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Abstract We propose WDBench: a query benchmark for knowledge
graphs based on Wikidata, featuring real-world queries extracted from
the public query logs of the Wikidata SPARQL endpoint. While a num-
ber of benchmarks for graph databases (including SPARQL engines) have
been proposed in recent years, few are based on real-world data, even
fewer use real-world queries, and fewer still allow for comparing SPARQL
engines with (non-SPARQL) graph databases. The raw Wikidata query
log contains millions of diverse queries, where it would be prohibitively
costly to run all such queries, and difficult to draw conclusions given the
mix of features that these queries use. WDBench thus focuses on three
main query features that are common to SPARQL and graph databases:
(i) basic graph patterns, (ii) optional graph patterns, (iii) path patterns,
and (iv) navigational graph patterns. We extract queries from the Wiki-
data logs specifically to test these patterns, clean them of non-standard
features, remove duplicates, classify them into different structural sub-
sets, and present them in two different syntaxes. Using this benchmark,
we present and compare performance results for evaluating queries using
Blazegraph, Jena/Fuseki, Virtuoso and Neo4j.

1 Introduction

Recent years have seen renewed interest in querying graphs, driven in particu-
lar by the growing popularity of knowledge graphs [25]. There are two related
options for querying knowledge graphs. On the one hand, SPARQL [22] is the
standard query language for RDF graphs/datasets [16], and has enjoyed signif-
icant developments down through the years, including the publication of hun-
dreds of public query services [43], the development of hundreds of SPARQL
query engines and prototypes [1], the release of dozens of benchmarks [1], an ex-
tended version of the original standard [22], etc. SPARQL is the query language
of choice for prominent open knowledge graphs – such as DBpedia [29], Wiki-
data [44], etc. – which provide public query services that can receive in the order
of hundreds of thousand or even millions of queries per day [35,30]. On the other



hand, a variety of graph query languages, databases, etc., have been proposed
and developed within the NoSQL/Database community [13], and have become
widely used, particularly for enterprise knowledge graphs, with Neo4j [46] and
its query language Cypher [20] leading the way in terms of popularity.6

With may options available, it can be difficult to choose a suitable engine to
support queries over a given knowledge graph, which calls for graph query bench-
marks that reflect real-world workloads. For example, the Wikidata community
is currently seeking an alternative to replace Blazegraph [42], whose development
team has moved on to work on other projects.7

While dozens of query benchmarks have been proposed down through
the years for RDF/SPARQL [21,12,39,17,31,9,2,48,19,36,40,26] and graph
databases [19,7], most rely on synthetic data generated according to a fixed
schema [21,12,2,39,17,19,7,40]. While benchmarks based on synthetic data are
useful for scalability testing, since most allow for generating graphs of arbitrary
size, the schemas used for such benchmarks are hand-crafted and thus often
much simpler than the organic, collaboratively-generated schemas that emerge
within knowledge graphs such as DBpedia [29] and Wikidata [44].

A smaller number of benchmarks have been proposed based on real-world
knowledge graphs [31,9,48,36,26], but either rely on synthetic queries [26], a
small number of hand-selected queries [9,48], or instances of a small number of
templates induced through log analysis [31,36]. One of the challenges of using
query logs [35,30] for benchmarks is the sheer number and diversity of queries
available, with, for example, millions of queries available in the Wikidata query
logs [30]. Running all such queries over multiple engines on a large knowledge
graph would not only be prohibitively costly, but would also generate results that
are difficult to interpret, given that real-world queries will often mix features.
Approaches to deal with this have focused on generating templates [31,36].

In this paper, we rather follow a feature-based approach: we generate a real-
world benchmark by extracting a large and diverse set of queries from the query
log of an open knowledge graph, but only for selected core features that are
common to both SPARQL engines and graph databases [5]. Within these fea-
tures, we define high-level subclasses in order to gain more detailed insights into
the performance of different engines. The specific benchmark we propose here,
which we call WDBench, is based on the Wikidata knowledge graph [44] and
query logs [30]. The features we currently focus on are basic graph patterns, op-
tional graph patterns, path patterns, and navigational graph patterns, which can
be translated to SPARQL and Cypher. We use WDBench to compare the query
performance of Blazegraph [42], Jena TDB [27], Virtuoso [18] and Neo4j [46].

