CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTOÑO 2016

Lecture 1: Introduction

Aidan Hogan aidhog@gmail.com

THE VALUE OF DATA

Soho, London, 1854

The mystery of cholera

The hunt for the invisible cholera

Cholera: Galen's miasma theory

John Snow: 1813-1858

The Survey of Soho

Data collection

TABLE VI. The Mortality from Cholera in 1854, in Thirty-one Sub-Districts, as compared with Calculations founded on the Results shown in Table v.

Registration Districts.	Registration 5ub-Districts.	Population in 1891.	Estimated population supplied with water as under.			Deaths from cholers, in 1894.		Calculated mortality in the population, supplied with water as under.			
			Southwark and Vanchall Co.	Lambeth Co.	Both Companies together.	Total deaths.	Deaths per 10,000 living.	Southwark and Vauxhall Co. at 160 per 10,000.	Lambeth Co. at 27 per 10,000.	The two Companies.	Calculated deaths per 10,000 supplied by the two Companies.
St. Saviour, Southw	1. Christchurch	10,022	2,015	13,234	16,149	113	71	46	36	82	57
	2. St. Saviour	19,700	16,337	898	17,235	378	192	261	2	263	153
St. Olave	1. St. Olave	8,015	8,745	0	8,745	161	201	140	0	140	160
	2. St. John, Horselydown	11,300	9,360	0	9,300	152	134	150	0	150	160
Bermondsey	1. St. James	18,899	23,173	603	23,866	362	192	370	2	372	156
	2. St. Mary Magdalen -	13,934	17,258	0	17,258	247	177	276	0	276	160
	3. Leather Market	15,295	14,003	1,002	15,095	237	155	224	3	227	150
St. George, Southw	1. Kent Road	18,126	12,630	3,997	16,627	177	98	202	11	213	134
	2. Borough Road	15,862	8,937	6,672	15,600	271	171	143	18	161	104
	3, London Road	17,836	2,872	11,497	14,369	95	53	46	31	79	55
Newington	1. Trinity	20,922	10,132	8,370	18,502	211	101	102	22	184	99
	2. St. Peter, Walworth .	29,861	14,274	10,724	24,998	391	131	228	29	257	103
	3. St. Mary	14,033	2,983	5,484	8,467	0:2	66	48	15	63	74

What the data showed ...

What the data showed ...

616 deaths, 8 days later ...

Cholera notice ca. 1866

Thirty years before discovery of *V. cholerae*

John Snow: Father of Epidemiology

Epidemiology's Success Stories

Value of data: Not just epidemiology

(Paper) notebooks no longer good enough

THE GROWTH OF DATA

Wikipedia

≈ 5.9 TB of data (*Jan. 2010 Dump*)

1 Wiki = 1 Wikipedia

US Library of Congress

≈ 235 TB archived

≈ 40 Wiki

Sloan Digital Sky Survey

≈ 200 GB/day

≈ 73 TB/year

≈ 12 Wiki/year

NASA Center for Climate Simulation

≈ 32 PB archived

≈ 5,614 Wiki

Facebook

≈ 100 TB/day added

≈ 17 Wiki/day

≈ 6,186 Wiki/year (as of Mar. 2010)

Large Hadron Collider

≈ 15 PB/year

≈ 2,542 Wikipedias/year

Google

≈ 20 PB/day <u>processed</u>

≈ 3,389 Wiki/day

≈ 7,300,000 Wiki/year

(Jan. 2010)

Internet (2016)

≈ 1.3 ZB/year

≈ 220,338,983 Wiki/year (2016 IP traffic; Cisco est.)

Data: A Modern-day Bottleneck?

BIG DATA

- A buzz-word: no precise definition?
- Data that are too big to process by "conventional means"
- A call for Computer Scientists to produce new techniques to crunch even more data

 Storage, processing, querying, analytics, data mining, applications, visualisations ...

How many V's in "Big Data"?

- Three 'V's:
 - Volume (large amounts of data)
 - Velocity (rapidly changing data)
 - Variety (different data sources and formats)
- Maybe more (Value, Veracity)

"BIG DATA" IN ACTION ...

Social Media

What's happening here? (Trendsmap)

"What are the hot topics of discussion in an area"

Analyse tags of geographical tweets

What's the fastest route? (Waze)

"What's the fastest route to get home right now?"

- Processes real journeys to build background knowledge
- "Participatory Sensing"

Christmas Predictions for Stores

"What will be the hot items to stock up on this Christmas? We don't want to sell out!"

- Analyse product hype on Twitter, Search Engines and Social Networks
- Analyse transaction histories

Get Elected President (Narwhal)

"Who are the undecided voters and how can I convince them to vote for me?"

- User profiles built and integrated from online sources
- Targeted emails sent to voters based on profile

Predicting Pre-crime (PredPol)

"What areas of the city are most need of police patrol at 13:55 on Mondays?"

- PredPol system used by Santa Cruz (US) police to target patrols
- Predictions based on analysis of 8 years of historical crime data
- Minority Report!

IBM Watson: Jeopardy Winner

"William Wilkinson's "An Account of the Principalities of Wallachia and Moldavia" inspired this author's most famous novel."

