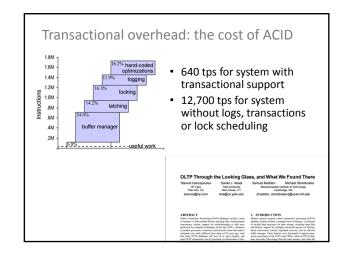
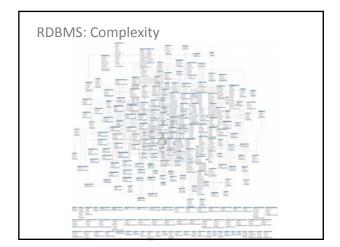

CC5212-1 PROCESAMIENTO MASIVO DE DATOS OTOÑO 2015

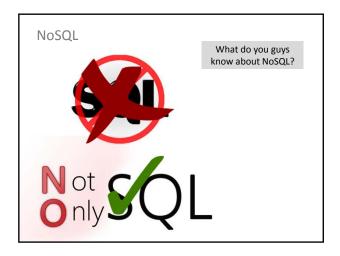
Lecture 9: NoSQL I

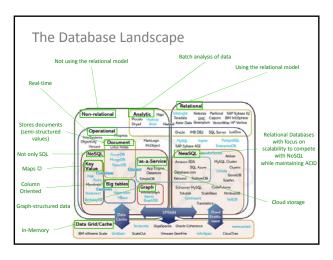
Aidan Hogan aidhog@gmail.com

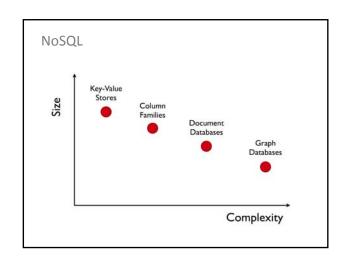
BIG DATA:
STORING STRUCTURED INFORMATION

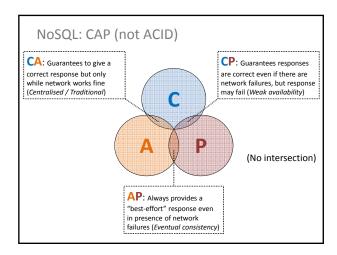


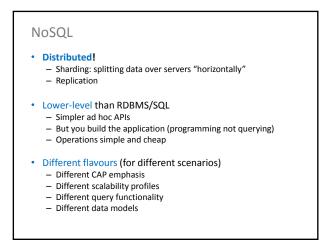


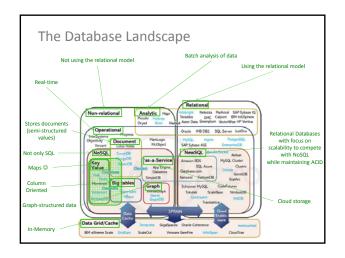

RDBMS: Performance Overheads

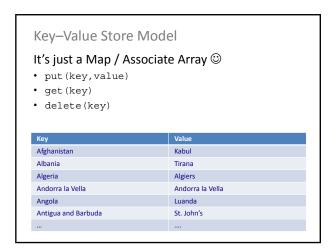

- Structured Query Language (SQL):
 - Declarative Language
 - Lots of Rich Features
 - Difficult to Optimise!
- Atomicity, Consistency, Isolation, Durability (ACID):
 - Makes sure your database stays correct
 - Even if there's a lot of traffic!
 - Transactions incur a lot of overhead
 - Multi-phase locks, multi-versioning, write ahead logging
- Distribution not straightforward

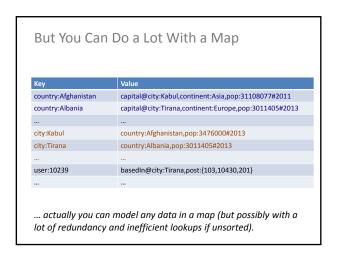


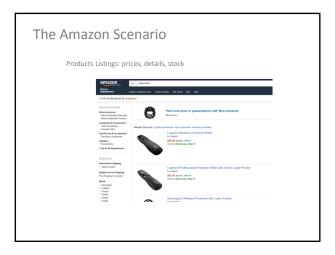

ALTERNATIVES TO RELATIONAL DATABASES FOR QUERYING BIG STRUCTURED DATA?

