
27/04/2015

1

CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTOÑO 2015

Lecture 3: Distributed Systems II

Aidan Hogan
aidhog@gmail.com

TYPES OF
DISTRIBUTED SYSTEMS …

Client–Server Model

• Client makes request to server
• Server acts and responds

(For example: Email, WWW, Printing, etc.)

Server

Client–Server: Three-Tier Server

Data Logic Presentation

HTTP GET:
Total salary
of all
employees

SQL: Query
salary of all
employees

Add all the
salaries

Create
HTML page

Peer-to-Peer: Unstructured

Pixie’s new
album?

(For example: Kazaa, Gnutella)

Peer-to-Peer: Structured (DHT)

• Circular DHT:
– Only aware of

neighbours
– O(n) lookups

• Implement shortcuts
– Skips ahead
– Enables binary-search-

like behaviour
– O(log(n)) lookups

000

001

010

011
100

101

110

111

Pixie’s new
album? 111

27/04/2015

2

Desirable Criteria for Distributed Systems

• Transparency:
– Appears as one machine

• Flexibility:
– Supports more machines, more applications

• Reliability:
– System doesn’t fail when a machine does

• Performance:
– Quick runtimes, quick processing

• Scalability:
– Handles more machines/data efficiently

Eight Fallacies (to avoid)

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn’t change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

Severity of fallacies vary
in different scenarios!
Which fallacies apply/do
not apply for:

• Gigabit ethernet LAN?
• BitTorrent
• The Web

LIMITATIONS OF DISTRIBUTED
COMPUTING: CAP THEOREM

But first … ACID

For traditional (non-distributed) databases …

1. Atomicity:
– Transactions all or nothing: fail cleanly

2. Consistency:
– Doesn’t break constraints/rules

3. Isolation:
– Parallel transactions act as if sequential

4. Durability
– System remembers changes

Have you heard of ACID guarantees in a database class?

What is CAP?

Three guarantees a distributed sys. could make

1. Consistency:
– All nodes have a consistent view of the system

2. Availability:
– Every read/write is acted upon

3. Partition-tolerance:
– The system works even if messages are lost

A Distributed System (Replication)

–
– –

–

27/04/2015

3

Consistency

–
– –

–

There’s 891
users in ‘M’

There’s 891
users in ‘M’

Availability

–
– –

–

How many users
start with ‘M’

891

Partition-Tolerance

–
– –

–

891

How many users
start with ‘M’

The CAP Question

Can a distributed system guarantee consistency
(all nodes have the same up-to-date view), availability (every

read/write is acted upon) and partition-tolerance (the system

works even if messages are lost) at the same time?

What do you think?

The CAP Answer The CAP “Proof”

–
– –

–

How many users
start with ‘M’

There’s 891
users in ‘M’

There’s 891
users in ‘M’

891

There’s 892
users in ‘M’

27/04/2015

4

The CAP “Proof” (in boring words)

• Consider machines m1 and m2 on either side
of a partition:
– If an update is allowed on m2 (Availability), then

m1 cannot see the change: (loses Consistency)
– To make sure that m1 and m2 have the same, up-

to-date view (Consistency), neither m1 nor m2 can
accept any requests/updates (lose Availability)

– Thus, only when m1 and m2 can communicate
(lose Partition tolerance) can Availability and
Consistency be guaranteed

The CAP Theorem

A distributed system cannot guarantee
consistency (all nodes have the same up-to-date view),
availability (every read/write is acted upon) and partition-
tolerance (the system works even if messages are lost) at the
same time.

