
27/04/2015

1

CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTOÑO 2015

Lecture 4: DFS & MapReduce I

Aidan Hogan
aidhog@gmail.com

Fundamentals of Distributed Systems

MASSIVE DATA PROCESSING
(THE GOOGLE WAY …)

Inside Google circa 1997/98

Inside Google circa 2015 Google’s Cooling System

27/04/2015

2

Google’s Recycling Initiative Google Architecture (ca. 1998)

Information Retrieval
• Crawling
• Inverted indexing
• Word-counts
• Link-counts
• greps/sorts
• PageRank
• Updates
…

Google Engineering

• Massive amounts of data
• Each task needs communication protocols
• Each task needs fault tolerance
• Multiple tasks running concurrently

Ad hoc solutions would repeat the same code

Google Engineering

• Google File System
– Store data across multiple machines
– Transparent Distributed File System
– Replication / Self-healing

• MapReduce
– Programming abstraction for distributed tasks
– Handles fault tolerance
– Supports many “simple” distributed tasks!

• BigTable, Pregel, Percolator, Dremel …

Google Re-Engineering

Google File System (GFS)

MapReduce

BigTable

GOOGLE FILE SYSTEM (GFS)

27/04/2015

3

What is a File-System?

• Breaks files into chunks (or clusters)
• Remembers the sequence of clusters
• Records directory/file structure
• Tracks file meta-data

– File size
– Last access
– Permissions
– Locks

What is a Distributed File-System

• Same thing, but distributed

• Transparency: Like a normal file-system
• Flexibility: Can mount new machines
• Reliability: Has replication
• Performance: Fast storage/retrieval
• Scalability: Can store a lot of data / support a

lot of machines

What would transparency / flexibility / reliability /
performance / scalability mean for a distributed file system?

Google File System (GFS)
• Files are huge

• Files often read or appended
– Writes in the middle of a file not (really) supported

• Concurrency important

• Failures are frequent

• Streaming important

GFS: Pipelined Writes

Master

Chunk-servers (slaves)

• 64MB per chunk
• 64 bit label for each chunk
• Assume replication factor of 3

1
1 12

2
2

3

3

3
1

1 122
2

File System (In-Memory)
/blue.txt [3 chunks]
1: {A1, C1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}
/orange.txt [2 chunks]
1: {B1, D1, E1}
2: {A1, C1, E1}

A1 B1 C1 D1 E1

blue.txt
(150 MB: 3 chunks)
orange.txt

(100MB: 2 chunks)

GFS: Pipelined Writes (In Words)

1. Client asks Master to write a file
2. Master returns a primary chunkserver and

secondary chunkservers
3. Client writes to primary chunkserver and tells it

the secondary chunkservers
4. Primary chunkserver passes data onto

secondary chunkserver, which passes on …
5. When finished, message comes back through

the pipeline that all chunkservers have written
– Otherwise client sends again

GFS: Fault Tolerance

Master blue.txt
(150 MB: 3 chunks)

• 64MB per chunk
• 64 bit label for each chunk
• Assume replication factor of 3

1
1 12

2
2

3

3

3

orange.txt
(100MB: 2 chunks)

1
1 122

2

File System (In-Memory)
/blue.txt [3 chunks]
1: {A1, B1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}
/orange.txt [2 chunks]
1: {B1, D1, E1}
2: {A1, D1, E1}

A1 B1 D1 E1C1

1
2

Chunk-servers (slaves)

27/04/2015

4

GFS: Fault Tolerance (In Words)

• Master sends regular “Heartbeat” pings

• If a chunkserver doesn’t respond
1. Master finds out what chunks it had
2. Master assigns new chunkserver for each chunk
3. Master tells new chunkserver to copy from a specific

existing chunkserver

• Chunks are prioritised by number of remaining
replicas, then by demand

GFS: Direct Reads

Master

Chunk-servers (slaves)

1
1 12

2
2

3

3

3
1

1 122
2

File System (In-Memory)
/blue.txt [3 chunks]
1: {A1, C1, E1}
2: {A1, B1, D1}
3: {B1, D1, E1}
/orange.txt [2 chunks]
1: {B1, D1, E1}
2: {A1, C1, E1}

A1 B1 C1 D1 E1

Client

I’m looking for
/blue.txt

1 2 3

GFS: Direct Reads (In Words)

1. Client asks Master for file
2. Master returns location of a chunk
– Returns a ranked list of replicas

3. Client reads chunk directly from chunkserver
4. Client asks Master for next chunk

Software makes transparent for client!

