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TYPES OF
DISTRIBUTED SYSTEMS ...



Client—Server Model

e Client makes request to server
e Server acts and responds

h

(For example: Email, WWW, Printing, etc.)




Client—Server: Three-Tier Server

Server

Logic

Add all the
salaries

SQL: Query
salary of all
employees

Presentation

Create
HTML page

HTTP GET:
Total salary
of all
employees




Peer-to-Peer: Unstructured

(For example: Kazaa, Gnutella)




Peer-to-Peer: Structured (DHT)

e Circular DHT:

— Only aware of
neighbours 110

— O(n) lookups

e Implement shortcuts 101
— Skips ahead

— Enables binary-search-
like behaviour

Pixie’s new
— O(log(n)) lookups album? 111




Desirable Criteria for Distributed Systems

* Transparency:
— Appears as one machine
e Flexibility:
— Supports more machines, more applications
e Reliability:
— System doesn’t fail when a machine does
e Performance:
— Quick runtimes, quick processing
e Scalability:
— Handles more machines/data efficiently



Java RMI in the lab ...

172.17.69 . XXX

Directory

172.17.69.YYY

Client (send) Server (receive)

localhost

Client (send) Server (receive)

Registry (port)

Registry (port)

key | skeleton




Eight Fallacies (to avoid)

. The network is reliable What about the system
Latency is zero we built in the lab?
Bandwidth is infinite

The network is secure
Topology doesn’t change
There is one administrator

Transport cost is zero

0 N DU R WN R

The network is homogeneous



LET’S THINK ABOUT LAB 3



Using Java RMI to count trigrams ...

172.17.69 . XXX

Directory

172.17.69.YYY

Client (send) Server (receive)

localhost

Client (send) Server (receive)

Registry (port)

Registry (port)

key | skeleton




LIMITATIONS OF DISTRIBUTED
COMPUTING: CAP THEOREM



But first ... ACID

Have you heard of ACID guarantees in a database class?

For traditional (non-distributed) databases ...

1. Atomicity:
— Transactions all or nothing: fail cleanly

2. Consistency:
— Doesn’t break constraints/rules

3. lsolation:
— Parallel transactions act as if sequential

4. Durability

— System remembers changes



What is CAP?

Three guarantees a distributed sys. could make

1. Consistency:

— All nodes have a consistent view of the system

2. Availability:

— Every read/write is acted upon

3. Partition-tolerance:

— The system works even if messages are lost



A Distributed System (Replication)

c=




Consistency

AL

@'... ST

<TT There’s 891
There’s 891 users in ‘M’

users in ‘M’




Availability

How many users
start with ‘M’




Partition-Tolerance

*
*
Q

How many users
start with ‘M’




The CAP Question

Can a distributed system guarantee consistency
(all nodes have the same up-to-date view), avallablllty (every
read/write is acted upon) and Pa rtition-tolerance (the system
works even if messages are lost) At the same time?

What do you think?



The CAP Answer




The CAP “Proof”
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The CAP “Proof” (in boring words)

* Consider machines m; and m, on either side
of a partition:

— If an update is allowed on m, (Availability), then
m, cannot see the change: (loses Consistency)

— To make sure that m, and m, have the same, up-
to-date view (Consistency), neither m, nor m, can
accept any requests/updates (lose Availability)

— Thus, only when m,; and m, can communicate
(lose Partition tolerance) can Availability and
Consistency be guaranteed



The CAP Theorem

A distributed system cannot guarantee
Consistency (all nodes have the same up-to-date view),
avallablllty (every read/write is acted upon) and Pa rtition-
tolerance (the system works even if messages are lost) al the
same time.

(“Proof” as shown on previous slide ©)



The CAP Triangle

Choose
Two




CAP Systems

CA Guarantees to give a CP Guarantees responses
correct response but only : |
: while network works fine
(Centralised / Traditional)

are correct even if there are  :
: network failures, but response |
: may fail (Weak availability)

[l
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
‘Q
*
‘O
*

(No intersection)

AP: Always provides a
: “best-effort” response even

: in presence of network ;
: failures (Eventual consistency)



CA System There's 892
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CP System There’s 891

users in ‘M’
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A P SySte m There’s 891
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BASE (AP)

In what way was Twitter operating
under BASE-like conditions?

