26/05/2015

CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTOoNO 2015

Lecture 9: NoSQL |

Aidan Hogan
aidhog@gmail.com

Information Retrieval:
Storing Unstructured Information

BIG DATA:
STORING STRUCTURED INFORMATION

Relational Databases

Relational Databases:
One Size Fits All?

“One Size Fits AlI”: An Idea Whose Time Has Come and Gone

Michacl Stoncbraker Ugur Cetintemel
Computer Science and Ariificial Depariment of Computer Science
i Brown University, and

StreamBase Systems. Inc
ugur@cs.brown.edu

Various practical problerns,

o
problem, because all applications

bave to run against every code line;
* a sales problem, bocause salespoople get confsed
about which produst try 10 sell 10 8 customer, and

To ens, all the msjor DBMS vendors
e “put all wood behind one
we argue that this strategy has
and wall il more dramatically

est. of the paper is stuctured
Section 2, we briefly indicate why 8
strategy bas failed already by citing

CEE iy NS STumes W] Yo fues VLTTIED
m racors QROVe®: Wil Zimbra

Biognischent ‘WRve R —
BT Tail .

@ *
meds LK M blish flogr ®

nee

f—— ogi h——— standpoint
1. W suury wntefl) .. ® WIRE (iarms mm— S
e J Cabendarivs Y :
Supr —— sdytag Findory CERAED SEE gOFFICE c
€urun CHD e bidEEeat B7 E#1 VSocial wink
Woedcant P Fucrin - L & L v~ @

g

*00FINGER.. muman feed Trer wii, |Z3) DR =
Codes (XY AN .
Fogiines) MEDTNEN Oroccs | Sirmedis B2
N - X o W ety a0k -
sovcson, Gy o () S e
" look [joibe R eshox
wob¥ayw OME Noodly e W\ box pmmm [
vinie | R e .}. Mmonhes ~ Tagyy FEEY Simpv e
[TRUVED -] T —
|11 newvine QPR 2 e po e
B e R (S5 e

Temas LS Tehnanani e Graal

26/05/2015

RDBMS: Performance Overheads

* Structured Query Language (SQL):
— Declarative Language
— Lots of Rich Features
— Difficult to Optimise!

* Atomicity, Consistency, Isolation, Durability (ACID):
— Makes sure your database stays correct
* Even if there’s a lot of traffic!
— Transactions incur a lot of overhead
* Multi-phase locks, multi-versioning, write ahead logging

* Distribution not straightforward

Transactional overhead: the cost of ACID

'62% hand-coded
oplimizations

1M

* 640 tps for system with
transactional support

1.2M

g

g 'zx . » 12,700 tps for system

2w B without logs, transactions
a buffer manager or lock scheduling
M

OLTP Through the Looking Glass, and What We Found There

SuvosHauopouos Damels ADK SamuedMaoden Michael Soneuaker
oLt Vae vty stakrunces v o Tecrnidy

s s 4 sew i €1 .

trassen

RDBMS: Complexity

ALTERNATIVES TO RELATIONAL
DATABASES FOR QUERYING BIG
STRUCTURED DATA?

NoSQL

What do you guys
know about NoSQL?

The Database Landscape

Batch analysis of data
Not using the relational model jp
\ o Using the relational model

Real-time

Metern, Parksesl AP Syas 1
Dac Copost B kifher
Grrmphen

Stores documents
(semi-structured
values)

Relational Databases
with focus on

scalability to compete
Not only SQL with NosQL
while maintaining ACID
Maps © ——
Column
Oriented

Cloud storage
Graph-structured data

In-Memory

26/05/2015

Rank Last Month DBMS Database Model Score Changes

1 1. Oracle Relational DBMS 150274 -11.34
2 2. MySQL Relational DBMS 1309.10 +16.43
3. 3. Microsoft SQL Server Relational DBMS 1207.80 -2.63
4. 4. PostgresQL Relational DBMS 24064 +10.41
5. 5. MongoDB Document store 22462 +10.28
6. 5. DB2 Relational DBMS 186.47 +1.89
7 7. Microsoft Access Relational DBMS 14536 42.60
8. & SOQLite Relational DBMS 89.29 -0.88
a 5, Cassandra Wide column store 8173 +3.01

