CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTONO 2016

Lecture 2: Distributed Systems |

Aidan Hogan
aidhog@gmail.com

MASSIVE DATA NEEDS
DISTRIBUTED SYSTEMS ...

Monolithic vs. Distributed Systems

e One machine that's n e n machines that are
equally as powerful?

times as powerful? VS.

Parallel vs. Distributed Systems

e Parallel System e Distributed System
— often = shared memory — often = shared nothing

Processor

Processor Processor Processor 1:

1: $ $ Memory

Processor

!

Memory

Memory

Processor

!

Memory

What is a Distributed System?

“A distributed system is a system that enables a

collection of independent computers to communicate in
order to solve a common goal.”

0010010001011010100
e > 1111

<HIIT v CNITITI

100101110100010001001

<> |1I1II

What is a Distributed System?

“An ideal distributed system is a system that makes a
collection of independent computers look like one
computer (to the user).”

Disadvantages of Distributed Systems

(Possible) Advantages
* Cost

— Better performance/price
e Extensibility
— Add another machine!
Reliability
— No central point of failure!

Workload

— Balance work automatically

e Sharing

— Remote access to services

(Possible) Disadvantages

e Software
— Need specialised programs

Networking
— Can be slow

* Maintenance

— Debugging sw/hw a pain
e Security

— Multiple users

e Parallelisation
— Not always applicable

WHAT MAKES A GOOD
DISTRIBUTED SYSTEM?

Distributed System Design

“An ideal distributed system is a system that makes a

collection of independent computers look like one
computer (to the user).”

e Transparency: Abstract/hide:
— Access: How different machines are accessed
— Location: What machines have what/if they move
— Concurrency: Access by several users
— Failure: Keep it a secret from the user

Distributed System Design

e Flexibility:
— Add/remove/move machines
— Generic interfaces

e Reliability:
— Fault-tolerant: recover from errors
— Security: user authentication
— Availability: uptime/total-time

Distributed System Design

e Performance:
— Runtimes (processing)
— Latency, throughput and bandwidth (data)

e Scalability
— Network and infrastructure scales
— Applications scale
— Minimise global knowledge/bottlenecks!

DISTRIBUTED SYSTEMS:
CLIENT-SERVER ARCHITECTURE

Client—Server Model

e Client makes request to server
e Server acts and responds

h

(For example: Email, WWW, Printing, etc.)

Client=Server: Thin Client

e Few computing resources for client: /0

— Server does the hard work

(For example: PHP-heavy websites, SSH, email, etc.)

Client—Server: Fat Client

e Fuller computing resources for client: 1/0

— Server sends data: computing done client-side

(For example: Javascript-heavy websites, multimedia, etc.)

Client—=Server: Mirror Servers

e User goes to any machine (replicated/mirror)

=
=N

e
e ——

Client—Server: Proxy Server

e User goes to “forwarding” machine (proxy)

Client—Server: Three-Tier Server

Server

Logic

Add all the
salaries

SQL: Query
salary of all
employees

Presentation

Create
HTML page

HTTP GET:
Total salary
of all
employees

Client—=Server: n-Tier Server

e Slide from Google’s Jeff Dean:

2007: Universal Search

Logical
(multiple tiers)

Data Indexing Service

DISTRIBUTED SYSTEMS:
PEER-TO-PEER ARCHITECTURE

Peer-to-Peer (P2P)

Client—Server

e C(lients interact directly with

a “central” server

- .
- -

- .

Peer-to-Peer

e Peers interact directly
amongst themselves

- — .
{_L]:_] _L
-

NI/

-

Peer-to-Peer: Unstructured (flooding)

(For example: Kazaa, Gnutella)

Peer-to-Peer: Unstructured (flooding)

i Pixie’s new
album?