Paper structure Section 2 discusses related work, Section 3 describes the design
of WDBench, Section 4 describes the experimental design, Section 5 describes
the results of these experiments, while Section 6 concludes.

6 See https://db-engines.com/en/ranking/graph+dbms; retr. 2022-05-06.
7 See https://phabricator.wikimedia.org/T206560; retr. 2022-05-06.



2 Related Work

As highlighted previously, dozens of benchmarks have been proposed for RDF
and other graph databases over the years. They can be classified in two general
classes: benchmarks based on synthetic and real-world graphs. Some benchmarks
target RDF/SPARQL engines, while others target other graph databases; to the
best of our knowledge, the latter exclusively use synthetic datasets.

Synthetic SPARQL-oriented benchmarks The Lehigh University Benchmark
(LUBM) [21] was one of the first benchmarks proposed for RDF/SPARQL,
generating synthetic data about universities. Berlin [12] generates data fol-
lowing an e-commerce use-case, with comparable SPARQL and SQL queries
provided. SPˆ2Bench [39] generates an arbitrarily-large graph following the
schema of DBLP database, with queries provided in a variety of shapes.
BowlognaBench [17] generates synthetic RDF graphs about universities, provid-
ing queries inspired by the Bologna reform of European universities. WatDiv [2]
presents an approach that focuses on generating diverse graph data and basic
graph patterns in order to address the “structuredness” problem of other bench-
marks [37]; queries follow star, path and snowflake query shapes. TrainBench [40]
is another synthetic benchmark, this time inspired by a railway network, defining
six queries encoding network validation constraints.

Synthetic graph database-oriented benchmarks gMark [7] provides a domain-
and query language-independent driver, generating query workloads for a user-
defined schema. The user can define the scenario from which the data is gener-
ated (i.e. social network, biological database, etc.) and from that data the driver
generates the queries and translates them to the desired engine (i.e. Neo4J,
SPARQL, etc.). The Linked Data Benchmark Council’s Social Network Bench-
mark LDBC-SNB [19] is a benchmark that provides a common synthetic dataset
for two different query workloads. The dataset represents a social network and
the two workloads differ in the use case they evaluate the engine for: one focuses
on transactional graph processing queries that target neighbouring nodes and
update operations that continuously insert new data in the graph. The second
workload focuses on aggregate queries accessing large parts of the graph.

Real-world RDF-oriented benchmarks DBpedia SPARQL Benchmark (DB-
SBM) [31] generates queries for a specific version of DBpedia based on real-world
query logs. The queries in the log files are cleaned and clustered according to
the SPARQL features, generating 25 query templates from the most prominent
clusters with placeholder variables that can be instantiated from the data in
order to generate multiple instances per template. FEASIBLE [36] builds upon
this idea of generating benchmarks from query logs. The query generation takes
into account several query characteristics such as number of triple patterns or
number of join vertices, generates vectors that represent queries according to the
features, and generates queries based on the patterns from the vectors. BioBench-
mark [48] defines a benchmark over five biomedical datasets (Cell, Allie, PDBJ,



DDBJ, and UniProt), providing 48 queries extracted from real-world applica-
tions. The Wikidata Graph Pattern Benchmark [26] is based on Wikidata, but
rather uses synthetic queries following structural graph pattern templates.

Comparison & novelty We refer to Saleem et al. [37] for a detailed comparison
of the benchmarks discussed here. In terms of the novelty of WDBench, it uses
real-world data and queries; to the best of our knowledge, only DBSBM [31]
and FEASIBLE [36] share this characteristic. Unlike these two benchmarks,
WDBench (1) is based on Wikidata rather than DBpedia; (2) uses a larger
graph (1.257 billion triples/edges vs. 232 million triples/edges); (3) contains
path patterns that can match arbitrary length paths, which are a key feature
of graph queries; (4) is offered in both SPARQL and Cypher variants; (5) does
not apply templates or clustering, but rather contains a larger and more diverse
query set that includes thousands of queries. It is important to note that the
goal of WDBench is to complement existing benchmarks rather than to replace
them. We see WDBench as being a useful resource to test query performance for
core features of graph queries over a real-world knowledge graph using realistic
workloads. However, other benchmarks may have other benefits, and could be
run alongside WDBench. For example, synthetic benchmarks have the benefit of
being able to generate graphs of arbitrary size, where one could be run alongside
WDBench in order to stress-test scalability. Other benchmarks could be used to
test SPARQL-specific or relational features not included in WDBench.

