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ABSTRACT

The tables embedded in Wikipedia articles contain rich,
semi-structured encyclopaedic content. However, the cumu-
lative content of these tables cannot be queried against. We
thus propose methods to recover the semantics of Wikipedia
tables and, in particular, to extract facts from them in the
form of RDF triples. Our core method uses an existing
Linked Data knowledge-base to find pre-existing relations
between entities in Wikipedia tables, suggesting the same
relations as holding for other entities in analogous columns
on different rows. We find that such an approach extracts
RDF triples from Wikipedia’s tables at a raw precision of
40%. To improve the raw precision, we define a set of fea-
tures for extracted triples that are tracked during the ex-
traction phase. Using a manually labelled gold standard,
we then test a variety of machine learning methods for clas-
sifying correct/incorrect triples. One such method extracts
7.9 million unique and novel RDF triples from over one mil-
lion Wikipedia tables at an estimated precision of 81.5%.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining; H.3.5 [Information Storage & Retrieval]:
Online Information Services
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1. INTRODUCTION

Wikipedia contains a wealth of encyclopaedic knowledge
collaboratively curated by millions of users. Aside from un-
structured textual content, Wikipedia articles contain rich
factual data encoded in millions of tables. However, al-
though these tables are presented in a semi-structured for-
mat, they are intended for human consumption and are not
directly machine readable. The individual facts that each
such table encodes are not readily recoverable by automatic
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methods and cannot be queried by users. Though the con-
tent of these tables could be imported into a relational rep-
resentation, this still does not make the task of querying
the tables much easier: a user would need to know, in ad-
vance, the specific structure of each table they wish to query
against, which is impractical given the native heterogeneity
of relational schemata for different tables. Furthermore, per-
forming joins across such tables would require knowledge of
co-reference (when tables refer to the same entities), since
suitable primary/foreign keys are often not available.
Extracting the factual content of individual Wikipedia ta-
bles into a representation that is agnostic to their native
structure requires methods to interpret the semantics of the
table [21]. Such an interpretation aims to understand which
entities referenced by the table are related to which other en-
tities, and by what relationship. Once the semantics of the
tables are (partially) recovered, their factual content can be
presented as semantic triples [6]: binary relations of the form
(s, p,0), where the subject entity s is related to the object en-
tity o by the relationship p. The concept of semantic triples
is isomorphic to that of the RDF data model [14], where
URI identifiers can be used for entities and must be used
for relationships. Irrespective of the structure of the origi-
nating tables, facts extracted as semantic triples could then
be directly queried against using SPARQL [9]: the W3C
recommended query language for the RDF data model.

Recovering the semantics of Wikipedia tables closely re-
lates to two (mostly) orthogonal research topics.

The first area relates to works on interpreting Web ta-
bles. Cafarella et al. [4] found 14.1 billion HTML tables in a
Google crawl from 2008, estimating that 154 million contain
high-quality relational data. These tables are extremely di-
verse in terms of representation, structure and vocabulary
used; they often contain polysemous (or missing or otherwise
vague) attribute labels, ambiguous free-text cell content and
referents, cells spanning multiple rows and/or columns, split
tables, obscured contextual validity, and so forth [11]. Re-
covering the semantics of such tables is thus exceptionally
challenging, where existing methods typically aim to rather
categorise or index the schemata of such tables [4, 6, 21].

The second area relates to works that export parts of the
factual content of Wikipedia as RDF, creating knowledge-
bases published as Linked Data. The most prominent works
in this area are DBPEDIA [2] and YAGOZ2 [10]. Both works
alm to extract factual knowledge from Wikipedia, represent-
ing the results as RDF, which can be queried by SPARQL.*

!For example, see http://dbpedia.org/sparql


http://dbpedia.org/sparql

No. Position Player No. Position Player

1= GK Kenneth Vermeer 21 omm FW  Derk Boerrigter
3B 0 DF TobyAlderweireld (vice captain) 22 mmm  GK  Jasper Cillessen
4 <f= DF Niklas Moisander 23 == FW Danny Hoesen
5@m MF Christian Poulsen 2422 DF  Ricardo van Rhijn
6 MF  Eyong Ench 25 B MF  Thulani Serero
THEE  FW  Miralem Sulejmani 26 o DF  Dico Koppers

Figure 1: Split table listing all current AFC Ajax squad
members (abridged from the Wikipedia article http://en.
wikipedia.org/wiki/AFC_Ajax; CC-BY—-SA)

However, both works rely primarily on mining facts from
Wikipedia info-boxes: the attribute—value tables that ap-
pear on the top, right-hand side of many Wikipedia arti-
cles. Many such info-boxes follow standard templates that
serve as a hook for writing bulk manual mappings. Even
in cases where templates are not available, info-boxes are
relatively straightforward to semi-automatically extract se-
mantics triples from: s corresponds to the entity referred to
by the article itself, p corresponds to the attribute and o cor-
responds to the value. Neither approach presents methods
to extract the rich factual content present in the millions of
relational tables that are embedded in the body of Wikipedia
articles (which we henceforth refer to as Wikitables, as dis-
tinguished from info-boxes or tables-of-content).

Recently a number of works have looked to bridge these
two areas—including works from Limaye et al. [12] and Mul-
wad et al. [17, 20, 16]—by using Linked Data knowledge-
bases as references for interpreting the semantics of tables.

This paper follows on from these works with the aim of
mining facts from all of Wikipedia’s tables. Our methods
are inspired by those from Web tables, but where we use the
DBPEDIA Linked Data knowledge-base as a reference dur-
ing the processing of tables. Though other knowledge-bases
could also be used, we select DBPEDIA as a comprehensive
dataset extracted from Wikipedia, with URIs for each sub-
ject of a Wikipedia article, and with a wide variety of rela-
tionships between those entities. We propose to first map
entities in the tables to entities in the DBPEDIA knowledge-
base. We can then query the knowledge-base for existing
facts that involve those entities. By building a picture of
which entities in the tables have which prior relationships,
we can build an incomplete picture of the semantics of the
table and attempt to extrapolate this to the rest of the table.
We illustrate this idea with a motivating example.