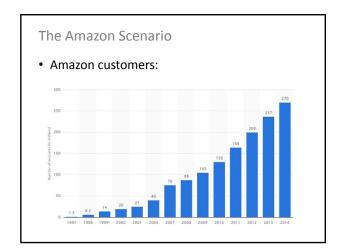


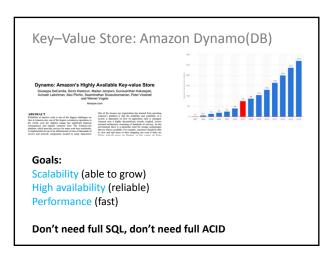

			,		
Rank	Last Month	DBMS	Database Model	Score	Changes
1.	1.	Oracle	Relational DBMS	1502.74	-11.34
2.	2.	MySQL	Relational DBMS	1309.10	+16.43
3.	3.	Microsoft SQL Server	Relational DBMS	1207.80	-2.63
4.	4.	PostgreSQL	Relational DBMS	240.64	+10.41
5.	5.	MongoDB	Document store	224.62	+10.28
6.	6.	DB2	Relational DBMS	186.47	+1.89
7.	7.	Microsoft Access	Relational DBMS	145.36	+2.60
8.	8.	SQLite	Relational DBMS	89.29	-0.88
9.	9.	Cassandra	Wide column store	81.73	+3.01
10.	10.	Sybase ASE	Relational DBMS	80.00	+1.87
11.	11.	Solr	Search engine	67.16	+4.28
12.	12.	Teradata	Relational DBMS	65.53	+3.80
13.	13.	Redis	Key-value store	62.04	+3.58
14.	14.	FileMaker	Relational DBMS	55.59	+1.21
15.	↑ 16.	HBase	Wide column store	40.27	+3.66
16.	4 15.	Informix	Relational DBMS	36.51	-0.20
17.	↑ 19.	Elasticsearch	Search engine	32.06	+2.27
18.	↓ 17.	Hive	Relational DBMS	31.76	+0.74
19.	4 18.	Memcached	Key-value store	31.74	+0.76
20.	↑ 21.	Splunk	Search engine	24.68	+2.17
21.	↓ 20.	CouchDB	Document store	22.85	+0.30
22.	22.	Neo4j	Graph DBMS	21.46	+0.91
23.	23.	SAP HANA	Relational DBMS	20.19	+2.17
		http://db-engin	es.com/en/ranking		

