
26/05/2015

1

CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTOÑO 2015

Lecture 9: NoSQL I

Aidan Hogan
aidhog@gmail.com

Information Retrieval:
Storing Unstructured Information

BIG DATA: 
STORING STRUCTURED INFORMATION

Relational Databases

Relational Databases: 
One Size Fits All?



26/05/2015

2

RDBMS: Performance Overheads

• Structured Query Language (SQL):
– Declarative Language
– Lots of Rich Features
– Difficult to Optimise!

• Atomicity, Consistency, Isolation, Durability (ACID):
– Makes sure your database stays correct

• Even if there’s a lot of traffic!

– Transactions incur a lot of overhead
• Multi-phase locks, multi-versioning, write ahead logging

• Distribution not straightforward

Transactional overhead: the cost of ACID

• 640 tps for system with 
transactional support

• 12,700 tps for system 
without logs, transactions 
or lock scheduling

RDBMS: Complexity

ALTERNATIVES TO RELATIONAL 
DATABASES FOR QUERYING BIG 
STRUCTURED DATA?

NoSQL
What do you guys 

know about NoSQL?

The Database Landscape

Using the relational model

Relational Databases
with focus on 

scalability to compete 
with NoSQL

while maintaining ACID

Batch analysis of data
Not using the relational model

Real-time

Stores documents 
(semi-structured 

values)

Not only SQL

Maps 

Column 
Oriented

Graph-structured data

In-Memory

Cloud storage



26/05/2015

3

http://db-engines.com/en/ranking

NoSQL

C

A P
(No intersection)

CA: Guarantees to give a 
correct response but only 
while network works fine
(Centralised / Traditional)

CP: Guarantees responses 
are correct even if there are 
network failures, but response 
may fail (Weak availability)

AP: Always provides a 
“best-effort” response even 
in presence of network 
failures (Eventual consistency)

NoSQL: CAP (not ACID) NoSQL
• Distributed!

– Sharding: splitting data over servers “horizontally”
– Replication

• Lower-level than RDBMS/SQL
– Simpler ad hoc APIs
– But you build the application (programming not querying)
– Operations simple and cheap

• Different flavours (for different scenarios)
– Different CAP emphasis
– Different scalability profiles
– Different query functionality
– Different data models

NOSQL: KEY–VALUE STORE

The Database Landscape

Using the relational model

Relational Databases
with focus on 

scalability to compete 
with NoSQL

while maintaining ACID

Batch analysis of data
Not using the relational model

Real-time

Stores documents 
(semi-structured 

values)

Not only SQL

Maps 

Column 
Oriented

Graph-structured data

In-Memory

Cloud storage



26/05/2015

4

Key–Value Store Model

Key Value
Afghanistan Kabul
Albania Tirana
Algeria Algiers
Andorra la Vella Andorra la Vella
Angola Luanda
Antigua and Barbuda St. John’s
… ….

It’s just a Map / Associate Array 
• put(key,value)

• get(key)

• delete(key)

But You Can Do a Lot With a Map

Key Value
country:Afghanistan capital@city:Kabul,continent:Asia,pop:31108077#2011
country:Albania capital@city:Tirana,continent:Europe,pop:3011405#2013
… …
city:Kabul country:Afghanistan,pop:3476000#2013
city:Tirana country:Albania,pop:3011405#2013
… …
user:10239 basedIn@city:Tirana,post:{103,10430,201}
… …

… actually you can model any data in a map (but possibly with a 
lot of redundancy and inefficient lookups if unsorted).

THE CASE OF AMAZON

The Amazon Scenario

Products Listings: prices, details, stock

The Amazon Scenario

Customer info: shopping cart, account, etc.

The Amazon Scenario

Recommendations, etc.:



26/05/2015

5

The Amazon Scenario

• Amazon customers:

The Amazon Scenario

The Amazon Scenario

Databases struggling …

But many Amazon services don’t need:
• SQL (a simple map often enough)
or even:
• transactions, strong consistency, etc.

Key–Value Store: Amazon Dynamo(DB)

Goals: 
Scalability (able to grow) 
High availability (reliable)
Performance (fast)

Don’t need full SQL, don’t need full ACID

Key–Value Store: Distribution

How might a key–value store be distributed over multiple 
machines?

Or a custom partitioner … 

Key–Value Store: Distribution

What happens if a machine joins or leaves half way 
through?

Or a custom partitioner … 



26/05/2015

6

Key–Value Store: Distribution

How can we solve this?

Or a custom partitioner … 

Consistent Hashing
Avoid re-hashing everything
• Hash using a ring
• Each machine picks n psuedo-random points on the ring
• Machine responsible for arc after its point
• If a machine leaves, its range moves to previous machine
• If machine joins, it picks new points
• Objects mapped to ring 

How many keys (on average) 
need to be moved if a machine 
joins or leaves?