Motivating Example

Figure 1 presents a Wikitable abridged from the Wikipedia
article for “AFC Ajax”: a Dutch football club.? The table
containing factual content about players: their shirt number,
country and position. There are also relationships between
players and the entity described by the article (their current
club is AFC Ajax). However, relevant relationships do not
hold across all pairs of columns: for example, there is no
obvious factual relationship between positions and countries.

Aside from the No. columns, the cells of the table contain
hyperlinks to other articles in Wikipedia, including coun-
tries, football positions, and individual players. For exam-
ple, the flags link to articles for the country; MF links to
the article for “Midfielder”: a position in football. These

2The choice of example does not necessarily reflect the sport-
ing allegiances of the present authors.

links provide unambiguous referents to Wikipedia entities,
which can in turn be mapped directly to DBPEDIA entities
and descriptions. We currently focus on the extraction of
relations between cells containing wiki-links and do not look
at plain-string values. For example, we would not try to
extract player numbers from the above table.

First we can determine the contextual entity (and in this
case, the protagonist of the table [5]) by the article in which
it appears. We can then query the DBPEDIA knowledge-base
to find relations between the context entity and various enti-
ties mentioned in the table cells. For example, the following
SPARQL query asks for all relationships in the DBPEDIA
knowledge-base that hold between the entities identified by
the CURIEs dbr:Kenneth_Vermeer and dbr:AFC_Ajax (this
query is for the purposes of illustration only; as discussed
later, for performance reasons, we do not use SPARQL):?

PREFIX dbr: <http://dbpedia.org/resource/>
SELECT ?rel WHERE { dbr:Kenneth_Vermeer ?rel dbr:AFC_Ajax }

This query returns the relationship dbp:currentclub. We
find DBPEDIA triples with predicate dbp: currentclub relat-
ing % entities in the Player to the protagonist dbr:AFC_Ajax.
For the remaining three players in those columns, we can
thus suggest the following triples as extraction candidates:

dbr:Niklas_Moisander dbp:currentclub dbr:AFC_Ajax .
dbr:Christian_Poulsen dbp:currentclub dbr:AFC_Ajax .
dbr:Danny_Hoesen dbp:currentclub dbr:AFC_Ajax .

Next we can look at relationships within the table. Taking
an example for Player and Position columns:

[SELECT ?rel WHERE { dbr:Thulani_Serero ?rel dbr:Midfielder }J

from the reference knowledge-base, dbp:position is present

in % of the rows for entities in the Player column to entities

in the Position column. We can thus suggest the missing
relation as a candidate for extraction:

[dbr:Miralem_Sulejmani dbp:position dbr:Forward . ]

Similarly, in the reference knowledge-base, the relation-
ship dbo:birthPlace holds for many entities between the
(unlabelled) country and Player columns, suggesting the
analogous missing relations as candidates for extraction.

Though this method is naturally imprecise, we could sup-
pose, for example, that the more rows for which a given
relationship with a given predicate holds in the reference
knowledge-base across two given columns, the higher the
likelihood that that relationship exists on all such rows.
Other features, such as a match between the label of the
candidate relation and a column header, can strengthen con-
fidence in the match. Such features of the extracted triple
can be used to train a classifier for correct/incorrect triples.

Though a relatively “clean” example, the table depicted in
Figure 1 already exhibits two potential obstacles: the table
is split in two, and one cell contains multiple links (“Toby
Alderweireld (vice captain)”). In practice, Wikitables exhibit
a high-degree of diversity, which poses major challenges for
extracting triples, where we rely on machine learning tech-
niques to increase accuracy.

3The CURIE prefixes used in this paper are dbr: for http:
//dbpedia.org/resource/, dbp: for http://dbpedia.org/
property/, and dbo: for http://dbpedia.org/ontology/
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Our methods can ultimately be viewed from three per-
spectives. From the Web tables perspective, we use an exist-
ing knowledge-base as a reference to interpret the semantics
of tables. From the Linked Data perspective, we enrich the
reference knowledge-base with new facts mined from tables.
From the Wikipedia perspective, we make the cumulative
knowledge of tables available for user queries.

Organisation

The rest of this paper is organised as follows:

§2. We provide an overview of related works in the areas
of Web tables, mining RDF triples from Wikipedia and ex-
tracting RDF triples from tables.

83. We survey the set of Wikitables mined from a recent
Wikipedia dump, which serves as our experimental corpus.

§4. We propose our methods for extracting candidate RDF
triples from Wikitables using DBPEDIA as a reference dataset
(as sketched in the motivating example).

85. We describe the features and machine learning methods
that we use to classify (in)correct facts.

§6. We conclude with a summary of results and possible
future directions.

This paper extends an earlier work [18] where we surveyed
Wikipedia’s tables and presented initial ideas for mining
facts from them. In this paper, we evaluate novel features
and machine learning methods to classify triples as correct
or incorrect and provide extended discussion throughout.

2. RELATED WORK

We review recent works on three relevant topics: process-
ing Web tables, extracting RDF from Wikipedia, and ex-
tracting RDF from Web tables.

Web tables:

Hurst [11] divides the problem of processing Web tables
into four sub-tasks: (1) table location: identifying tables in
source documents, such as HTML pages; (2) table recogni-
tion: parsing and normalising the table into its constituent
cells for further analysis; (3) functional & structural analy-
sis: determining the size and nature of the table; (4) table
interpretation: recovering the semantics of the table to allow
for deep processing of its content.

In the context of HTML, sub-tasks (1) and (2) are typ-
ically carried out by looking for table-related HTML tags
in the Web page (e.g. table, td and tr). Sub-task (2) also
refers to segmenting the table into a relative spatial descrip-
tion, which considers issues like internal cell structure, split
cells, spanning errors, and other normalisation techniques.
For sub-task (2), Pivk et al. [19] proposed the TARTAR
model, which normalises a table into a logical matrix.