(“Proof” as shown on previous slide )

The CAP Triangle

C

A P

Choose
Two

CAP Systems

C

A P
(No intersection)

CA: Guarantees to give a
correct response but only
while network works fine
(Centralised / Traditional)

CP: Guarantees responses
are correct even if there are
network failures, but response
may fail (Weak availability)

AP: Always provides a
“best-effort” response even
in presence of network
failures (Eventual consistency)

CA System

–
– –

–

How many users
start with ‘M’

There’s 891
users in ‘M’

There’s 891
users in ‘M’

There’s 892
users in ‘M’

There’s 892
users in ‘M’

892
CP System

–
– –

–

How many users
start with ‘M’

There’s 891
users in ‘M’

There’s 891
users in ‘M’

891

27/04/2015

5

AP System

–
– –

–

How many users
start with ‘M’

There’s 891
users in ‘M’

There’s 891
users in ‘M’

891

There’s 892
users in ‘M’

BASE (AP)

• Basically Available
– Pretty much always “up”

• Soft State
– Replicated, cached data

• Eventual Consistency
– Stale data tolerated, for a while

In what way was Twitter operating
under BASE-like conditions?

The CAP Theorem

• C,A in CAP ≠ C,A in ACID

• Simplified model
– Partitions are rare
– Systems may be a mix of CA/CP/AP
– C/A/P often continuous in reality!

• But concept useful/frequently discussed:
– How to handle Partitions?

• Availability? or
• Consistency?

FAULT TOLERANCE / CONSENSUS
SYNCHRONOUS VS. ASYNCHRONOUS

Faults Synchronous vs. Asynchronous

• Synchronous distributed system:
– Messages expected by a given time

• E.g., a clock tick
– Missing message has meaning

• Asynchronous distributed system:
– Messages can arrive at any time

• Delay is finite but not known
– Missing message could arrive any time!

27/04/2015

6

Lunch Problem

Bob Alice

Chris

10:30AM. Alice, Bob and
Chris work in the same city.
All three have agreed to go
downtown for lunch today
but have yet to decide on a
place and a time.

Asynchronous Consensus: Texting

11:35 AM. No response. Should Alice head downtown?

10:45 AM. Alice tries to invite Bob for lunch …

Hey Bob,
Want to go downtown
to McDonald’s for
lunch at 12:00AM?

Asynchronous Consensus: Texting

11:42 AM. No response. Where should Bob go?

Hey Bob,
Want to go downtown
to McDonald’s for
lunch at 12:00AM?

10:45 AM. Alice tries to invite Bob for lunch …

Hmm … I don’t like
McDonald’s much.
How about Dominos
instead?

Asynchronous Consensus: Texting

11:38 AM. No response. Did Bob see the acknowledgement?

Hey Bob,
Want to go downtown
to McDonald’s for
lunch at 12:00AM?

10:45 AM. Alice tries to invite Bob for lunch …

Hmm … I don’t like
McDonald’s much.
How about Dominos
instead?

Okay, let’s go to
Dominos.

Asynchronous Consensus

• Impossible to guarantee!
– A message delay can happen at any time and a

node can wake up at the wrong time!
– Fischer-Lynch-Patterson (1985): No consensus can

be guaranteed if there is even a single failure

• But asynchronous consensus can happen
– As you should realise if you’ve ever successfully

organised a meeting by email or text ;)

Asynchronous Consensus: Texting

11:38 AM. No response. Bob’s battery died. Alice misses the train downtown
waiting for message, heads to the cafeteria at work instead. Bob charges his
phone …

Hey Bob,
Want to go downtown
to McDonald’s for
lunch at 12:00AM?

10:45 AM. Alice tries to invite Bob for lunch …

Hmm … I don’t like
McDonald’s much.
How about Dominos
instead?

Okay, let’s go to
Dominos.

Heading to Dominos
now. See you there!

27/04/2015

7

Asynchronous Consensus: Texting

How could Alice and Bob find consensus on a
time and place to meet for lunch?

Synchronous Consensus: Telephone

10:46 AM. Clear consensus!

10:45 AM. Alice tries to invite Bob for lunch …

Hey Bob,
Want to go downtown
to McDonald’s for
lunch at 12:00AM?

How about a completo
at Domino’s instead?

Okay. 12:00AM?
Yep!

See you then!

Synchronous Consensus

• Can be guaranteed!
– But only under certain conditions …

What is the core difference between reaching
consensus in synchronous (texting or email) vs.
asynchronous (phone call) scenarios?

Synchronous Consensus: Telephone

10:46 AM. What’s the protocol?

10:45 AM. Alice tries to invite Bob for lunch …

Hey Bob,
Want to go downtown
to McDonald’s for
lunch at 12:00AM?