* Basically Available

— Pretty much always “up”

* Soft State
— Replicated, cached data

* Eventual Consistency

— Stale data tolerated, for a while



The CAP Theorem
A\

* CAinCAP #C,Ain ACID

e Simplified model
— Partitions are rare
— Systems may be a mix of CA/CP/AP
— C/A/P often continuous in reality!

e But concept useful/frequently discussed:

— How to handle Partitions?
e Availability? or
e Consistency?



CONSENSUS



Consensus

* Goal: Build a reliable distributed system from
unreliable components

— “stable replica” semantics: distributed system as a
whole acts as if it were a single functioning machine

* Core feature: the system, as a whole, is able to
agree on values (consensus)

— Value may be:
e Client inputs
— What to store, what to process, what to return
e Order of execution
* Internal organisation (e.g., who is leader)



Consensus There’s 891
users in ‘M’
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Lunch Problem

10:30AM. Alice, Bob and
Chris work in the same city.
All three have agreed to go
downtown for lunch today
but have yet to decide on a
place and a time.




CAP Systems (for example ...)

CA: They are guaranteed to CP: if someone cannot be

go to the same place for lunch
: as long as each of them can
: be reached in time.

reached in time, they either all
go to the same place for lunch
: or nobody goes for lunch.

0000
. .
. +*
" .
.
-
‘e
.

(No intersection)

AP if someone cannot be But how easily they

: .. : can reach consensus
: reached in time, they all go for : d d how th

: lunch downtown but might not : epends on . ow ; ey
: end up at the same place. communicate:



SYNCHRONOUS VS. ASYNCHRONOUS



Synchronous vs. Asynchronous

e Synchronous distributed system:

— Messages expected by a given time
e E.g., aclock tick

— Missing message has meaning

 Asynchronous distributed system:
— Messages can arrive at any time
— Missing message could arrive any time!



Asynchronous Consensus: Texting

10:45 AM. Alice tries to invite Bob for lunch ...

~ " Hey Bob,
/\‘ Want to go downtown
" to McDonald’s for
L . lunch at 12:00AM?

11:35 AM. No response. Should Alice head downtown?



Asynchronous Consensus: Texting

10:45 AM. Alice tries to invite Bob for lunch ...

N . " Hey Bob,
/\‘ Want to go downtown

" to McDonald’s for
% \. lunch at 12:00AM?

" Hmm ... 1 don’t like

McDonald’s much.
- How about Dominos

11:42 AM. No response. Where should Bob go?



Asynchronous Consensus: Texting

10:45 AM. Alice tries to invite Bob for lunch ...

. Hey Bob,
/\' Want to go downtown

.. to McDonald’s for
% \. lunch at 12:00AM?

" Hmm ... 1 don’t like

McDonald’s much.
How about Dominos

11:38 AM. No response. Did Bob see the acknowledgement?



Asynchronous Consensus

* |Impossible to guarantee!

— A message delay can happen at any time and a node
can wake up at the wrong time!

— Fischer-Lynch-Patterson (1985): No consensus can be
guaranteed amongst working nodes if there is even a
single failure

e But asynchronous consensus can happen

— As you should realise if you’ve ever successfully
organised a meeting by email or text ;)



Asynchronous Consensus: Texting

10:45 AM. Alice tries to invite Bob for lunch ...

N . " Hey Bob,
/\‘ Want to go downtown

A 7 to McDonald’s for
4 “ . lunch at 12:00AM?

" Hmm ... 1 don’t like

McDonald’s much.
- How about Dominos

B ©  Okay, let’s go to
Dominos.

11:38 AM. No response. Bob’s battery died. Alice misses the train downtown
waiting for message, heads to the cafeteria at work instead. Bob charges his

phone ... ] )
Heading to Dominos >
now. See you there!




Asynchronous Consensus: Texting

How could Alice and Bob find consensus on a
time and place to meet for lunch?



Synchronous Consensus: Telephone

10:45 AM. Alice tries to invite Bob for lunch ...