For sub-task (3), the most common classification of ta-
bles is simply Relational vs. Non-relational (aka. Gen-
wine vs. Non-genuine); non-relational tables include those
used for formatting and navigation [22, 4]. Going further,
Crestan and Pantel [6] define a taxonomy with twelve struc-
tural classes of HTML tables and Yoshida et al. [24] propose
nine groups for attribute—value tables, etc.

Sub-task (4) relates to interpreting tables and attempt-
ing to recover their semantics. Cafarella et al. [4] proposed

the WEBTABLES system, which adopts a distributional se-
mantics approach, extracting co-occurrence distributions for
attribute labels in tables for search and other applications.
Zwicklbauer et al. [25] also use an existing knowledge-base
to annotate the semantic types of individual table columns
based on the most common type found in each column’s
cells. Venetis et al. [21] similarly look to annotate columns
of tables, sourcing a set of target class and relationship la-
bels from the Web. For interpreting attribute—value tables,
Crestan et al. [6] introduce the protagonist problem: iden-
tifying the subject of relations for attribute—value tables in
order to generate semantic triples. (We discuss works that
can extract triples from tables later in this section.)

Novelty: We focus on the tables of Wikipedia. For sub-
tasks (1-2), we re-use the TARTAR model [19] and parse
Wikitables using HTML tags, such as table, td, etc. For
sub-task (3), we simply look for tables with class wikitable
to identify our target class of tables. Furthermore, we apply
the notion of a protagonist [6] to generic relational tables
(as per the AFC Ajax example). Our methods re-use and
extend upon various ideas made in the Web-tables literature
for extracting triples from Wikipedia tables.

Extracting RDF from Wikipedia

As aforementioned, the DBPEDIA knowledge-base [2] pub-
lishes RDF extracted from Wikipedia as Linked Data. The
system extracts RDF from Wikipedia articles in various lan-
guages. DBPEDIA URIs are minted for the protagonist of
each Wikipedia article. RDF triples are extracted from
markup including titles, abstracts, categories, images and
various forms of links. The richest source of information are
the attribute—value “info-boxes” presented in the top right
of Wikipedia articles (where available). DBpedia supports
user-contributed mappings of RDF from tables in Wikipedia,
but only isolated mappings have been provided.*

YAGO2 [10] also extracts RDF from Wikipedia, relying on
hard-coded declarative rules that specify extraction, normal-
isation and implication logic for mapping (primarily) info-
box attributes to known terms in the ontology. Facts are
enhanced and annotated through use of external knowledge-
bases, such as WordNet synsets to enrich wiki-categories,
and GeoNames to enrich geographical information. Esti-
mates for the precision of YAGO?2 lie at around 95% [10].

Novelty: Although both YAGO2 and DBpedia support
manual mappings from generic tables in Wikipedia, the cov-
erage of these mappings appears to be very limited: both
works rather focus on extraction from info-boxes. To assure
novelty, we thus deliberately ignore info-boxes and instead
target only Wikitables embedded in the body of the arti-
cle. We currently use DBPEDIA as a reference knowledge-
base, but in future could also use other reference knowledge-
bases that are reconcilable with Wikipedia entities, such as
YAGO2 or Freebase, or perhaps even Wikidata.

Extracting RDF from Tables

Various languages, such as R2RML [7], can express custom
mappings from relational database tables to RDF. In terms
of representing the structure of tables in RDF, Ding et al. [§]
propose extracting each row of the table as a subject, each

4h‘c‘cp ://mappings.dbpedia.org/index.php?title=
Special’%3APrefixIndex&prefix=Table&namespace=204
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column as a predicate and each cell as an object. Similar
methods are used for the Direct Mapping standard [1].

More closely related to our own work are the methods of
Limaye et al. [12] and Mulwad et al. [17, 20, 16], who take a
reference knowledge-base and use it to annotate entities and
columns in tables with types and relationships. As such,
these approaches can be used to extract triples from tables.

Novelty: Our approach is automatic and does not require
an input mapping (per R2RML). We export content that can
be queried independently of the structure of the originating
table (vs. Ding et al. [8] and the Direct Mapping).

Although Limaye et al. [12] evaluate average timings of
their extraction for 250,000 Web tables, their work and the
works by Mulwad et al. [17, 20, 16] evaluate the quality of
relation extraction based on 25-36 hand-picked Wikitables
and 150-371 hand-picked Web-tables, whereas we evaluate
the quality of our extraction for over one million Wikipedia
tables (all Wikitables meeting certain minimal criteria, laid
out in §3.2) based on random sampling. In general, we fo-
cus specifically on the problem of relation extraction in the
context of Wikipedia tables, running the extraction process
over the entire corpus (post-filtering), presenting a detailed
set of “row-centric” features for machine learning methods
to perform classification, and evaluation based on sampling
from all tables. In doing so, we exploit features specific to
Wikipedia to improve results: for example, we use Wiki-
links to detect entities and we extract additional relations
from table cells to the protagonist of the article, etc.

3. SURVEY OF WIKITABLES

We begin our core contribution by formalising our no-
tion of a table, defining the tables in Wikipedia that we
consider in-scope for extraction (Wikitables), and providing
some statistics on the set of Wikitables extracted from the
February 13th, 2013 English Wikipedia dump.

3.1 Classifying Wikipedia’s Tables

Wikipedia editors can choose from three classes of tables;
each has a different value for the HTML attribute class in
the associated table tag in the Wikipedia page, as follows:

toc: table of contents summarising the layout of the article,
typically found after its abstract;

info-box: attribute—value tables embedded in the top-right
of the article providing core information about the pro-
tagonist, typically following a standard template based
on the type of protagonist (e.g., city, person, etc.);

wikitable: tables embedded in the article’s body, typically
containing relational data about the protagonist.

