4

|

I

I

I

map 1

I

@verride _ ,4 values: iterator over !
public void reduce(lext key, lterable<IntWritable> values, R4 : I
Context output) throws I0Exception, InterruptedException { | | all values for that key !

int sum = 8; I H

t2 | context for output i
for(IntWritable value: wvalues) { ! P i

sum += value.get();

¥

output.getCounter("citations”, key.toString().substring(@, 1)).increment(l);;

|uutput.write(key, new IntWritable(sum))}; |

~
} S~
~
~

7. Output / Input (Java)

1
public class HDFSHellowWorld { Creates a file i
system for |
default E

|

|

configuration

I
1
|
public static final String theFilename = "hello.txt"; {
public static final S5tring message = "Hello, world!\n"; 21
1

1

I

| Check if the file
E exists; if so
|

Path filenamePath = new Path(theFilename);

try

delete

]}I

|
1
: |
write a !
message :

|

Open and read i
1
1
1

in.close(): back

} catch (IOException ioe) { e
System.err.println("I0Exception during coperation: " + ioe.toString());
System.exit(l);

7. Output (Java)

OutputFormat: Description
TextOutputFormat Default; writes lines in "key \t value” form

SequenceFileOutputFormat Writes binary files suitable for reading into subsequent MapReduce jobs
NullOutputFormat Disregards its inputs

Control Flow

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherfrgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {

System.err.println(“Usage: CitationCount <in> <out>"); [T T T T T T E e m e T
System.exit(2); : Create a JobCIIent, a JobConf :
} /I . . 1
String inputlocation = otherArgs[8]; ,/’ :_ and pass it the main class :
String outputlocation = otherArgs[1]; el oo

Set the type of map and
output keys and values in
the configuration

complete.

Run and wait for job to i
1
1
1

More in Hadoop: Combiner

e Map-side “mini-reduction”
e Keeps a fixed-size buffer in memory

e Reduce within that buffer

— e.g., count words in buffer
— Lessens bandwidth needs

* In Hadoop: can simply use Reducer class ©

More in Hadoop: Counters

public static class CitationCountReducer extends Reducer<Text, IntWritable, Text, IntWritable» {

JI.-':-Zt:ét
* @throws InterruptedException
:-ZCJI."
@lverride
public veid reduce(Text key, Iterable<IntWritable> values,
Context output) threws IOException, InterruptedException {
int sum = B;
for(IntWritable value: values) {
sum += value.get();
1

Context has a group of maps i
1
1
1

1
1
1
i_ of counters

More in Hadoop: Chaining Jobs

e Sometimes we need to chain jobs

e In Hadoop, can pass a set of Jobs to the client

e X.addDependingJob(y)

More in Hadoop: Distributed Cache

 Some tasks need “global knowledge”

— For example, a white-list of conference venues
and journals that should be considered in the
citation count

— Typically small

e Use a distributed cache:

— Makes data available locally to all nodes

IF WE HAVE TIME ...

MapReduce: Scholar Example

Assume that in Google Scholar we have two inputs like:

paper, citedBy papery paper, author, author, author,
paper, citedBy papery, paper, author, author,

paper citedBy paperp, paper author, author, author,
paperp, citedBy papery paperp, author,

How can we use MapReduce to count the total incoming
citations per author?

RECAP

Distributed File Systems

e Google File System (GFS)
— Master and Chunkslaves
— Replicated pipelined writes
— Direct reads
— Minimising master traffic
— Fault-tolerance: self-healing
— Rack awareness
— Consistency and modifications

e Hadoop Distributed File System
— NameNode and DataNodes

MapReduce

1. Input
2. Map
3. Partition
4. Shuffle
5. Comparison/Sort
6. Reduce
7. Output

MapReduce/GFS Revision

e GFS: distributed file system
— Implemented as HDFS

* MapReduce: distributed processing
framework

— Implemented as Hadoop

Hadoop

« Fi1leSystem

 Mapper<InputKey, InputValue,MapKey,MapValue>
 OutputCollector<OutputKey,OutputvValue>

« Writable, WritableComparable<Key>

« Partitioner<KeyType,ValueType>
 Reducer<MapKey,MapValue,OutputKey,OutputValue>

e JobClient/JobConf