Amazon Dynamo: Hashing

• Consistent Hashing (128-bit MD5)

Key–Value Store: Replication
• A set replication factor (here 3)
• Commonly primary / secondary replicas

– Primary replica elected from secondary replicas in 
the case of failure of primary

k v

k v

A1 B1 C1 D1 E1

k v

k vk v
k v

Amazon Dynamo: Replication

• Replication factor of n
– Easy: pick n next buckets (different machines!)

Amazon Dynamo: Object Versioning

• Object Versioning (per bucket)
– PUT doesn’t overwrite: pushes version
– GET returns most recent version



26/05/2015

7

Amazon Dynamo: Object Versioning

• Object Versioning (per bucket)
– DELETE doesn’t wipe
– GET will return not found

Amazon Dynamo: Object Versioning

• Object Versioning (per bucket)
– GET by version

Amazon Dynamo: Object Versioning

• Object Versioning (per bucket)
– PERMANENT DELETE by version … wiped

Amazon Dynamo: Model

Countries
Primary Key Value

Afghanistan capital:Kabul,continent:Asia,pop:31108077#2011
Albania capital:Tirana,continent:Europe,pop:3011405#2013
… …

• Named table with primary key and a value
• Primary key is hashed / unordered

Cities
Primary Key Value

Kabul country:Afghanistan,pop:3476000#2013
Tirana country:Albania,pop:3011405#2013
… …

Amazon Dynamo: Model
• Dual primary key also available:

– Hash: unordered
– Range: ordered

Countries
Hash Key Range Key Value

Vatican City 839 capital:Vatican City,continent:Europe
Nauru 9945 capital:Yaren,continent:Oceania
… …

Amazon Dynamo: CAP

Two options for each table:

• AP: Eventual consistency, 
High availability 

• CP: Strong consistency, 
Lower availability

What’s a CP 
system again?

What’s an AP 
system again?



26/05/2015

8

Amazon Dynamo: Consistency
• Gossiping

– Keep alive messages sent between nodes with state

• Quorums:
– N nodes responsible for a read write
– Multiple nodes acknowledge read/write for success
– At the cost of availability!

• Hinted Handoff
– For transient failures 
– A node “covers” for another node while its down

Amazon Dynamo: Consistency

• Two versions of one shopping cart:

How best to handle multiple conflicting versions of a value 
(knowing as reconciliation)?

• Application knows best (… and must support multiple versions 
being returned)

Amazon Dynamo: Vector Clocks

• Vector Clock: A list of pairs indicating a node 
(i.e., a server) and a time stamp

• Used to track/order versions

Amazon Dynamo: 
Eventual Consistency using Merkle Trees
• Merkle tree is a hash tree
• Nodes have hashes of their children
• Leaf node hashes from data: keys or ranges

Amazon Dynamo: 
Eventual Consistency using Merkle Trees
• Easy to verify regions of the Map
• Can compare level-at-a-time

Amazon Dynamo: Budgeting

• Assign throughput per table: allocate 
resources

• Reads (4 KB resolution):

• Writes (1 KB resolution)



26/05/2015

9

Read More …

OTHER KEY–VALUE STORES

Other Key–Value Stores Other Key–Value Stores

Other Key–Value Stores

NOSQL: DOCUMENT STORE



26/05/2015

10

The Database Landscape

Using the relational model

Relational Databases
with focus on 

scalability to compete 
with NoSQL

while maintaining ACID

Batch analysis of data
Not using the relational model

Real-time

Stores documents 
(semi-structured 

values)

Not only SQL

Maps 

Column 
Oriented

Graph-structured data

In-Memory

Cloud storage

Key–Value Stores: Values are Documents

• Document-type depends on store
– XML, JSON, Blobs, Natural language

• Operators for documents
– e.g., filtering, inv. indexing, XML/JSON querying, etc.

Key Value

country:Afghanistan

<country>
<capital>city:Kabul</capital>
<continent>Asia</continent>
<population>

<value>31108077</value>
<year>2011</year>

</population>
</country>

… …

MongoDB: JSON Based

o

• Can invoke Javascript over the JSON objects
• Document fields can be indexed

Key Value (Document)

6ads786a5a9

{
“_id” : ObjectId(“6ads786a5a9”) ,
“name” : “Afghanistan” ,
“capital”: “Kabul” ,
“continent” : “Asia” ,
“population” : {

“value” : 31108077,
“year” : 2011

}
}

… …

Document Stores

RECAP

Recap

• Relational Databases don’t solve everything
– SQL and ACID add overhead
– Distribution not so easy

• NoSQL: what if you don’t need SQL or ACID?
– Something simpler
– Something more scalable
– Trade efficiency against guarantees



26/05/2015

11

Recap Recap
• Key–value stores inspired by Amazon Dynamo

– Distributed maps
– Hash keys and range keys
– Table names
– Consistent hashing
– Replication
– Object versioning / vector clocks
– Gossiping / Quorums / Hinted Hand-offs
– Merkle trees
– Budgeting

• Document stores: documents as values
– Support for JSON, XML values, field indexing, etc.

Questions