We focus on the wikitable class since toc tables refer to ar-
ticle layout, not factual content, and the extraction of facts
from info-box tables has already been near-exhaustively cov-
ered by works such as DBPEDIA and YAGO2. To the best
of our knowledge, we are the first work to tackle a full-scale
extraction of facts from the wikitable class of tables.

3.2 Normalising Wikipedia’s Tables

The structure and content of Wikitables can be quite com-
plex. Since these tables are intended for human consump-
tion, their layout is guided by visual aesthetics. Tables often
contain spans to avoid repetition: these spans cover multiple

Table 1: Overview of tables in the dump

e TOTAL ARTICLES: 10,854,204  100.00%
» ARTICLES W/TABLES: 1,875,415  17.28%
e ALL TABLES: 3,923,427 100.00%
» ILL-FORMED: 163,105 4.16%
» WELL-FORMED: 3,760,322  95.84%
o toc: 1,648,786 43.85%

o info-box: 815,350 21.68%

o wikitable: 1,296,186 34.47%

> < 2X2: 158,940 12.26%

> >2x 2: (used) 1,137,246  87.74%

cells with one entry, and include column-spans (colspans),
row-spans (rowspans) or a combination of both. To avoid
tables wider than the standard display width or to avoid
ugly long and narrow tables, editors will often employ split
tables (as per Figure 1). Cells may also contain (i) multi-
ple values, (ii) prose-text alongside the primary value giving
justification or context for that value, (iii) superscript ref-
erences to sources, (iv) images or other embedded content,
(v) empty cells in “optional” columns, and so forth.

To overcome this heterogeneity, we normalise Wikitables
by “squaring” them and filtering text, such that they can be
represented as a logical matrix of cells prior to extraction.

Table Model

We consider as input a source of tables 7 (a set of tables).
We model an individual table T' € T as an m X n matrix Mr.
Table headers are very common in tables, and can be simple
(one row) or hierarchical (multiple rows). We let h denote
the index of the bottom header row, such that Mz (3,.),i < h
denotes the header rows of Mr.

Extraction and Normalisation

Our initial goal is to convert a Wikipedia article in HTML
to a source of tables 7. Mapping HTML tables to square
matrices is often challenging due to syntax-level issues (e.g.,
non-closed HTML tags, fewer or more columns in some rows
creating jagged tables, spans, nesting, etc.).

Though we cannot fully normalise the tables (e.g., we do
not rejoin split tables), we use TARTAR [19] to apply some
standard normalisation techniques, as follows. Tables often
contain their caption embedded in the first row: we dis-
card that row when generating the matrix. Header rows are
identified by the (<TH>) tag. For each table, we must also
deal with colspans and rowspans: we divide such cells and
copy the original content into each division. Where we find
“jagged rows”, we consider missing cells to contain blank
strings. If the table can be parsed into a matrix Mr (i.e., is
syntactically valid and dense), we call the table well-formed.
Otherwise we call it ill-formed. Finally, we only consider
well-formed tables where the size of M7 is at least 2 x 2;
i.e., it contains at least two rows and at least two columns.

3.3 Corpus Composition

We extract our corpus of Wikitables from the February
13th, 2013 English Wikipedia dump. We first apply the Bliki
engine parser® to convert wiki-markup to HTML articles.

Shttp://code.google.com/p/gwtwiki/
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Figure 2: Various distributions for the Wikitables considered

Each HTML page is then cleaned and canonicalised (fixing
syntax mistakes) using CyberNeko® before all HTML tables
(including nested tables) are extracted.

Table 1 provides a breakdown of the high level details of
the corpus. We found 10.85 million articles (more accurately
“pages”), containing a total of 3.92 million HTML tables,
where 17.3% of the articles contained at least one table.

In Figure 2, we plot the distributions of (a), tables per ar-
ticle, (b) number of tables for increasing numbers of rows/-
columns, and (c) number of internal /external links per table.
All distributions are plotted in log/log scale, where we see
long-tailed distributions for all such dimensions. Further-
more, we make the following observations:

e The article” with the largest number of well-formed
tables contains 623 (most of them nested inner-tables).

e Considering articles with at least one table, there are
1.66 tables per article.

e The maximum number of detected rows in a table is
250, commonly found in List_of_* articles (likely due
to a Wikipedia formatting constraint). The average
number of rows per table is 12.44.

e The maximum number of columns in a table® is 250
(due to an erroneous colspan for a caption in a table
with 3 columns). The average number of columns per
table is 5.55.

e The highest number of internal links in a single table is
2,774, and 594 for external links. The averages are 1.93
and 0.35 for internal and external links, respectively.
Internal links are important for us since they ensure
that we can map cell entries to Wikipedia articles (and
thus to DBPEDIA entities).

e 19.4% of tables do not contain column headers. 79.9%
contain headers only in the first row, 7.4% contain
headers in the second row, and the remaining tables
contain captions in further rows. 5.5% of tables con-
tain non-empty embedded captions.

We thus view this corpus of tables as a rich source of struc-
tured data that can be exploited for information extraction
and ultimately for triplification, with many tables contain-
ing a high number of internal wiki-links (as per the bottom

®http://nekohtml.sourceforge.net/

7http ://en.wikipedia.org/wiki/Winners_and_runners-up_in_
the_legislative_ elections_of_Nepal_1994_and_1999

8http ://en.wikipedia.org/wiki/2007-08_QMJHL_season

plot in Figure 2), which can be used for entity disambigua-
tion. After filtering toc, infobox, small and ill-formed tables,
we end up considering 29.0% of all Wikipedia tables for our
extraction: 1.14 million tables in total.

4. MINING RDF FROM WIKITABLES

To extract RDF from these Wikitables, we rely on a ref-
erence knowledge-base, where we use DBPEDIA for the pur-
poses of this paper. We extract internal links present in cells
and map them directly to DBPEDIA entity URIs. We then
perform lookups on DBPEDIA to find relationships that exist
between entities on the same row of the table. These rela-
tionships are then proposed as candidates between entities
in cells of analogous columns on other rows.