(/ Want to go downtown

™\ to McDonald’s for
L N |

“ lunch at 12:00AM?

How about a completo -‘\

at Domino’s instead?
Okay. 12:00AM?

e —

See you then!

10:46 AM. Clear consensus!



Synchronous Consensus

e Can be guaranteed!

— But only under certain conditions ...

What is the core difference between reaching
consensus in synchronous (texting or email) vs.
asynchronous (phone call) scenarios?



Synchronous Consensus: Telephone

10:45 AM. Alice tries to invite Bob for lunch ...

Hey Bob,

{/ Want to go downtown

' 1 to McDonald’s for

, lunch at 12:00AM?

10:46 AM. What’s the protocol?



From asynchronous to synchronous

How could we (in some cases) turn an asynchronous
system into a synchronous system?

* Agree on a timeout A
— Any message not received within A = failure

— If a message arrives after A, system returns to
being asynchonous
e |If Ais unbounded, the system is asynchronous
e May need a large value for A in practice



Eventually synchronous

e Eventually synchronous: Assumes most
messages will return within time A

— More precisely, the number of messages that do
not return in A is bounded

e We don’t need to set A so high
e True in many practical systems

Why might consensus be easier in an eventually
synchronous system?

— |f a message does not return in time A, if we keep
retrying, eventually it will return in time A



FAULT TOLERANCE:
FAIL-STOP VS. BYZANTINE



Faults




Fail-Stop Fault

A machine fails to respond or times-out (often hardware or load)
 Need at least f+1 replicated machines? (beware asynch.!)

— f=number of clean failures

de 4.575.144
la 2.160.185
en 2.073.216
el 1.844.613
y 1.479.936




Byzantine Fault

A machine responds incorrectly/maliciously (often software)
e Need at least 2f+1 replicated machines?

— f=number of (possibly Byzantine) failures

How many replicated ‘ I
machines do we need *“)
to guarantee tolerance @ Wirepih
to f Byzantine faults?
Ppo 2.160.185 de 4.575.144 la 2.160.185

la 2.160.185

sé 2.073.216
ni 1.844.613

£
al 1.479.936 @é

en 2.073.216
el 1.844.613
y 1.479.936

en 2.073.216
el 1.844.613
y 1.479.936

el 4.575.144 ‘ ‘ de 4.575.144




Fail-Stop/Byzantine

* Naively:
— Need f+1 replicated machines for fail-stop
— Need 2f+1 replicated machines for Byzantine

* Not so simple if nodes must agree
beforehand!

* Replicas must have consensus to be useful!



CONSENSUS GUARANTEES



Consensus Guarantees

e Under certain assumptions; for example

— synchronous, eventually synchoronous,
asynchronous

— fail-stop, byzantine
— no failures, one node fails, less than half fail

... there are methods to provide consensus with
certain guarantees



A Consensus Protocol

e Agreement/Consistency [Safety]: All working
nodes agree on the same value. Anything agreed
is final!

e Validity/Integrity [Safety]: Every working node
decides at most one value. That value has been
proposed by a working node.

 Termination [Liveness]: All working nodes
eventually decide (after finite steps).

* Safety: Nothing bad ever happens
* Liveness: Something good eventually happens



A Consensus Protocol for Lunch

* Agreement/Consistency [Safety]: Everyone
agrees on the same place downtown for
lunch, or agrees not to go downtown.

e Validity/Integrity [Safety]: Agreement involves
a place someone actually wants to go.

e Termination [Liveness]: A decision will
eventually be reached (hopefully before
lunch).



CONSENSUS PROTOCOL.:
TWO-PHASE COMMIT



Two-Phase Commit (2PC)

e Coordinator & cohort members

e Goal: Either all cohorts commit to the same
value or no cohort commits to anything

* Assumes synchronous, fail-stop behaviour

— Crashes are known!



Two-Phase Commit (2PC)

1. Voting:

| propose
- McDonalds!
\y Is that okay?




Two-Phase Commit (2PC)

2. Commit:

| have two yeses!
: Please commit.
'\!

- IIH |

C . / \ s
ommitte

& ¥ IIH ¥




Two-Phase Commit (2PC) [Abort]

1. Voting:

| propose
- McDonalds!
\y Is that okay?