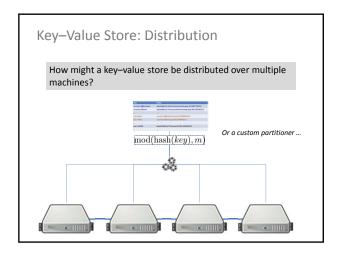


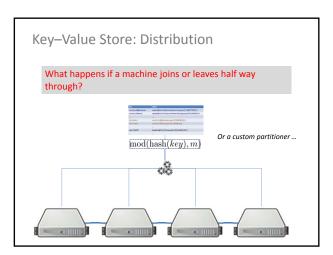


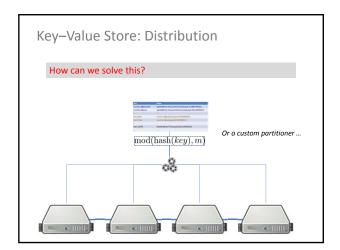

NOSQL: KEY–VALUE STORE

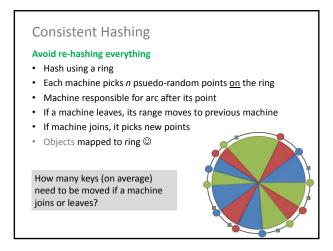


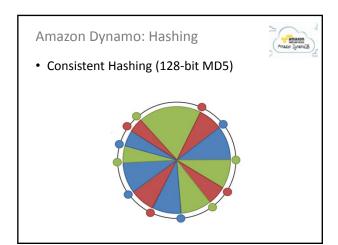


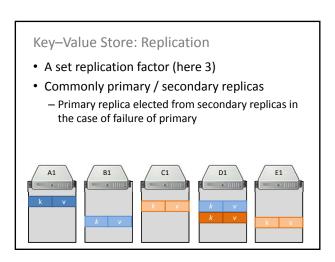


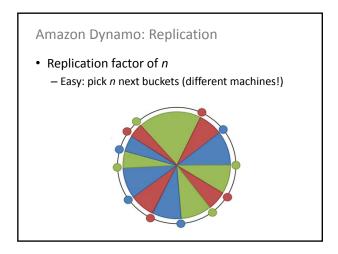


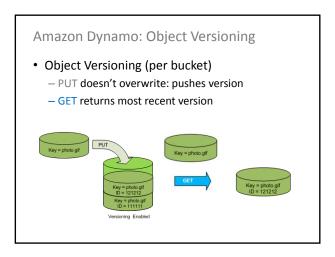


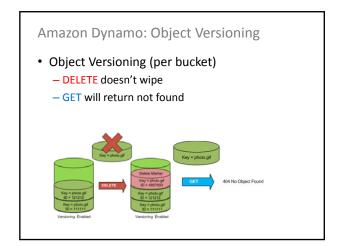


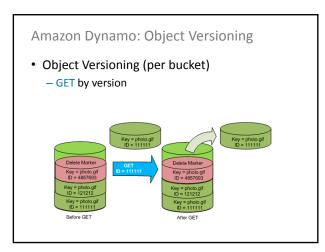


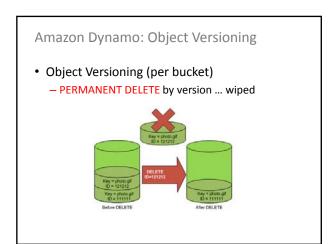


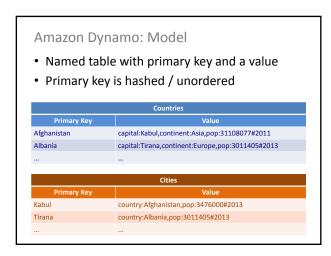


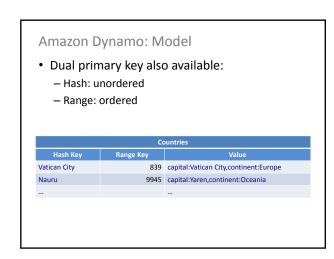


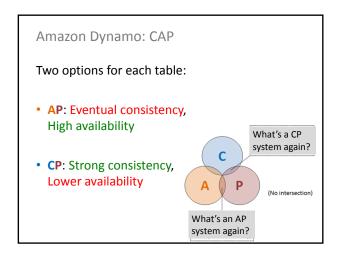


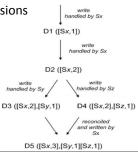








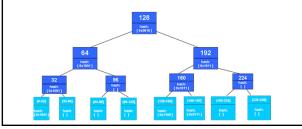



Amazon Dynamo: Consistency

- Gossiping
 - Keep alive messages sent between nodes with state
- Quorums:
 - N nodes responsible for a read write
 - Multiple nodes acknowledge read/write for success
 - At the cost of availability!
- Hinted Handoff
 - For transient failures
 - A node "covers" for another node while its down