How about a completo

Hello?
beep, beep, beep

CAP Systems (for example …)

C

A P
(No intersection)

CA: They are guaranteed to
go to the same place for lunch
as long as each of them can
be reached.

CP: If someone cannot be
reached, they all go to the
same place for lunch or
nobody meets.

AP: If someone cannot be
reached, they all go
downtown but might not end
up at the same place.

A Consensus Protocol

• Agreement/Consistency [Safety]: All working
nodes agree on the same value. Anything agreed
is final!

• Validity/Integrity [Safety]: Every working node
decides at most one value. That value has been
proposed by a working node.

• Termination [Liveness]: All working nodes
eventually decide (after finite steps).

• Safety: Nothing bad ever happens
• Liveness: Something good eventually happens

27/04/2015

8

A Consensus Protocol for Lunch

• Agreement/Consistency [Safety]: Everyone
agrees on the same place downtown for
lunch, or agrees not to go downtown.

• Validity/Integrity [Safety]: Agreement involves
a place someone actually wants to go.

• Termination [Liveness]: A decision will
eventually be reached (hopefully before
lunch).

FAULT TOLERANCE:
FAIL–STOP VS. BYZANTINE

Fail–Stop Fault
• A machine fails to respond or times-out (often hardware or load)
• Need at least f+1 replicated machines? (beware asynch.!)

– f = number of clean failures

Word
Count

de 4.575.144
la 2.160.185
en 2.073.216
el 1.844.613
y 1.479.936

…

Byzantine Fault
• A machine responds incorrectly/maliciously (often software)
• Need at least 2f+1 replicated machines?

– f = number of (possibly Byzantine) failures

Word
Count

de 4.575.144
la 2.160.185
en 2.073.216
el 1.844.613
y 1.479.936

…

el 4.575.144
po 2.160.185
sé 2.073.216
ni 1.844.613
al 1.479.936

…

de 4.575.144
la 2.160.185
en 2.073.216
el 1.844.613
y 1.479.936

…

How many replicated
machines do we need
to guarantee tolerance
to f Byzantine faults?

Fail–Stop/Byzantine

• Naively:
– Need f+1 replicated machines for fail–stop
– Need 2f+1 replicated machines for Byzantine

• Not so simple if nodes must agree
beforehand!

• Replicas must have consensus to be useful!
CONSENSUS PROTOCOL:
TWO-PHASE COMMIT

27/04/2015

9

Two-Phase Commit (2PC)

• Coordinator & cohort members

• Goal: Either all cohorts commit to the same
value or no cohort commits to anything

• Assumes synchronous, fail-stop behaviour
– Crashes are known!

Two-Phase Commit (2PC)

1. Voting:

I propose
McDonalds!
Is that okay?

Yes!
Yes!

Two-Phase Commit (2PC)

2. Commit:

I have two yeses!
Please commit.

Committed!
Committed!

Two-Phase Commit (2PC) [Abort]

1. Voting:

I propose
McDonalds!
Is that okay?

Yes!
No!

Two-Phase Commit (2PC) [Abort]

2. Commit:

I don’t have two
yeses!

Please abort.

Aborted!
Aborted!

Two-Phase Commit (2PC)

1. Voting: A coordinator proposes a commit
value. The other nodes vote “yes” or “no”
(they cannot propose a new value!).

2. Commit: The coordinator counts the votes. If
all are “yes”, the coordinator tells the nodes
to accept (commit) the answer. If one is “no”,
the coordinator aborts the commit.

• For n nodes, in the order of 4n messages.
– 2n messages to propose value and receive votes
– 2n messages to request commit and receive acks

27/04/2015

10

Two-Phase Commit (2PC)

What happens if the coordinator fails?
• Cohort members know coordinator has failed!

I have two yeses!
Please commit.

Committed!Did you commit or
abort?

Commit!

Two-Phase Commit (2PC)

What happens if a coordinator and a cohort fail?
Not fault-tolerant!

I have two yeses!
Please commit!

Did the other
cohort

commit or
abort?

Committed!