GFS: Modification Consistency
Masters assign leases to one
replica: a “primary replica”

Client wants to change a file:
1. Client asks Master for the

replicas (incl. primary)
2. Master returns replica info to

the client
3. Client sends change data
4. Client asks primary to

execute the changes
5. Primary asks secondaries to

change
6. Secondaries acknowledge to

primary
7. Primary acknowledges to

client

Remember: Concurrency!
Data & Control Decoupled

GFS: Rack Awareness GFS: Rack Awareness

Rack A
Switch

Rack B
Switch

Rack C
Switch

Core
Switch

Core
Switch

27/04/2015

5

GFS: Rack Awareness

Rack A
Switch

Rack B
Switch

Core
Switch

1

1

1

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

Files:
/orange.txt
1: {A1, A4, B3}
2: {A5, B1, B5}

2

22

Racks:
A: {A1, A2, A3, A4, A5}
B: {B1, B2, B3, B4, B5}

GFS: Rack Awareness (In Words)
• Make sure replicas not on same rack

– In case rack switch fails!

• But communication can be slower:
– Within rack: pass one switch (rack switch)
– Across racks: pass three switches (two racks and a core)

• (Typically) pick two racks with low traffic
– Two nodes in same rack, one node in another rack

• (Assuming 3x replication)

• Only necessary if more than one rack! 

GFS: Other Operations

Rebalancing: Spread storage out evenly

Deletion:
• Just rename the file with hidden file name

– To recover, rename back to original version
– Otherwise, three days later will be wiped

Monitoring Stale Replicas: Dead slave reappears
with old data: master keeps version info and will
recycle old chunks

GFS: Weaknesses?

• Master node single point of failure
– Use hardware replication
– Logs and checkpoints!

• Master node is a bottleneck
– Use more powerful machine
– Minimise master node traffic

• Master-node metadata kept in memory
– Each chunk needs 64 bytes
– Chunk data can be queried from each slave

What do you see as the core weaknesses of the
Google File System?

GFS: White-Paper

HADOOP DISTRIBUTED FILE SYSTEM
(HDFS)

27/04/2015

6

Google Re-Engineering

Google File System (GFS)

HDFS

• HDFS-to-GFS
– Data-node = Chunkserver/Slave
– Name-node = Master

• HDFS does not support modifications

• Otherwise pretty much the same except …
– GFS is proprietary (hidden in Google)
– HDFS is open source (Apache!)

HDFS Interfaces HDFS Interfaces

GOOGLE’S MAP-REDUCE

Google Re-Engineering

Google File System (GFS)

MapReduce

27/04/2015

7

MapReduce in Google

• Divide & Conquer:

1. Word count

2. Total searches per user
3. PageRank
4. Inverted-indexing

How could we do a distributed top-k word count?

MapReduce: Word Count

1 23

A1 B1 C1

a-k r-zl-q

A1 B1 C1

a 10,023
aa 6,234
…

lab 8,123
label 983
…

rag 543
rat 1,233
…

Input
Distr. File Sys.

Map()

(Partition/Shuffle)
(Distr. Sort)

Reduce()

Output

Better partitioning
method?

MapReduce (in more detail)

1. Input: Read from the cluster (e.g., a DFS)
– Chunks raw data for mappers
– Maps raw data to initial (keyin, valuein) pairs

2. Map: For each (keyin, valuein) pair, generate
zero-to-many (keymap, valuemap) pairs
– keyin /valuein can be diff. type to keymap /valuemap

What might Input do in the word-count case?

What might Map do in the word-count case?

MapReduce (in more detail)

3. Partition: Assign sets of keymap values to reducer
machines

4. Shuffle: Data are moved from mappers to
reducers (e.g., using DFS)

5. Comparison/Sort: Each reducer sorts the data
by key using a comparison function
– Sort is taken care of by the framework

How might Partition work in the word-count case?

MapReduce

6. Reduce: Takes a bag of (keymap, valuemap)
pairs with the same keymap value, and
produces zero-to-many outputs for each bag
– Typically zero-or-one outputs

7. Output: Merge-sorts the results from the
reducers / writes to stable storage

How might Reduce work in the word-count case?

MapReduce: Word Count PseudoCode

27/04/2015

8

MapReduce: Scholar Example MapReduce: Scholar Example

Assume that in Google Scholar we have inputs like:
paperA1 citedBy paperB1

How can we use MapReduce to count the total
incoming citations per paper?

MapReduce as a Dist. Sys.

• Transparency: Abstracts physical machines
• Flexibility: Can mount new machines; can run

a variety of types of jobs
• Reliability: Tasks are monitored by a master

node using a heart-beat; dead jobs restart
• Performance: Depends on the application

code but exploits parallelism!
• Scalability: Depends on the application code

but can serve as the basis for massive data
processing!