(For example: Kazaa, Gnutella)

Peer-to-Peer: Structured (Central)

 |In central server, each Ricky Martin’s

new album?

peer registers

— Content
— Address

* Peer requests content
from server

e Peers connect directly

e Central point-of-failure

(For example: Napster ... central directory was shut down)

Peer-to-Peer: Structured (Hierarchical)

e Super-peers and peers

Peer-to-Peer: Structured (DHT)

e Distributed Hash Table
e (key,value) pairs
* key based on hash

10 11

e Query with key

100/\101 110/\111

 Insert with (key,value) /001 o1 \
* Peer indexes key range L e @/ e \ju
= % \?; ® (empty)

Hash: 000

(For example: Bittorrent’s Tracker)

Peer-to-Peer: Structured (DHT)

e Circular DHT:

— Only aware of
neighbours 110

— O(n) lookups

e Implement shortcuts 101
— Skips ahead

— Enables binary-search-
like behaviour

Pixie’s new
— O(log(n)) lookups album? 111

Peer-to-Peer: Structured (DHT)

 Handle peers leaving
(churn)

— Keep n successors

* New peers
— Fill gaps

— Replicate

Comparison of P2P Systems

For Peer-to-Peer, what are the benefits of (1) central
directory vs. (2) unstructured, vs. (3) structured?

1) Central Directory

e Search follows directory (1 lookup)
e Connections = O(n)

e Central point of failure

e Peers control their data

* No neighbours

2) Unstructured 3) Structured

e Search requires flooding (n lookups) e Search follows structure (log(n) lookups)
e Connections = 0O(n?) e Connections = O(n)

* No central point of failure No central point of failure

e Peers control their data * Peers assigned data

e Peers control neighbours e Peers assigned neighbours

P2P vs. Client—Server

What are the benefits of Peer-to-Peer vs. Client—Server?

Client-Server Peer-to-Peer
e Data lost in failure/deletes e May lose rare data (churn)
e Search easier/faster e Search difficult (churn)
e Network often faster (to e Network often slower (to
websites on backbones) conventional users)
e (Often central host e Multiple hosts
— Data centralised — Data decentralised
— Remote hosts control data — Users (often) control data
— Bandwidth centralised — Bandwidth decentralised
— Dictatorial — Democratic

— Can be taken off-line — Difficult to take off-line

DISTRIBUTED SYSTEMS:
HYBRID EXAMPLE (BITTORRENT)

BitTorrent: Search Server

BitTorrent
Search
(Server)

ngm————————————————

nartin”

Client—Server

BitTorrent: Tracker

BitTorrent
Peer Tracker

(or DHT)

BitTorrent: File-Sharing

BitTorrent: Hybrid

Uploader Downloader

1. Creates torrent file 1. Searches torrent file

2. Uploads torrent file 2. Downloads torrent file

3. Announces on tracker 3. Announces to tracker

4. Monitors for downloaders 4. Monitors for peers/seeds

5. Connects to downloaders 5. Connects to peers/seeds

6. Sends file parts 6. Sends & receives file parts
7. Watches illegal movie

Local / Client—Server / Structured P2P / Direct P2P
(Torrent Search Engines target of law-suits)

DISTRIBUTED SYSTEMS:
IN THE REAL WORLD

Real-World Architectures: Hybrid

e Often hybrid!

— Architectures herein are simplified/idealised

— No clear black-and-white (just good software!)

— For example, BitTorrent mixes different paradigms
— But good to know the paradigms

Physical Location: Cluster Computing

 Machines (typically) in a central, local
location; e.g., a local LAN in a server room

/m}

/-mb- /qb-

g

Physical Location: Cluster Computing

-
R L -
T -

|
L
Ll
b
L]
¥
L]
, K |
e
'R
i.
L]
‘"
L]

Physical Location: Cloud Computing

 Machines (typically) in a central, remote
location; e.g., a server farm like Amazon EC2

<AL

<a

-

<A

N —————

Physical Location: Cloud Computing

Amazon EC2

Region: us-east-1

Availability Zone
-!"'

Physical Location: Grid Computing

* Machines in diverse locations

® — &
\
/ e
= 1 / =2
\ e \@/

. |
\ —

Physical Location: Grid Computing

Yol 208 P 5T23
Fages T41-508 10

This globe shows your climate model running g
Model date and time: 19/10/1952 00:30 :

R

DISTIRIBUTED

‘ l’fjumputing

AYAAAS

Atmos Model Time 00 : 30

Atmos Model Date 19/10/1952 —
Hours Elapsed 0685:15:50 (2 .99 s/T3)
Timestep B26417 of 4147560
Progress 19.93 %

created by

bbc.co.uk/climatechange ' : ' climateprediction.net

Physical Location: Grid Computing

274,207,281_ 1

((((((

Physical Locations

e Cluster computing:
— Typically centralised, local

e Cloud computing:
— Typically centralised, remote

* Grid computing:
— Typically decentralised, remote

LIMITATIONS OF DISTRIBUTED
SYSTEMS: EIGHT FALLACIES

Eight Fallacies

e By L. Peter Deutsch (1994)
— James Gosling (1997)

“Essentially everyone, when they first build a
distributed application, makes the following eight
assumptions. All prove to be false in the long run
and all cause big trouble and painful learning
experiences.” — L. Peter Deutsch

e Each fallacy is a false statement!