4.1 Reference Knowledge-base

We use English-language data from DBPEDIA v3.8, de-
scribing 9.4 million entities. The overall corpus consists of
465 million unique RDF triples, and contained 57,985 unique
RDF relations (i.e., RDF predicates), 48,293 of which were
in the DBPEDIA property namespace, 1,397 of which were in
the curated DBPEDIA ontology namespace, and 28 of which
were from external vocabularies.’

4.2 Entity/Resource Extraction

In Section 3, we described how we extract a set of tables
from Wikipedia, where each table is represented as an m xn
matrix Mr and where each cell of the matrix Mr(i,j) (for
1 < m, j < n) can contain a variety of content. However, we
are primarily interested in internal wiki-links present in the
cells since they can be directly mapped to DBPEDIA entities.
We represent the set of wiki-link URLs in a cell as Wr (3, ),
which excludes superscript reference links, links with prefix
Image: or File:, and external links. We also strip fragment
identifiers from URLs (i.e., strings following a hash).°

For each w € Wr(i,7), we map the corresponding Wiki-
pedia URL to a DBPEDIA entity URI by following redirects
and replacing the namespace http://en.wikipedia.org/wiki/
with http://dbpedia.org/resource/; for optimisation reasons,
we cache redirects. We additionally filter entities corre-
sponding to DBPEDIA categories and list pages. We denote

9We also found noise where 8,267 DBPEDIA entity URIs re-
ferring to Wikipedia templates appeared as predicates.
10Ty pically these are references to sections or to footnotes,
but occasionally they may refer to a sub-topic in the article.
However, DBpedia does not have corresponding URIs for
the entities referred to by these sub-topics.
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by Er(i,j) the resulting set of DBPEDIA entity URIs ex-
tracted for wiki-links Wr (7, j) for table cell Mr (3, j).

4.3 Discovering Relations

We aim to discover two types of relations: between entities
on the same row of a table and between entities in the table
and the protagonist of the article.

To discover relations within tables, we query the DBPEDIA
knowledge base for existing relationships between entities
in different cells of the same row. We look for relations
between all pairs on the same row ¢ but in different cells:
{(eij.ein) | eij € Er(i,j),eix € BEr(i,k),1 <i<m,1<
j <k <n}. Any relations found for (e; ;, e; ) are suggested
as candidates for relating (en,j, en,x) for 1 < h < m, h # i.

To discover relations from entities in the table and p the
protagonist entity of the article, we query the knowledge-
base for pairs {(e;,;,p) | ei; € Er(i,5),1 < i < m,1 <
j < n}. Any relations found for (e; j;,p) are suggested as
candidates for relating (en,;,p) for 1 < h < m, h # i.

We query the DBPEDIA knowledge-base for existing rela-
tionships that hold in either direction for each such pair. We
run these queries over local indexes of DBPEDIA data with
in-memory caching to efficiently support repeated queries
caused by colspans. Though we avoid using a SPARQL en-
gine for performance reasons, the lookups for a pair (el, e2)
would be equivalent to the following query:

SELECT DISTINCT ?pl 7p2
WHERE { { <e1> 7pl <e2> } UNION { <e2> 7p2 <el> } }

The UNION clause in SPARQL is used to denote a disjunctive
query. The terms <el> and <e2> are instantiated with the
DBprEDIA URISs of the entities in question.

Example 4.1. With respect to relations within tables, if
we consider some example cells from row 3 of table T in
Figure 1, we have:

Er(3,1) =10,

E1(3,2) = {dbr:Belgium},

E1(3,3) = {dbr:Defender},

Er(3,4) = {dbr:Toby_Alderweireld, dbr:Vice_Captain}.

If we query DBPEDIA indexes looking for relationships in this
row between, for example, columns 2 and 4, we could find
dbo:birthPlace from dbr:Toby_Alderweireld in E7(3,4)
to dbr:Belgium in E7(3,2). We can suggest that this rela-
tionship may hold, e.g., from entities in Er(2,4) to Er(2,2),
and so forth for all other non-header rows in the table.

If we query DBPEDIA for existing relations between the
entity dbr:Toby_Alderweireld in Er(3,4) to the article en-
tity dbr:AFC_Ajax, we will find dbp:clubs and dbo:team.
We consider these as candidate relations potentially holding
between dbr:AFC_Ajax and other entities in column 4.

Of course, this process can be imprecise. We will discuss
this further in Section 5. O

4.4 Triple Extraction

We extract all candidate relationships found for all Wik-
itables as RDF triples:

Example 4.2. Consider applying the dbo:birthPlace can-
didate relation found in Example 4.1 to row 2 (from E7(2,4)
to E7(2,2)). The resulting RDF triple is then:

(dbr:Ricardo_va_n_Rhijn dbo:birthPlace dbr:Netherlands . j

representing the fact that Ricardo van Rhijn was born in
the Netherlands. O

Based on preliminary evaluation of the extraction process,
we chose to ignore reflexive triples and triples with the pred-
icate dbo:wikiPageDisambiguates, which very often per-
tained to incorrect facts.

Though we do not wish to focus on computational perfor-
mance in this paper, we can make some high-level remarks
about the general scalability of our approach. As stated
previously, we use local indexes of the DBPEDIA knowledge-
base for answering queries, and for each pair, we perform
two atomic on-disk lookups for relations in either direction.
However, given that tables can potentially contain hundreds
of entities, and that the number of entity-pairs to consider
is quadratic for a given row, each table may require a large
amount of lookups for relations.

However, with respect to scalability of the global process-
ing, our problem can be effectively partitioned and paral-
lelised on a per-table basis. For example, given a cluster of
shared-nothing commodity servers, if we make the full index
for the reference knowledge-base available to each machine
(in our scenario, a 7.7GB file), individual tables can then be
assigned arbitrarily to each machine, and the extraction of
triples run in an embarassingly parallel manner. We adopt
this approach and using eight machines (ca. 2005) with 4GB
of RAM, 160GB SATA hard-drives, 2.2GHz single-core pro-
cessors, assigning an even work-load of input Wikipedia ar-
ticles to each, the full process of extracting and normalising
Wikitables from the articles and computing the full set of
candidate triples took approximately 12 days.'!