10. 10. Sybase ASE Relational DBMS 80.00 +1.87

11 11 Soir Search angine 67.16 +4.28

12, 12, Teradata Relational DBMS 65.53 +3.80

13. 13, Radis Key-value store 62.04 4358

14. 14, FileMaker Relational DEMS 55.59 +1.21

15. 4 16, HBase Wide column store 40.27 +3.66

16,y 15, Informix Relational DBMS 36.51 -0.20

17. 4 19, Elasticsearch Search angine 32.06 +2.27

18, 17, bive Relational DBMS 3176 +0.74

19. 4 18, Memcached Key-valuie store 374 +0.76

20. 4 21, Sphnk Search engine 24.68 +2.17

21 g 20. CouchDB Document store 22.85 +0.30

22. 22 MNeosj Graph DBMS 21.46 +0.91

23. 23. SAP HANA Relational DBMS 20.19 +2.17

http://db-engines.com/en/ranking

NoSQL

Key-Value
@ Stores

N Column
w . Families

. Document

Darabases

. Graph
Databases

Complexity

NoSQL: CAP (not ACID)

CA: Guarantees to give a
correct response but only
while network works fine
(Centralised / Traditional)

CP: Guarantees responses

are correct even if there are

network failures, but response
may fail (Weak availability)

(No intersection)

AP: Always provides a
“best-effort” response even
in presence of network
failures (Eventual consistency)

NoSQL

* Distributed!
— Sharding: splitting data over servers “horizontally”
— Replication

* Lower-level than RDBMS/SQL
— Simpler ad hoc APIs
— But you build the application (programming not querying)
— Operations simple and cheap

« Different flavours (for different scenarios)
— Different CAP emphasis
— Different scalability profiles
— Different query functionality
— Different data models

NOSQL: KEY-VALUE STORE

The Database Landscape

Batch analysis of data
Not using the relational model

Using the relational model

Real-time

Metern, Parksesl AP Syas 1
Dac Copost B8 badgten
Stores documents s

(semi-structured

Relational Databases

values) with focus on
scalability to compete
Not only SQL with NosQL
while maintaining ACID
Maps©® —
Column
Oriented

Cloud storage
Graph-structured data

In-Memory

26/05/2015

Key—Value Store Model

It’s just a Map / Associate Array ©
* put (key,value)

* get (key)

* delete (key)

Afghanistan Kabul

Albania Tirana

Algeria Algiers

Andorra la Vella Andorra la Vella
Angola Luanda
Antigua and Barbuda St. John’s

But You Can Do a Lot With a Map

country:Afghanistan capital@city:Kabul,continent:Asia,pop:31108077#2011
country:Albania capital@city:Tirana,continent:Europe,pop:3011405#2013
city:Kabul country:Afghanistan,pop:3476000#2013

city:Tirana country:Albania,pop:3011405#2013

user:10239 basedIn@city:Tirana,post:{103,10430,201}

... actually you can model any data in a map (but possibly with a
lot of redundancy and inefficient lookups if unsorted).

THE CASE OF AMAZON

The Amazon Scenario

Products Listings: prices, details, stock

The Amazon Scenario

Customer info: shopping cart, account, etc.

W Shopping Cart iy » e

P e
The Prim s of Beoratol Wek ige - Lonen B
Faperiacs

----- ' DaLMake t FNC A Comnen Sense ARkl LS
AR Unabiy, Jod Lk - Sives sy Paparbach Tou deen

The Amazon Scenario

Recommendations, etc.:

Customers Who Bought This Ttem Also Bought

26/05/2015

The Amazon Scenario

* Amazon customers:

The Amazon Scenario

amazon

webservices™

The Amazon Scenario

Databases struggling ...