1. The network is reliable

Machines fail,
connections fail, firewall
eats messages

e flexible routing
e retry messages
 acknowledgements!

2. Latency Is zero

There are significant
communication delays

e avoid “races”

 |ocal order # remote
order

e acknowledgements

e minimise remote calls
— batch data!

e avoid waiting
— multiple-threads

3. Bandwidth is infinite

Limited in amount of
data that can be
transferred

e avoid resending data
e avoid bottlenecks

e direct connections

e caching!!

4. The network is secure

Network is vulnerable to Vo

hackers, eavesdropping, Send Medical
History

viruses, etc.

* send sensitive data
directly

e jsolate hacked nodes

— hack one node # hack all
nodes

e authenticate messages
* secure connections

5. Topology doesn’t change

How machines are
physically connected
may change (“churn”)!

e avoid fixed routing
— next-hop routing?

e abstract physical
addresses

e flexible content

structure
Message M5 thru

M2, M3, M4

6. There is one administrator

Different machines
have different policies!

e Beware of firewalls!

e Don’t assume most
recent version

— Backwards compat.

/. Transport cost Is zero

It costs time/money to
transport data: not just
bandwidth

(Again)
e minimise redundant
data transfer

— avoid shuffling data
— caching

e direct connection
e compression?

8. The network is homogeneous

Devices and connections
are not uniform

e interoperability!
e route for speed
— not hops

* |oad-balancing

Eight Fallacies (to avoid)

. . Severity of fallacies vary
. The network is reliable in different scenarios!

Which fallacies apply/do

Latency is zer
atency Is zero not apply for:

Bandwidth is infinite

h I e Gigabit ethernet LAN?
e nhetwork IS secure e BitTorrent

‘opology doesn’t change © The Web
‘here is one administrator

‘ransport cost is zero

0 N DU R WN R

"he network is homogeneous

Discussed later: Fault Tolerance

R bt

LAB Il PREVIEW:
JAVA RMI OVERVIEW

Why is Java RMI Important?

We can use it to quickly build distributed
systems using some standard Java skills.

What is Java RMI?

e RMI = Remote Method Invocation

e Remote Procedure Call (RPC) for Java
e Predecessor of CORBA (in Java)
e Stub / Skeleton model (TCP/IP)

<N etwork>

Skeleton

What is Java RMI?

Stub (Client): Skeleton (Server):
— Sends request to skeleton:
marshalls/serialises and
transters arguments — Passes call from stub onto the
server implementation
— Passes the response back to

— Demarshalls/deserialises the stub
response and ends call

Network Skeleton

Stub/Skeleton Same Interface!

package org.mdp.dir;

timport java.io.Serializable;[]

o JEE
| f* This is the interface that will be registered in the server.
* In RMI, a remote interface is called a stub (on the client-side)
* or a skeleton (on the server-side).
*
* An implementaticn is created and registered on the server.
*
* Remote machines can then call the methods of the interface.
*
* Note: every method *must* throw RemoteException!
*
* Note: every cobject passed or returned *must* be Serializable!
*
* @author Ajdan
y

public interface UserDirectoryStub extends Remote, Serializableq
public boolean createUser(User u) throws RemoteException;

public Map<String,User> getDirectory() throws RemoteException;

public User removelUserWithMame(String un) throws RemoteException;

Server

Server Implements Skeleton

package ocrg.mdp.dir;
+ import java.util.HashMap;[]

* This is the implementation of UserDirecteryStub.[]
public class UserDirectoryServer implements UserDirectoryStub {

private static final long seriglVersionUID = -6825896167995177546L;
private Map<String,User:> directory;

- public UserDirectoryServer(){ PrObIem?