3 WDBench: Graph and Queries

We now discuss the design of WDBench. We start by explaining the rationale
behind the subset of Wikidata used for benchmarking, and then specify the
process for selecting a representative query set out of the millions of queries
available in the Wikidata public endpoint log [30,13]. We then discuss conversion
of the benchmark into a property graph with Cypher queries for running Neo4j.

3.1 WDBench Graph

In order to define the graph used in WDBench, we were guided by three criteria:
(i) that it is representative of a diverse, large-scale, real-world knowledge graph;
(ii) that it covers a wide range of queries from the public query log of Wiki-
data; and (iii) that it is succinct, i.e., that it does not contain massive amounts
of data irrelevant for the queries that would increase load times for different
engines. To balance these criteria, we base WDBench on the Wikidata truthy
dump [41] for three reasons: (1) it is more concise and thus faster to load: some
engines can take over a week to load the complete version of Wikidata; (2) it
is sufficient to address the majority of queries in the log chosen: 86.8% of the
queries in this log use only truthy properties; (3) it avoids issues relating to how
Wikidata-specific qualifiers should be reified in different databases: this topic
diverges from our goal of a general query benchmark for knowledge graphs and



is addressed elsewhere [23,24]. To further prune the dataset, we only kept triples
in which (a) the subject position is a Wikidata entity, and (b) the predicate is a
truthy (direct) property. This allows us to focus on structural properties of the
queries and the graph, while increasing succinctness. The particular Wikidata
truthy dump we used is 20210623-truthy-BETA, which contains 18,579,709,438
triples. After pruning based on the described criteria, the final dataset contains
1,257,169,959 triples. Many of the triples pruned are labels and descriptions in
multiple languages, which we deem as inessential for testing the performance
of graph pattern evaluation (rarely are joins or paths expressed via labels or
descriptions). The dataset is available for download online at [3], and the scripts
used to prune a truthy dump can be found online at [4].

3.2 WDBench Queries

WDBench is based on real-world queries posted by Wikidata users, as found
in Wikidata’s query logs [47,30]. Given that the log files contain millions of
queries, where it would be prohibitively costly to run them all, and where the
results would be difficult to interpret given the mix of features that they use, we
reduce the queries in several phases and classify them by their features.

The first choice we made was to concentrate exclusively on queries that timed
out on the Wikidata endpoint (code 500 queries in the log files [30,47]). While
endpoint timeouts can be caused by many factors (including temporary server
load), we wish to focus on challenging queries, where this subset of queries largely
filters out the multitude of trivial queries in the log. Additionally, focusing on the
code 500 queries reduces the set to 122,980 queries. If the query uses vocabulary
not present in our graph, we discard it (note that queries generating empty
results are kept so long as they only use relevant vocabulary terms).

The next reduction was based on the operators used by the queries. Consid-
ering that we aim to compare note only RDF/SPARQL engines, but also other
graph databases, we decided to focus on four types of graph patterns at the
core of popular graph query languages [5]: (i) basic graph patterns; (ii) optional
graph patterns; (iii) path patterns; and (iv) navigational graph patterns (using
paths). Other features – including relational-style operators such as projection,
difference, selection (filter), union, aggregation, solution modifiers, etc. – could
be added in future using a similar methodology; however, adding more features
would complicate generating comparable queries in distinct graph query lan-
guages. We thus pruned queries that use any operator different from basic graph
patterns, optionals and property paths. However, we keep queries with SERVICE,
since this operator is used in the majority of Wikidata queries in order to specify
language preferences for labels; and DISTINCT, GROUP BY, ORDER BY, LIMIT, since
these solution modifiers are generally applied after processing the base query
pattern. In these exceptional cases, we remove the service and solution modifier
clauses and keep the resulting query. Given that the labelling service can pro-
duce new variables that can be referenced in projected results, we use SELECT *
such that our queries are of the form SELECT * WHERE {graph pattern}. From
there, we profiled the following four groups of graph pattern queries.