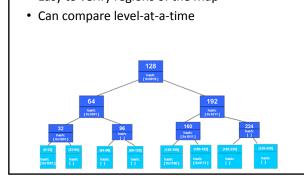
Two versions of one shopping cart: **Bhopping Cart **Will by Paragard Units 218 Production **Shopping Cart **Will be Paragard Units 218 Production **Will be Paragard Units 218 Producti

Amazon Dynamo: Vector Clocks


- Vector Clock: A list of pairs indicating a node (i.e., a server) and a time stamp
- Used to track/order versions

Amazon Dynamo:

Eventual Consistency using Merkle Trees


- · Merkle tree is a hash tree
- · Nodes have hashes of their children
- Leaf node hashes from data: keys or ranges

Amazon Dynamo:

Eventual Consistency using Merkle Trees

• Easy to verify regions of the Map

Amazon Dynamo: Budgeting

- Assign throughput per table: allocate resources
- Reads (4 KB resolution):

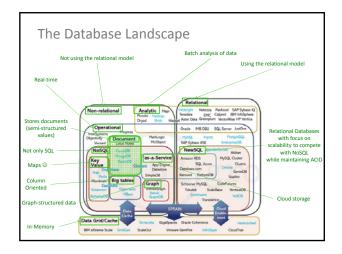
Expected Item Size	Consistency	Desired Reads Per Second	Provisioned Throughput Required
4 KB	Strongly consistent	50	50
8 KB	Strongly consistent	50	100
4 KB	Eventually consistent	50	25
8 KB	Eventually consistent	50	50

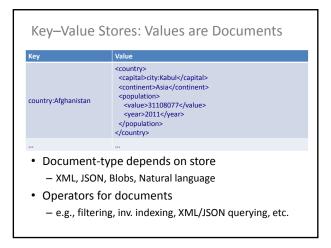
• Writes (1 KB resolution)

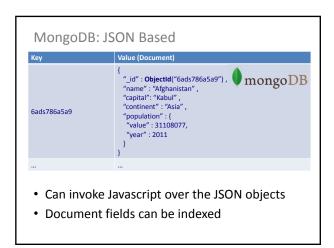
Expected Item Size	Desired Writes Per Second	Provisioned Throughput Required
1 KB	50	50
2 KB	50	100

Dynamo: Amazon's Highly Available Key-value Store
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Plichin, Swaminathan Sivasubramanian, Peter Vosshall
and Womer Vogels
Amazon.com

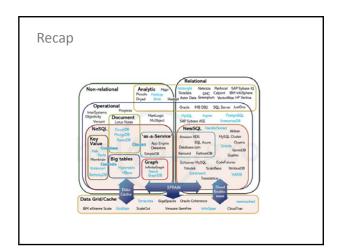
ABSTRACT
Idhibitiya or musike scale is one of the larget e-commerce operation in
the wordt, even the slightest orange has significant financia
partiem, which provides services for many web this wordersky,
is implemented on top of an infrantructure of tean of thousand,
of services and nervice conjections location many discussions.


OTHER KEY–VALUE STORES

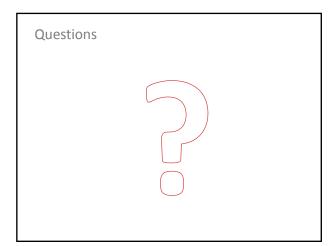




NOSQL: DOCUMENT STORE



RECAP


Recap

- Relational Databases don't solve everything
 - SQL and ACID add overhead
 - Distribution not so easy
- NoSQL: what if you don't need SQL or ACID?
 - Something simpler
 - Something more scalable
 - Trade efficiency against guarantees

Recap

- Key-value stores inspired by Amazon Dynamo
 - Distributed maps
 - Hash keys and range keys
 - Table names
 - Consistent hashing
 - Replication
 - Object versioning / vector clocks
 - Gossiping / Quorums / Hinted Hand-offs
 - Merkle trees
 - Budgeting
- Document stores: documents as values
 - Support for JSON, XML values, field indexing, etc.