directory = new HashMap<String,User:();

¥
) , , Synchronisation:
& * Return true if successful, false otherwise.[]
= public boolean createlser(User u) { (e.g., should use
if(u.getUsername()==null)
return false; ConcurrentHashMap)
directory.put{u.getUsername(}, u); [Thanks to Tomas Vera ©]
System.out.println({"New user registered! Bienvendic a ...'\n\t"+u);
return true;
h
+ * Returns the current directory of users.[]

= public Map<String, User:> getDirectory() {
return directory;
¥

® * Just an option to clean up if necessaryl[]
= public User removeUserWithName(String un) {
System.out.println({"Removing username ""+un+"'. Chac!™);

turn directory. (un);
} FETUrn 1rectory. removelun Se rver

Server Registry

e Server (typically) has a Registry: a Map
e Adds skeleton implementations with key (a string)

Registry
“sk3” | Skellmpl3

“sk2” | Skellmpl2

“sk1” | Skellmpll

Server Creates/Connects to Registry

[/ create registry
Registry registry = LocateRegistry.creagteRegistry(port);

OR

/f connect to registry
Registry registry = LocateRegistry.getRegistry(hostname, port);

Server

Server Registers Skeleton
Implementation As a Stub

// create a remote stub to make it
// ready for incoming calls
Remote stub = UnicastRemoteObject.exportObject(new UserDirectoryServer(),@);

// register stub in registry under a key stub-name
String stubname = "mensaje”;
registry.bind{stubname, stub);

Server

Client Connecting to Registry

e Client connects to registry (port, hostname/IP)!

e Retrieves skeleton/stub with key

e
o 2

Skellmpl2

Registry

”Sk3”

Skellmpl3

llskzﬂ

Skellmpl2

”Skl”

Skellmpl1

Client Connecting to Registry

String hostname = "server.com”;
int port = 1985;
String stubname = "mensaje”;

/{ first need to connect to the remote registry on the giwven
// IP and port
Registry registry = LocateRegistry.getRegistry(hostname, port);

/{ then need to find the interface we're locking for
UserDirectoryStub stub = (UserDirectoryStub) registry.lockup(stubname);

Client Calls Remote Methods

e Client has stub, calls method, serialises arguments
e Server does processing
e Server returns answer; client deserialises result

Client l IH ., Server

Concat (lla”’”b”)

Skellmpl2

Client Calls Remote Methods

// now we can use the stub to call remote methods!!
Map<5tring,User> users = stub.getDirectory();
System.err.println{users.toString());

User u = new User("aidhog”, "Aidan Hogan", "18.8.114.59", 1589);
stub.createlUser{u);

users = stub.getDirectory();
System.err.println{users.toString());

stub.removeUserWithName("aidhog");

users = stub.getDirectory();
System.err.println{users.toString());

Java RMI: Remember ...

1.

Remote calls are pass-by-value, not pass-by-
reference (objects not modified directly)

. Everything passed and returned must be

Serialisable (implement Serializable)

. Every stub/skel method must throw a remote

exception (throws RemoteException)

Server implementation can only throw
RemoteException

RECAP

Topics Covered (Lab)

e External Merge Sorting
— When it doesn’t fit in memory, use the disk!
— Split data into batches
— Sort batches in memory
— Write batches to disk
— Merge sorted batches into final output

Topics Covered

* What is a (good) Distributed System?

e Client—Server model
— Fat/thin client
— Mirror/proxy servers
— Three-tier

e Peer-to-Peer (P2P) model
— Central directory
— Unstructured
— Structured (Hierarchical/DHT)
— BitTorrent

Topics Covered

* Physical locations:
— Cluster (local, centralised) vs.
— Cloud (remote, centralised) vs.
— Grid (remote, decentralised)

e 8 fallacies
— Network isn’t reliable
— Latency is not zero
— Bandwidth not infinite,
— etc.

Java: Remote Method Invocation

* Java RMI:
— Remote Method Invocation
— Stub on Client Side
— Skeleton on Server Side
— Registry maps names to skeletons/servers
— Server registers skeleton with key
— Client finds skeleton with key, casts to stub
— Client calls method on stub
— Server runs method and serialises result to client

Questions?

e

3 GUI\NEQS

/