We extracted a total of 53.2 million candidate RDF triples,
of which 37.3 million were unique, of which 34.9 million in
turn were not already in DBPEDIA. These candidate triples
are assigned features during extraction that serve as input
to the classification process described in the next section.

S. LEARNING RDF TRIPLES

As alluded to before, many of the triples we extract in
the previous phase are likely to be incorrect for a variety of
reasons. We illustrate this with two further brief examples.

Example 5.1. In the table of Figure 1, we do not distin-
guish the entities Toby Alderweireld and vice captain, which
appear in the same cell. Hence, when multiple entities ap-
pear in one cell, we may extract incorrect triples, such as:

(dbr:Vice_Captain dbo:team dbr:AFC_Ajax . j

To illustrate another common case we encountered: in
our reference knowledge-base, the entity Derk Boerrigter is
related to the protagonist AFC Ajax through the relation
dbp:youthclubs. However, this relation would not hold be-
tween other players in the same column and AFC Ajax even
though said candidate triples will have been produced in the
previous phase: just because a relation holds for (at least)
one row does not mean it must hold for others. O

11 An alternative route for optimisation could be to build a
compressed in-memory index over the reference knowledge-
base or to use a solid-state disk, but this was not feasible for
our hardware.



This section thus evaluates a variety of machine-learning
methods with respect to identifying correct triples from our
set of raw extracted triples. For this phase, a set of features
can be associated with extracted triples to help determine
if the triple is likely to be (in)correct. For example, we
can consider the number of rows for which a relation holds
versus the total number of rows in a table (e.g., é in the case
of the dbp:youthclubs relation mentioned in the previous
example), or the presence of multiple entities in a cell (cf.
Example 5.1), or string matching between a column header
and a predicate label (e.g., dbp:position for the Position
header in Figure 1). Along these lines, we now discuss a set
of features we associate with extracted triples, which can be
used by machine learning methods (described later in the
section) for classification as correct/incorrect.

5.1 Features

In previous work, the classification problem was tackled
primarily by ranking each relation according to the number
of times it held in the knowledge-base between entities in
those two columns. However, we feel that there are many
factors—such as the structure of the table, the nature of the
cell content, textual overlap with one of the column headers,
etc.—that provide important signals for determining the ac-
curacy of extracted triples. Furthermore, like Limaye et
al. [12], we believe that statistics about the predicate in
the reference knowledge-base serve as useful input; e.g., if
a predicate is generally found to follow a one-to-one relation
(e.g., dbp:captain), then it is unlikely to be a good rela-
tion for linking an article (e.g., dbr:AFC_Ajax) to multiple
entities in a table column (e.g., Players).

The full set of features we generate is listed in Table 2,
broken down by article features, table features, column fea-
tures (i.e., features specific to the subject/object column
from which the triple was extracted), predicate features (i.e.,
features specific to the predicate of the extracted triple), cell
features (i.e., features specific to the subject and object cells
from which the triple was extracted), predicate/column fea-
tures (features that are a function of the predicate and sub-
ject/object columns) and triple features. Feature 38 tracks
if the triple exists in DBPEDIA for reference only and is never
used for learning. We include a wide range of features, with
the goal of applying feature selection at a later stage.

Given that most of the features are self-explanatory, we
give a brief explanation for non-trivial entries:

15 The number of pairs of the form (e;s,e€:,0) for s the
subject column, o the object column and h < i < m

16 As per feature 15, but only unique pairs (for the given
table) are counted

17—20 All predicate features are normalised as a real value
in the range (0, 1] (counts are divided by the maximum
such value for all predicates)

24—-25 The amount of prose text in the cells from which the
subject and object of a triple is extracted, where long
text is indicative of possible noise or hidden context

26—27 A boolean value indicating the presence of, e.g., new-
lines, bullets or other HTML formatting tags in the
source cells

28-29 The string similarity, measured as the closer value
given by the Jaro-Winkler distance and the Sgrensen—

Table 2: Full list of features
ARTICLE FEATURES
(1) Ne of tables
TABLE FEATURES

(2) table id in article
(3) N\e of rows

(4) Ne of columns

(5) ratio: (3)/(4)

(6

) total relations extracted

COLUMN FEATURES

(7) subject column id

(8) object column id

(9&210) Ne of entities in s&o cols.

(11) ratio: (9)/(10)

(12&13) Ne of unique entities in s&o cols.
(14) ratio: (12)/(13)

(15) potential relations

(16) unique potential relations

PREDICATE FEATURES

(17) normalised triple count

(18) normalised unique subject count
(19) normalised unique object count
(20) ratio (18)/(19)

CELL FEATURES

(21&22) number of entities in s&o cells
(23) ratio (21)/(22)

(24&25) string length in s&o cells
(26&27) formatting present in s&o cells

PREDICATE/COLUMN FEATURES

28&29) string sim. for pred and s&o header
30) maximum between (28) and (29)

1) Ne of rows where relation holds

2) ratio: (31)/(3)

3) Ne of potential relations held

1)

5)

ratio: (33)/(15)
Ne of unique potential relations held

Py

TRIPLE FEATURES

(37) from article or body relation
(38) already exists in DBPEDIA

Dice coefficient, between the predicate label and the
header label for the subject/object column

31 For how many rows there exists a relation in the KB
with the given predicate from the subject column to
the object column

33 For how many pairs in feature 15 there exists a relation
in the KB with the given predicate

35 For how many unique pairs in feature 16 there exists a
relation in the KB with the given predicate

With respect to features 31, 33 and 35; which are similar
with respect to measuring ratios of rows/relations for which
a predicate exists in the KB; we include all three versions
since we found that certain tables in Wikipedia can exhibit



very different values for these features due to duplicate en-
tities existing in individual cells (often due to spans).?