Two-Phase Commit (2PC)

I have two yeses!
Please commit!

What happens if there’s a partition?
Not fault-tolerant!

Should I
commit or

abort?

Committed!

CONSENSUS PROTOCOL:
THREE-PHASE COMMIT

Three-Phase Commit (3PC)

1. Voting:

I propose
McDonalds!
Is that okay?

Yes!
Yes!

Three-Phase Commit (3PC)

2. Prepare:

I have two yeses!
Prepare to commit.

Prepared to
commit!

Prepared to
commit!

27/04/2015

11

Three-Phase Commit (3PC)

3. Commit:

Everyone is
prepared.

Please commit.

Committed!
Committed!

Three-Phase Commit (3PC)

1. Voting: (As before for 2PC)
2. Prepare: If all votes agree, coordinator sends

and receives acknowledgements for a
“prepare to commit” message

3. Commit: If all acknowledgements are
received, coordinator sends “commit”
message

• For n nodes, in the order of 6n messages.
– 4n messages as for 2PC
– +2n messages for “prepare to commit”+ “ack.”

Three-Phase Commit (3PC)

What happens if the coordinator fails?

Everyone is
prepared. Please

commit!

Prepared to
commit!

Prepared to
commit!

Okay!
Committing!

Is everyone else
prepared to

commit?

Yes!

Okay!
Committing!

Three-Phase Commit (3PC)

What happens if coordinator and a cohort
member fail?
• Rest of cohort know if abort/commit!

Prepared to
commit!

Okay!
Committing!

It’s a
commit!

Prepared to
commit!

Two-Phase vs. Three Phase

• In 2PC, in case of failure, one cohort may
already have committed/aborted while
another cohort doesn’t even know if the
decision is commit or abort!

• In 3PC, this is not the case!

Did you spot the difference?

Two/Three Phase Commits

• Assumes synchronous(-like) behaviour!
• Assumes knowledge of failures!

– Cannot be guaranteed if there’s a network
partition!

• Assumes fail–stop errors

27/04/2015

12

How to decide the leader?

We need a leader for consensus … so what if we
need consensus for a leader?

CONSENSUS PROTOCOL:
PAXOS

Turing Award: Leslie Lamport

• One of his contributions: PAXOS

PAXOS Phase 1a: Prepare

• A coordinator proposes with a number n

I wish to lead a
proposal! (72)

72

PAXOS Phase 1b: Promise

• By saying “okay”, a cohort agrees to reject
lower numbers

I wish to lead a
proposal! (72)

Okay (72)! I accept
and will reject

proposals below 72.

I wish to lead a
proposal! (23)

Sorry! 72>23!

7272

72

PAXOS Phase 1a/b: Prepare/Promise

• This continues until a majority agree and a
leader for the round is chosen …

I wish to lead a
proposal! (72)

Okay (72)! I accept
and will reject

proposals below 72.

Okay (72)! I accept
and will reject

proposals below 72.

7272

72

27/04/2015

13

PAXOS Phase 2a: Accept Request

• The leader must now propose the value to be
voted on this round …

McDonalds? (72)

72

7272

PAXOS Phase 2b: Accepted

• Nodes will accept if they haven’t seen a higher
request and acknowledge …

Okay (72)!

Okay (72)

7272

72

McDonalds? (72)

PAXOS Phase 3: Commit

• If a majority pass the proposal, the leader tells
the cohort members to commit …

Commit!

72

72

72

PAXOS Summary

Wait for
majority

Leader
proposes

Wait for
majority

I’ll lead
with id

n?

Okay: n is
highest

we’ve seen

I propose
“v” with n

Okay “v”
sounds
good

We’re
agreed
on “v”

1A:
Prepare

1B:
Promise

2B:
Accepted

2A:
Accept
Request

3A:
Commit

PAXOS: No Agreement?