Two-Phase Commit (2PC) [Abort]

2. Commit:

| don’t have two

. yeses!
\! Please abort.

- IIH |

Aborted!
Aborted!

’ é i irg IHI ?;




Two-Phase Commit (2PC)

1. Voting: A coordinator proposes a commit
value. The other nodes vote “yes” or “no”
(they cannot propose a new valuel!).

2. Commit: The coordinator counts the votes. If
all are “yes”, the coordinator tells the nodes
to accept (commit) the answer. If one is “no”,
the coordinator aborts the commit.

 For n nodes, in the order of 4n messages.
— 2n messages to propose value and receive votes
— 2n messages to request commit and receive acks



Two-Phase Commit (2PC)

What happens if the coordinator fails?
e Cohort members know coordinator has failed!

| have two yeses!
> Pl mmit.
.\! ease co t

\
I e O 1T

Commit!

Did you commit or

Committed!
abort?

- '~
. ae 3

e <]

E -
<A 5

y S
q’\




Two-Phase Commit (2PC)

What happens if a coordinator and a cohort fail?
Not fault-tolerant!

| have two yeses!
> P mmit!
.\! ease co t

\
I e O 1T

Did the other
cohort

commit or
abort?

Committed!




Two-Phase Commit (2PC)

What happens if there’s a partition?
Not fault-tolerant!

| have two yeses!
Please commit!

-
vl
]
'__ <A

Should |
commit or

Committed!

abort?



CONSENSUS PROTOCOL.:
THREE-PHASE COMMIT



Three-Phase Commit (3PC)

1. Voting:

| propose
- McDonalds!
\y Is that okay?




Three-Phase Commit (3PC)

2. Prepare:

| have two yeses!
s Prepare to commit.
\y P

Prepared to
Preparefj to commit!
commit!

o)




Three-Phase Commit (3PC)

3. Commit:

Everyone is

d prepared.
\! Please commit.

- IIH |

- / \ e
ommitte

& ¥ IIH ¥




Three-Phase Commit (3PC)

1. Voting: (As before for 2PC)

2. Prepare: If all votes agree, coordinator sends
and receives acknowledgements for a
“prepare to commit” message

3. Commit: If all acknowledgements are
received, coordinator sends “commit”
message

 For n nodes, in the order of 6n messages.
— 4n messages as for 2PC

— +2n messages for “prepare to commit”+ “ack.”



Three-Phase Commit (3PC)

What happens if the coordinator fails?

Everyone is

- prepared. Please
| commit!

| <l

Is everyone else

prepared to
commit?

Prepared to

commit!

o 3 A
Committing! = % LE—< 11l

Prepared to
commit!

<€ Okay!
‘ Committing!




Three-Phase Commit (3PC)

What happens if coordinator and a cohort
member fail?

e Rest of cohort know if abort/commit!

N

'L___ <L

Prepared to

Prepared to
commit!

-) -~
Committing! 3 SUITTESs = &

-‘ «

® commit!




Two-Phase vs. Three Phase

Did you spot the difference?

* In 2PC, in case of failure, one cohort may
already have committed/aborted while
another cohort doesn’t even know if the
decision is commit or abort!

e |n 3PC, this is not the case!



3PC useful to avoid locking

.I-'I-| Coordinator |

Ceohorts Bniug
1
]
canCommit? ;
== |
I
Yas J
- ! Urourtsin
I Phase TR0 SA M S50
1
preCommit |'

ACK | Pepaned io oammit
= i Flgge 2 Tl adames aanmi.
1
I

oot . If

==

I

P FaveCommitied !
- i Presed  CRmPARERL

1

1

[ ]



Two/Three Phase Commits

e Assumes synchronous behaviour!

 Assumes knowledge of failures!

— Cannot be guaranteed if there’s a network
partition!

e Assumes fail-stop errors



How to decide the leader?

We need a leader for consensus ... so what if we
need consensus for a leader?