MapReduce: Benefits for Programmers

• Takes care of low-level implementation:
– Easy to handle inputs and output
– No need to handle network communication
– No need to write sorts or joins

• Abstracts machines (transparency)
– Fault tolerance (through heart-beats)
– Abstracts physical locations
– Add / remove machines
– Load balancing

MapReduce: Benefits for Programmers

Time for more important things …

HADOOP OVERVIEW

27/04/2015

9

Hadoop Architecture

Client

NameNode JobTracker

DataNode 1

DataNode 2

…

DataNode n

JobNode 1

JobNode 2

…

JobNode n

HDFS: Traditional / SPOF

1. NameNode appends
edits to log file

2. SecondaryNameNode
copies log file and
image, makes
checkpoint, copies
image back

3. NameNode loads
image on start-up and
makes remaining edits

SecondaryNameNode not
a backup NameNode

NameNode

DataNode 1

…

DataNode n

SecondaryNameNode

copy dfs/blue.txt
rm dfs/orange.txt
rmdir dfs/
mkdir new/
mv new/ dfs/

fsimage

What is the secondary name-node?

• Name-node quickly logs all file-system actions
in a sequential (but messy) way

• Secondary name-node keeps the main
fsimage file up-to-date based on logs

• When the primary name-node boots back up,
it loads the fsimage file and applies the
remaining log to it

• Hence secondary name-node helps make
boot-ups faster, helps keep file system image
up-to-date and takes load away from primary

Hadoop: High Availability

JournalManager

JournalNode 1

…

JournalNode n

Standby NameNodeActive NameNode

fs edits fs edits

JournalManager
fsimage

1

1

1

1 2

2

2

2

Active NameNode

PROGRAMMING WITH HADOOP

1. Input/Output (cmd)
> hdfs dfs

27/04/2015

10

1. Input/Output (Java)
Creates a file

system for
default

configuration

Check if the file
exists; if so

delete

Create file and
write a

message

Open and read
back

1. Input (Java)

2. Map

Mapper<InputKeyType,
InputValueType,

MapKeyType,
MapValueType>

OutputCollector will collect
the Map key/value pairs

“Reporter” can provide counters
and progress to clientEmit output

(Writable for values)

Same order

(not needed in the
running example)

(WritableComparable for keys/values)

Needed for default
partition function

Needed to sort keys

New Interface

Same as before

(not needed in the
running example)

3. Partition

PartitionerInterface

(This happens to be the default
partition method!)

(not needed in the
running example)

27/04/2015

11

4. Shuffle 5. Sort/Comparision

Methods in
WritableComparator

(not needed in the
running example)

6. Reduce
Reducer<MapKey, MapValue,

OutputKey, OutputValue>

Key, Iterator over
all values for that
key, output key–

value pair
collector, reporter

Write to output

7. Output / Input (Java)
Creates a file

system for
default

configuration

Check if the file
exists; if so

delete

Create file and
write a

message

Open and read
back

7. Output (Java) Control Flow
Create a JobClient, a JobConf

and pass it the main class

Set the type of output key
and value in the

configuration

Set input and output paths

Set the mapper class

Set the reducer class
(and optionally “combiner”)

Pass the configuration to the
client and run

27/04/2015

12

More in Hadoop: Combiner

• Map-side “mini-reduction”

• Keeps a fixed-size buffer in memory

• Reduce within that buffer
– e.g., count words in buffer
– Lessens bandwidth needs

• In Hadoop: can simply use Reducer class 

More in Hadoop: Reporter

Reporter has a group of
maps of counters

More in Hadoop: Chaining Jobs

• Sometimes we need to chain jobs

• In Hadoop, can pass a set of Jobs to the client

• x.addDependingJob(y)

More in Hadoop: Distributed Cache

• Some tasks need “global knowledge”
– For example, a white-list of conference venues

and journals that should be considered in the
citation count

– Typically small

• Use a distributed cache:
– Makes data available locally to all nodes

RECAP

Distributed File Systems

• Google File System (GFS)
– Master and Chunkslaves
– Replicated pipelined writes
– Direct reads
– Minimising master traffic
– Fault-tolerance: self-healing
– Rack awareness
– Consistency and modifications

• Hadoop Distributed File System
– NameNode and DataNodes

27/04/2015

13

MapReduce

1. Input
2. Map

3. Partition
4. Shuffle

5. Comparison/Sort
6. Reduce
7. Output

MapReduce/GFS Revision

• GFS: distributed file system
– Implemented as HDFS

• MapReduce: distributed processing
framework
– Implemented as Hadoop

Hadoop
• FileSystem

• Mapper<InputKey,InputValue,MapKey,MapValue>

• OutputCollector<OutputKey,OutputValue>

• Writable, WritableComparable<Key>

• Partitioner<KeyType,ValueType>

• Reducer<MapKey,MapValue,OutputKey,OutputValue>

• JobClient/JobConf

…