• If a majority cannot be reached, a new
proposal is made with a higher number (by
another member)

PAXOS: Failure Handling
• Leader is fluid: based on highest ID the members

have stored
– If Leader were fixed, PAXOS would be like 2PC

• Leader fails?
– Another leader proposes with higher ID

• Leader fails and recovers (asynchronous)?
– Old leader superseded by new higher ID

• Partition?
– Requires majority / when partition is lifted, members

must agree on higher ID

27/04/2015

14

PAXOS: Guarantees

• Validity/Integrity:
– Value proposed by a leader

• Agreement/Consistency:
– A value needs a majority to pass
– Each member can only choose one value
– Other proposals would have to try convince a

majority node!
– Therefore only one agreed value can be chosen!

PAXOS In-Use

Chubby: “Paxos Made Simple”

LAB II REVIEW:
EXTERNAL SORTING

Lab II Review

What are (1) the strengths and (2) weaknesses of doing the
word count (or other large-scale processing tasks) using

external sorts compared with using main memory?

LAB III PREVIEW:
JAVA RMI OVERVIEW

Why is Java RMI Important?

We can use it to quickly build distributed
systems using some standard Java skills.

27/04/2015

15

What is Java RMI?

• RMI = Remote Method Invocation
• Remote Procedure Call (RPC) for Java
• Ancestor of CORBA (in Java)
• Stub / Skeleton model (TCP/IP)

Client

Stub Network

Server

Skeleton

What is Java RMI?

Stub (Client):
– Sends request to skeleton:

marshalls/serialises and
transfers arguments

– Demarshalls/deserialises
response and ends call

Skeleton (Server):

– Passes call from stub onto the
server implementation

– Passes the response back to
the stub

Client

Stub Network

Server

Skeleton

Stub/Skeleton Same Interface!

Client Server

Server Implements Skeleton

Server

Server

Registry

Server Registry

• Server (typically) has a Registry: a Map
• Adds skeleton implementations with key (a string)

SkelImpl1“sk1”

“sk2” SkelImpl2

“sk2” SkelImpl3

Server Creates/Connects to Registry

OR

Server

27/04/2015

16

Server Registers Skeleton
Implementation As a Stub

Server

Server

Registry

Client Connecting to Registry

• Client connects to registry (port, hostname/IP)!
• Retrieves skeleton/stub with key

Client

Network

SkelImpl1“sk1”

“sk2” SkelImpl2

“sk3” SkelImpl3
“sk2”

SkelImpl2
Stub2

Client Connecting to Registry

Client

Server

Client Calls Remote Methods

• Client has stub, calls method, serialises arguments
• Server does processing
• Server returns answer; client deserialises result

Client
Network

SkelImpl2Stub2
concat (“a”,”b”)

“ab”

Client Calls Remote Methods

Client

Java RMI: Remember …

1. Remote calls are pass-by-value, not pass-by-
reference (objects not modified directly)

2. Everything passed and returned must be
Serialisable (implement Serializable)

3. Every stub/skel method must throw a remote
exception (throws RemoteException)

4. Server implementation can only throw
RemoteException

27/04/2015

17

RECAP

CAP Systems

C

A P
(No intersection)

CA: Guarantees to give a
correct response but only
while network works fine
(Centralised / Traditional)

CP: Guarantees responses
are correct even if there are
network failures, but response
may fail (Weak availability)

AP: Always provides a
“best-effort” response even
in presence of network
failures (Eventual consistency)

Consensus for CP-systems

• Synchronous vs. Asynchronous
– Synchronous less difficult than asynchronous

• Fail–stop vs. Byzantine
– Byzantine typically software (arbitrary response)
– Fail–stop gives no response

Consensus for CP-systems

• Two-Phase Commit (2PC)
– Voting
– Commit

• Three-Phase Commit (3PC)
– Voting
– Prepare
– Commit

Consensus for CP-systems

• PAXOS:
– 1a. Prepare
– 1b. Promise
– 2a. Accept Request
– 2b. Accepted
– 3. Commit

Java: Remote Method Invocation

• Java RMI:
– Remote Method Invocation
– Stub on Client Side
– Skeleton on Server Side
– Registry maps names to skeletons/servers
– Server registers skeleton with key
– Client finds skeleton with key, casts to stub
– Client calls method on stub
– Server runs method and serialises result to client

27/04/2015

18

Questions?