But many Amazon services don’t need:
* SQL (a simple map often enough)
or even:

* transactions, strong consistency, etc.

Key—Value Store: Amazon Dynamo(DB)

Dynamo: Amazon's Highly Avallable Key-value Stora
e St s P voeoai I
i I
_--IIII

Goals:

Scalability (able to grow)
High availability (reliable)
Performance (fast)

Don’t need full SQL, don’t need full ACID

Key—Value Store: Distribution

How might a key—value store be distributed over multiple
machines?

Or a custom partitioner ...

Key—Value Store: Distribution

What happens if a machine joins or leaves half way
through?

Or a custom partitioner ...

26/05/2015

Key—Value Store: Distribution Consistent Hashing

Avoid re-hashing everything

How can we solve this? * Hash using a ring

¢ Each machine picks n psuedo-random points on the ring
¢ Machine responsible for arc after its point

* If a machine leaves, its range moves to previous machine

Or a custom partitioner ... « If machine joins, it picks new points

é u)mj * Objects mapped to ring ©

How many keys (on average)
need to be moved if a machine

; ; ; ; ; ; ; ; joins or leaves?

Amazon Dynamo: Hashing ; /% Key—Value Store: Replication
* Consistent Hashing (128-bit MD5) * Aset replication factor (here 3)
* Commonly primary / secondary replicas
— Primary replica elected from secondary replicas in
the case of failure of primary
Al B1 cil, D1 i B8 ;
[
[
Amazon Dynamo: Replication Amazon Dynamo: Object Versioning
* Replication factor of n * Object Versioning (per bucket)
— Easy: pick n next buckets (different machines!) — PUT doesn’t overwrite: pushes version

— GET returns most recent version

S S
= ()

Versioning Enabled

26/05/2015

Amazon Dynamo: Object Versioning

* Object Versioning (per bucket)
— DELETE doesn’t wipe

— GET will return not found

)

404 No Object Found

Amazon Dynamo: Object Versioning

* Object Versioning (per bucket)
— GET by version

58

Before GET Afier GET

Amazon Dynamo: Object Versioning

* Object Versioning (per bucket)
— PERMANENT DELETE by version ... wiped

Amazon Dynamo: Model

* Named table with primary key and a value
* Primary key is hashed / unordered

Countries

Afghanistan capital:Kabul,continent:Asia,pop:31108077#2011
Albania

capital:Tirana,continent:Europe,pop:3011405#2013

Kabul country:Afghanistan,pop:347600042013
Tirana country:Albania,pop:3011405#2013

Amazon Dynamo: Model

* Dual primary key also available:
— Hash: unordered

— Range: ordered

Countries

Vatican City 839 capital:Vatican City,continent:Europe
Nauru

9945 capital:Yaren,continent:Oceania

Amazon Dynamo: CAP

Two options for each table:

* AP: Eventual consistency,
High availability

Ccp
in?

* CP: Strong consistency,
Lower availability

What’s an AP

system again?

26/05/2015

Amazon Dynamo: Consistency Amazon Dynamo: Consistency

* Gossiping

* Two versions of one shopping cart:
— Keep alive messages sent between nodes with state

Shopping Cart Shopping Cart

* Quorums:
— N nodes responsible for a read write
— Multiple nodes acknowledge read/write for success
— At the cost of availability!

Subtetal (2 hurss) $142.89
P

* Hinted Handoff
— For transient failures How best to handle multiple conflicting versions of a value

o knowing as reconciliation)?
— A node “covers” for another node while its down (BRI

© Application knows best (... and must support multiple versions

being returned)

Amazon Dynamo:
Eventual Consistency using Merkle Trees

* Vector Clock: A list of pairs indicating a node * Merkle tree is a hash tree
(i.e., a server) and a time stamp

Amazon Dynamo: Vector Clocks

* Nodes have hashes of their children
* Used to track/order versions

lmmys, * Leaf node hashes from data: keys or ranges
D1 ([Sx,1])
l nandmZys:l
D2 ([Sx.2])
write write
handled by Sy/ \:‘mdlsdby Sz
D3 ([Sx,2].[Sy.1]) D4 ([Sx,2],[Sz,1])
\ reconciled
and written by
Sx