5.2 Machine Learning Models

We use machine learning models to classify (in)correct
triples according to these features. For evaluation, we se-
lect five classifiers listed by Witten et al. [23] capturing a
variety of different high-level approaches. We select one
probabilistic classifier: NAIVE BAYES; two based on trees:
BaGgaGIng DEcisiON TREES and RANDOM FOREST; and two
based on functions: SUPPORT VECTOR MACHINES (SVM)
and SIMPLE-LoOGISTIC. We use all such methods to learn
a classification model using 10-fold cross-validation over a
gold standard of manually annotated triples (described in
the next sub-section). The resulting models can then be
used for the binary classification of triples (correct/incor-
rect) according to its supporting features. Experiments are
run using the WEKA machine learning framework.'® Full
details of these machine learning techniques are out-of-scope
(see, e.g., [13, 23]), here we provide a brief overview:

Naive Bayes is a simple probabilistic classifier. The clas-
sification is assigned based on the probabilistic dis-
tribution of the training set. We highlight that this
method (naively) assumes that attributes are indepen-
dent, which is certainly not true in our case, but we
can still apply and test the model.

Bagging Decision Trees consists of an ensemble of deci-
sion trees (trees of nodes that branch depending on the
value of a certain feature) for each class, where the final
classification decision for each instance is made based
on a form of voting of the committee of classifiers.

Random Forest is another ensemble classifier that con-
sists of multiple decision trees. The class is assigned
according to the mode of the classes output by indi-
vidual decision trees.

Support Vector Machine represents each feature tuple
from the training data as a point in Euclidean space
and searches for a good hyperplane division between
the classes, which is then used for binary classification.
We use SVM with a polynomial kernel.

Simple-Logistic uses logistic regression models, and is ap-
propriate for classification in domains with (continu-
ous) numeric attributes.

5.3 Gold Standard

We require a gold standard to train and evaluate these
models. For this, we randomly selected 750 unique triples
from the total set of 37.3 million triples extracted in the pre-
vious phase. Three judges (authors on this paper) then la-
belled the 750 triples as being correct, incorrect or unknown.
The information available for each triple were the subject,
predicate and object URIs, as well as a link to the original
Wikipedia article containing the source table and a number
identifying which table in the article was the source. Triples
were generally validated by visiting the Wikipedia article in

12See http://en.wikipedia.org/wiki/KJEE for such an ex-
ample. The table contains 11 rows. For columns Venue
and City, there exists 18 potential relations and 4 unique
potential relations.
Bhttp://www.cs.waikato.ac.nz/ml/weka/

Table 3: Inter-rater consensus for manually labelled triples

All correct 234 31.2%
Some correct, Rest unknown 27 3.6%
Positive consensus 261 34.8%
All incorrect 195  26.0%
Some incorrect, Rest unknown 48 6.4%
Negative consensus 243 32.4%
Some correct and some incorrect 246 32.8%

question to see the original table, as well as Web searches for
the entities in question. We did not pre-agree on any judg-
ing strategies, where interpretation of the validity of triples
was left to the discretion of individual judges.

In terms of inter-rater agreement for the three judges,
we computed a Fleiss’ k coefficient of 0.45 (0 indicates no
agreement, 1 indicates perfect agreement), which by con-
vention is considered as “moderate agreement”. Looking
through examples of disagreement, some common themes
emerged. In particular, the relations of DBPEDIA are often
not well defined and their meaning often has a subjective
dimension (for example, dbr:Pulp_Fiction dbo:starring
dbr:Quentin_Tarantino when he arguably only had a cameo
appearance). Another recurring issue was that of tempo-
rality: for example, would stating that dbr:Bill_Clinton
has the relation dbp:president to dbr:United_States be
correct or incorrect? These questions are subjective and
depend on the precise semantics for the predicate and for
which DBPEDIA provides no definitive intensional answer.
Table 3 summarises the consensus between raters. For the
gold standard, we filter 246 examples where there were con-
flicting labels from different judges, leaving 504 triples.

From these results, we can also get some direct insights
into the accuracy of the raw candidate triples. Based on
the consensus labels, 51.8% of triples are considered correct
and 48.2% considered incorrect without any further classifi-
cation. However, 112 of the 504 triples appear in DBPEDIA,
where the analogous results filtering these triples would be
39.6% and 60.4% respectively.’® Next we use machine learn-
ing methods to further boost accuracy by classifying these
raw extracted triples as correct/incorrect.

5.4 Classification Evaluation

To train and evaluate the five classifiers, we apply 10-
fold cross-validation over the 504 triples with non-conflicting
labels: we randomly generate 10 non-overlapping test sets
with ~54 examples each, while the remaining ~450 examples
are used for training purposes in each run. As a baseline, we
also compare three simple rule-based models relying on fea-
tures 32, 34 and 36 respectively (i.e., ratios of rows, relations
and unique relations in a table for which a given predicate is
found to hold), where extracted triples with a score above a
threshold for the given feature are classified as positive and
triples below the threshold as negative.

Given that we use many features, and that some may
not be deemed relevant to the machine learning process, we

M These triples are left in to provide more positive examples.
Interestingly, 7 out of the 112 DBPEDIA triples were marked
as incorrect (6.3%).
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Table 4: Classification performance for each approach with
best figures for each metric underlined

Schema Acc. Pre. Rec. F;1 Output
FEATURE 32 65.41 50.77 74.16 60.27 15,415,810
FEATURE 34 70.18 58.08 78.65 66.81 3,864,653

FEATURE 36 67.59 64.23 70.46 67.20 4,263,470

75.75 88.85 71.30 79.11 3,902,861
B.D. TREES 78.13 81.54 77.37 79.40 7,871,344
RAND. FOREST  76.34 76.15 77.65 76.89 8,979,392
SVM 72.56 72.43 75.77 74.06 15,320,590
SiMpLELOGISTIC  78.53 79.62 79.01 79.31 6,376,427

NAIVE BAYES

investigated using standard “feature selection” techniques,
using a greedy best-first algorithm to search for a set of
features that optimises accuracy (i.e., ratio of correct true
positives and true negatives) for each model. However, we
found that the feature selection process had little effect on
accuracy; hence we opted not to use feature selection.