CONSENSUS PROTOCOL.:
PAXOS



Turing Award: Leslie Lamport

e One of his contributions: PAXOS

LESLIE LAMPORT

United States — 2013

CITATION

For fundamental contributions to the theory and practice of distributed
and concurrent systems, notably the invention of concepts such as causality
and logical clocks, safety and liveness, replicated state machines, and
sequential consistency.




PAXOS Phase 1a: Prepare

* A coordinator proposes with a number n

| wish to lead a
proposal! (72)

-
)
! il

«




PAXOS Phase 1b: Promise

* By saying “okay”, a cohort agrees to reject
lower numbers

| wish to lead a
= [
\! proposal! (72)

"
it Sorry! 72>23!

/(72)! I accept
and will reject
roposals below 72.

| wish to lead a
proposal! (23)

4 '

> V
¥ | B <Aliling & 72

V. -
Q(.




PAXOS Phase 1a/b: Prepare/Promise

* This continues until a majority agree and a
leader for the round is chosen ...

| wish to lead a
proposal! (72)

72

Okay (72)! | accept

Okay (72)! | accept
and will reject
proposals below 72.

iy

«

and will reject
proposals below 72.




PAXOS Phase 2a: Accept Request

 The leader must now propose the value to be
voted on this round ...

A
&
W=7

«



PAXOS Phase 2b: Accepted

 Nodes will accept if they haven’t seen a higher
request and acknowledge ...

1hAds

. McDonalds? (72)

-\;

-~ IIIIII

Okay (72)
Okay (72)!

72 . & < ||m

/i‘v



PAXOS Phase 3: Commit

e |f a majority pass the proposal, the leader tells
the cohort members to commit ...

* IMRE
‘ /.%f

&



PAXOS Round

Leader
proposes

I’ll lead
with id

Wait for
majority

Okay: nis
highest
we’ve seen

Ipropose
“v” with n

Wait for
majority

Okay “v
sounds
good

1A
: Prepare

1B:
Promise |
: Request

2A:
Accept

2B: | 3A:
Accepted | Commit



PAXOS: No Agreement?

e |f a majority cannot be reached, a new
proposal is made with a higher number (by
another member)



PAXOS: Failure Handling

e Leader is fluid: based on highest ID the members
have stored

— If Leader were fixed, PAXOS would be like 2PC

e Leader fails?
— Another leader proposes with higher ID

e Leader fails and recovers (asynchronous)?
— Old leader superseded by new higher ID

e Partition?
— Requires majority / when partition is lifted, members
must agree on higher ID



PAXOS: Guarantees

e Validity/Integrity:
(assumes fail-stop errors)
— Value proposed by a leader

e Agreement/Consistency

(assumes fewer than half encounter errors and that
all errors are fail-stop)

— A value needs a majority to pass
— Each member can only choose one value

— Therefore only one agreed value can have a
majority in the system!



PAXOS Guarantees:

 Termination/Liveness:

(only if at least eventually synchronous)
— Apply PAXOS in rounds based on the timeout A
— |If messages exceed A, retry in later round



PAXOS variations

e Some steps in classical PAXOS not always
needed; variants have been proposed:

— Cheap PAXOS / Fast PAXOS / Byzantine PAXOS ...



PAXOS In-Use

Google

Chubby: “Paxos Made Simple”



RECAP



CAP Systems

CA Guarantees to give a CP Guarantees responses
correct response but only :
: while network works fine
(Centralised / Traditional)

are correct even if there are  :
5 network failures, but response i
: may fail (Weak availability)

[l
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
‘Q
"
*

(No intersection)

AP: Always provides a
: “best-effort” response even

: in presence of network
: failures (Eventual conS/stency)



Consensus for CP-systems

e Synchronous vs. Asynchronous

— Synchronous less difficult than asynchronous

e Fail-stop vs. Byzantine
— Byzantine typically software (arbitrary response)
— Fail-stop gives no response



Consensus for CP-systems

e Two-Phase Commit (2PC)
— Voting
— Commit

e Three-Phase Commit (3PC)
— Voting
— Prepare
— Commit



Consensus for CP-systems

* PAXOS:

— 1a. Prepare

— 1b. Promise

— 2a. Accept Request
— 2b. Accepted

— 3. Commit



Questions?