D5 ([Sx,3].[Sy.1][Sz.1])

192

nasr:
[

160

past.
[ox1011]

Amazon Dynamo:

Eventual Consistency using Merkle Trees Amazon Dynamo: Budgeting

* Easy to verify regions of the Map * Assign throughput per table: allocate
* Can compare level-at-a-time resources
* Reads (4 KB resolution):

Expected Item Size | Consistency Desired Reads Per Second | Pravisioned Throughput Required
4K8 Strongly consistent 50 50
8K8 Strongly consistent 50 100

a K8 Eventuslly consistent | 50 25

8KB Eventually consistent | 50 50

64 192

* Writes (1 KB resolution)

s nasr:
[0x1001] (010111

160

32

= Expected Item Size Desired Writes Per Second Provisioned Throughput Required
L foxton]
eaonl 1KB 50 50

E 5 E : i h
hastc
1]

26/05/2015

Read More ...

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Wemner Vogels

Gne of the lessons our organization has leamed from operating
mazon's platform is that the reliability and scalability of a

serviees. In this
storage techaologics
xample, customers should be able

o
10 view and add iems 1o their shopping can cven if disks arc

OTHER KEY-VALUE STORES

Other Key—Value Stores

sriak

L[p
COMCAST stym“tec \:g/i
at!

woee G (B) Aol

Other Key—Value Stores

&P redis

F StackExchange'_'

M g @) Psithed

Other Key—Value Stores

%aw"

cassandra A

>
accenture Answers.com

E i j ;u».zmu.mgwmm-‘..; Ho pertumarce. Dchered

%?snep @

NOSQL: DOCUMENT STORE

26/05/2015

The Database Landscape

Batch analysis of data
yd

Not using the relational model
\ o Using the relational model

Real-time
N

\

\
\

Mo, Pwkiel SAPSyast
v

Stores documents
(semi-structured [Cpen Relational Databases
values) o B with focus on
scalability to compete
with NoSQL
while maintaining ACID

Not only SQL

Maps ©

Column
Oriented

Cloud storage
Graph-structured data

(v e g

In-Memory PP

e b e Contran

Key—Value Stores: Values are Documents

ey hawe

<country>
<capital>city:Kabul</capital>
<continent>Asia</continent>
<population>
<value>31108077</value>
<year>2011</year>
</population>
</country>

country:Afghanistan

* Document-type depends on store
— XML, JSON, Blobs, Natural language
* Operators for documents
— e.g., filtering, inv. indexing, XML/JSON querying, etc.

MongoDB: JSON Based

Key Value (Document)

jectld(“6ads786a5a9”) , . mongoDB
“Afghanistan” ,

“Kabul”,
“continent” : “Asia” ,
“population” : {

“value” : 31108077,
“year” : 2011
}
}

6ads786a5a9

* Can invoke Javascript over the JSON objects
* Document fields can be indexed

Document Stores

Couchbase

CouchDB

. mongoDB

RECAP

Recap

¢ Relational Databases don’t solve everything
—SQL and ACID add overhead
— Distribution not so easy

NoSQL: what if you don’t need SQL or ACID?
— Something simpler

— Something more scalable

— Trade efficiency against guarantees

10

26/05/2015

Recap

innal
Netrms Parkceel SAP Sybiss

Recap

* Key—value stores inspired by Amazon Dynamo
— Distributed maps

— Hash keys and range keys ™~ /—‘\ £
-
— Table names | \
amazon
— Consistent hashing ﬁmazu;rg’[bq'" uarw[]a“ \,
/
— Replication b g

— Object versioning / vector clocks
— Gossiping / Quorums / Hinted Hand-offs
— Merkle trees
— Budgeting
* Document stores: documents as values
— Support for JSON, XML values, field indexing, etc.

Questions

11