Next, for the model selection, we applied a cost—benefit
analysis to determine the optimal decision threshold for each
classifier (aka. calibration), i.e., we maximise accuracy by
varying the thresholds of each classifier below which an ex-
ample is predicted for the —1 (negative) class. Consider-
ing these optimised thresholds, Table 4 compares the accu-
racy, recall, precision and Fi-measure of the eight classifiers,
where the latter three metrics are given as weighted aver-
ages over the positive and negative classes. We also ran
the trained models over the raw extracted triples and count
the number of unique novel triples output with a positive
classification (from a possible 34.9 million unique triples not
appearing in DBPEDIA, of which we would expect approx.
13.8 million (39.6%) to be correct).

We first see that the single-feature baseline models are
outperformed by the multi-feature models in terms of ac-
curacy, precision and F; measures. Although FEATURE 32
classifies the most triples as correct, it does so at the cost of
much lower precision. Also we see that the number of out-
put triples can be significantly lower than would be expected
based on the corresponding recall figures. We believe that
this disparity is due to 40.3% of the positive examples used
in the gold standard training data coming from DBPEDIA;
such positive examples are removed from the 34.9 million
triples classified in the output. The selected thresholds for
the training data may thus be too selective for the real-world
data without these examples.

Amongst the other multi-feature models, we see that there
is a clear trade-off in terms of precision versus recall. Thus
it is difficult to identify a “clear” winner. For example, the
highest precision (88.85%) is achieved by NAIVE BAYES, but
this comes at the cost of recall and output triples captured.
In terms of combined measures such as accuracy and F;
measure, BAGGING DECISION TREES is close to the metrics
for SIMPLELOGISTIC but outputs significantly more positive
triples. On the other hand, SVM outputs nearly double the
number of output triples that BAGGING DECISION TREES
does, but at a lower precision. Hence it would seem that
BAGGING DECISION TREES classifying 7.9 million unique
novel output triples with an estimated 81.5% precision is
amongst the most favourable results.

6. CONCLUSION

Wikipedia tables contain rich encyclopaedic knowledge
but their content cannot be directly queried against. Herein
we proposed methods to extract factual content from over
one million Wikipedia tables. Following existing works, we
use an existing Linked Data knowledge-base as a reference
to guide the extraction process and to help automatically
piece together the semantics of the tables.

More precisely, we look for existing relationships in the
knowledge-base between entities on the same row of a table
and extrapolate them as candidate relationships between en-
tities in analogous columns on different rows of that table.
We also extract relations from entities in the same column
of a table to the protagonist of the article in which the ta-
ble is found. Using DBPEDIA as a reference knowledge-base,
we successfully mined 34.9 million unique and novel triples
from 1.1 million Wikipedia tables with a precision of 40%
without any further classification.

We associate each extracted triple with a rich set of fea-
tures and investigate a variety of machine-learning methods
to identify triples as correct or incorrect. Using a manually-
labelled random-sample of extracted triples as a gold stan-
dard, we found that different classifiers produced different
trade-offs with respect to precision/recall. Arguably the
best result was given by the BAGGING DECISION TREES en-
semble classifier, with which we mined 7.9 million unique
novel triples at an estimated 78.1% accuracy, 81.5% preci-
sion, 77.4% recall and 79.4% F; measure.

Other works have also tackled relation extraction from ta-
bles using Linked Data knowledge-bases. Limaye et al. [12]
report accuracy figures of 52-69% for this task over a selec-
tion of manually labelled hand-picked tables. In very recent
work, Mulwad et al. [16] report Fi-scores of between 89-97%
for this task over a similar evaluation dataset. However, the
results from these papers are not directly comparable with
ours since, for example, we apply extraction over all well-
formed Wikitables and randomly sample our test-set (vs.
using around 200 manually selected tables), we extracted
relations on a per-row basis (vs. selecting the top-k rela-
tions for each pair of columns), we use wiki-links to map to
entities in our knowledge-base (vs. using string matching
and search methods), and so forth.

To the best of our knowledge, our work is the first to
look at extracting the factual content of Wikitables at full-
scale and is also the first to present end-to-end results for
extracting semantic triples from a large corpus of Web tables
(albeit only for the easier case of Wikitables).

Future work

We identify three major directions in which our work can be
extended, generalised, and/or improved:

1. With respect to improving our extraction methods,
we do not yet exploit the semantics of the reference
knowledge-base, such as the types of entities, the do-
main or range of properties, the hierarchies of classes,
etc. Considering such semantics could help to improve
our precision and recall measures further, by, for exam-
ple, splitting columns that contain multiple entities in
each cell according to the type of those entities (e.g.,
player/position), or by rejecting relationships where
the domain/range definitions do not match.



2. Our approach could be generalised to use other Linked

Data knowledge-bases of encyclopaedic content—such
as YAGO2 [10] or FREEBASE [3]—as an alternative to
DBPEDIA. Such knowledge-bases have already been in-
vestigated by Limaye et al. [12] and Mulwad et al. [16].
Such a generalisation would require a method for map-
ping entities referenced in Wikipedia tables to native
identifiers in the reference data-set: DBPEDIA offers
links to both YAGO2 and FREEBASE that could be
used for this purpose. Our approach could also take
advantage of multiple knowledge-bases at once by tak-
ing the union of candidate triples produced for each
such reference collection.

. Most ambitiously, our method could potentially be

generalised to Web tables in the broader sense [12, 16].
Again, a method for matching entities in the tables
with the reference knowledge-base would be required,
where some standard NER technique(s) could be used.
For example, the DBPEDIA SPOTLIGHT tool [15] al-
ready offers entity recognition for DBPEDIA entities.

Source code, data, models and a demonstrator are avail-
able from http://emunoz.org/wikitables/.
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