- Indexed 200 million pages of structured and unstructured content
- An ensemble of 100 techniques simulating Al-like behaviour

Check it out on **YouTube**!

"BIG DATA" NEEDS "MASSIVE DATA PROCESSING" ...

Every Application is Different ...

- Data can be
 - Structured data (JSON, XML, CSV, Relational Databases, HTML form data)
 - Unstructured data (text document, comments, tweets)
 - And everything in-between!
 - Often a mix!

Every Application is Different ...

Processing can involve:

- Natural Language Processing (sentiment analysis, topic extraction, entity recognition, etc.)
- Machine Learning and Statistics (pattern recognition, classification, event detection, regression analysis, etc.)
- Even inference! (Datalog, constraint checking, etc.)
- And everything in-between!
- Often a mix!

Scale is a Common Factor ...

Cannot run expensive algorithms

I have an algorithm.

I have a machine that can process 1,000 input items in an hour.

If I buy a machine that is <u>n</u> times as powerful, how many input items can I process in an hour?

Depends on algorithm complexity of course!

Note: Not the same machine!

power of machinery (\times instructions per second)

Scale is a Common Factor ...

• One machine that's *n* times as powerful?

VS.

 n machines that are equally as powerful?

Scale is a Common Factor ...

- Data-intensive (our focus!)
 - Inexpensive algorithms / Large inputs
 - e.g., Google, Facebook, Twitter
- Compute-intensive (not our focus!)
 - More expensive algorithms / Smaller inputs
 - e.g., climate simulations, chess games, combinatorials
- No black and white!

"MASSIVE DATA PROCESSING" NEEDS
"DISTRIBUTED COMPUTING" ...

Distributed Computing

- Need more than one machine!
- Google ca. 1998:

Distributed Computing

- Need more than one machine!
- Google ca. 2014:

Data Transport Costs

- Need to divide tasks over many machines
 - Machines need to communicate
 - ... but not too much!
 - Data transport costs (simplified):

Main Memory

Solid-state Disk

Hard-disk

Network

Need to minimise network costs!

Data Placement

 Need to think carefully about where to put what data!

I have four machines to run my website. I have 10 million users.

Each user has personal profile data, photos, friends and games.

How should I split the data up over the machines?

Depends on application of course!

(But good design principles apply universally!)

Network/Node Failures

Need to think about failures!

Lot of machines: likely one will break!

Network/Node Failures

 Need to think (even more!) carefully about where to put what data!

I have four machines to run my website. I have 10 million users.

Each user has a personal profile, photos, friends and apps.

How should I split the data up over the machines?

Depends on application of course!

(But good design principles apply universally!)

Human Distributed Computation

"DISTRIBUTED COMPUTING" LIMITS & CHALLENGES ...

Distribution Not Always Applicable!

Distributed Development Difficult

- Distributed systems can be complex
- Tasks take a long time!
 - Bugs may not become apparent for hours
 - Lots of data = lots of counter-examples
 - Need to balance load!
- Multiple machines to take care of
 - Data in different locations
 - Logs and messages in different places
 - Need to handle failures!

Frameworks/Abstractions can Help

For Distrib. Processing
 For Distrib. Storage

HOW DOES TWITTER WORK?

Based on 2013 slides by Twitter lead architect: Raffi Krikorian

"Twitter Timelines at Scale"

Big Data at Twitter

- 150 million active worldwide users
- 400 million tweets per day
 - mean: 4,600 tweets per second
 - max: 143,199 tweets per second
- 300 thousand queries/sec for user timelines

6 thousand queries/sec for custom search

Supporting timelines:write

• 300 thousand queries per second

High-fanout

@ladygaga
31 million followers

@katyperry28 million followers

@justinbieber 28 million followers

@barackobama23 million followers

Supporting timelines: read

300 thousand queries per second

Supporting text search

- Information retrieval
 - Earlybird: Lucene clone
 - Write once
 - Query many

Timeline vs. Search

Twitter: Full Architecture

Big Data at Twitter

- 150 million active worldwide users
- 400 million tweets per day
 - 4,600 tweets per second
 - max: 143,199 tweets per second
- 300 thousand queries/sec for user timelines

6 thousand queries/sec for custom search

"PROCESAMIENTO MASIVO DE DATOS" ABOUT THE COURSE ...

What the Course Is/Is Not

- Data-intensive not Compute-intensive
- Distributed tasks not networking
- Commodity hardware not big supercomputers
- General methods not specific algorithms
- Practical methods with a little theory

What the Course Is!

- Principles of Distributed Computing [2 weeks]
- Distributed Processing Frameworks [3 weeks]
- Information Retrieval [3 weeks]
- Principles of Distributed Databases [3 weeks]
- Projects [2 weeks]

Course Structure

- ~1.5 hours of lectures per week [Monday]
- 1.5 hours of labs per week [Wednesday]
 - To be turned in by Friday evening
 - Mostly Java
 - In Lab on 3rd floor, edificio norte

http://aidanhogan.com/teaching/cc5212-1-2016/

Course Marking

- 45% for Weekly Labs (~3% a lab!)
- 20% for Small Class Project
- 35% for Final Exam [more challenging]

Questions?