Basic graph patterns. These were the queries that consisted exclusively of
joins between triple patterns. In order to eliminate duplicate queries, we sort
the triple patterns, and rename the variables they use, allowing us to detect the
queries which differ only in variable names, or the order of triples. The result is
a set of 1,335 BGP queries. We further partition BGPs into two disjoint subsets:

– Single. This set contains BGPs with a single triple pattern. While relatively
simple to evaluate, these queries test the engines’ data retrieval and result
enumeration capabilities, which are key to evaluating any query efficiently.
We ended up with 280 queries in this set.

– Multiple. These are queries consisting exclusively of BGPs, which have at
least two triple patterns, and thus require a join to be performed. Again,
being able to evaluate joins within basic graph patterns efficiently is crucial
for query performance. This set contains a total of 681 queries.

Optional graph patterns. We choose optional graph patterns as a focus
of WDBench since they are frequently used to query incomplete knowledge
graphs [13], and they have been widely studied in the literature as a charac-
teristic feature of graph queries that can increase the computational complex-
ity of query evaluation [33,34]. Queries in this set include (only) basic graph
patterns and one or more (potentially nested) OPTIONAL patterns. We further
remove queries that artificially create a cross product via OPTIONAL whereby the
right-hand side of an OPTIONAL contains only variables that are not mentioned
elsewhere; such queries might skew the benchmark results. This Optionals set
contains 498 distinct queries. We partition Optionals into two disjoint sets:

– Well-Designed (WD). An Optional query Q is well-designed if and only
if, for every optional clause O = { P1 } OPTIONAL { P2 } it contains, each
variable in P2 either appears in P1 or appears nowhere else in Q besides
P2 [33]. Such queries avoid leaps in complexity associated with optional
graph patterns [33,10,34]. This subset contains 390 queries.

– Not-Well-Designed (NWD). These are Optional queries that are not
well-designed, and are thus associated with leaps in computational complex-
ity for key decision problems [33]. This subset contains 108 queries.

Path patterns. We further test the performance of executing a single property
path query (excluding simple predicates). These queries test the engines’ ability
to detect whether there is a path connecting two nodes that conforms to a regular
expression. In the research literature this class of queries is known as two-way
regular path queries (2RPQs) [6], and in SPARQL standard they are called
property paths [22,28].8 Given that property paths almost exclusively form part
of a larger query in our log, we extracted path patterns from queries in order to
achieve a larger query set. Thus, if a query contains two property paths, this will
result in two new queries being added to Paths. After eliminating duplicates
Paths contains 660 queries. We partition Paths into two disjoint subsets:

8 Property paths include negated property sets that fall outside 2RPQs [28], but these
are rarely used [13], and can be partially emulated through disjunction (|) [28].



– Recursive (R). We call a Path query recursive if and only if it uses Kleene
star (*) or Kleene plus (+), i.e., if and only if it can match paths of arbitrary
length. There were 594 queries in this subset.

– Non-Recursive (NR). We call a Path query non-recursive if and only if
it does not use Kleene star (*) nor Kleene plus (+), i.e., if and only if it can
match paths of fixed length. There were 66 queries in this subset.

Navigational graph patterns. The final set of queries considers navigational
graph patterns, which incorporate property paths [22], triple patterns, and joins;
i.e., they are BGPs with property paths. To be more precise, we keep queries
which use either joins, or property paths, thus having a set of queries akin to
conjunctive two-way regular path queries (C2RPQs) [15]. We call this query set
Navigational [5]. In order to not have an overlap with the Paths query set, all
queries in C2RPQs must perform at least one join. These are more advanced
queries, and SPARQL engines are known to run into issues when evaluating
them [8]. The set C2RPQs contains a total of 539 queries. We further partition
Navigational into two disjoint subsets:

– Recursive (R). We call a Navigational query recursive if and only if it
contains a recursive path pattern. There are 515 such queries.

– Non-Recursive (NR). We call a Path query non-recursive if and only if
it does not contain a recursive path pattern. There were 24 such queries.

3.3 Conversion to Cypher

The Wikidata dump and query logs are natively expressed as RDF/SPARQL.
However, we aim for WDBench to also be usable for comparing graph databases.
A complication here is that graph databases often define their own declarative
query language. For now we thus focus on creating a version of the benchmark
for testing with Neo4j. This requires mapping the Wikidata graph to a property
graph, which is straightforwardly achieved given that we only include binary
(truthy) relations: each triple is simply represented as an edge in the property
graph. The more complex part involves converting the queries to Cypher [20]:
Neo4j’s query language. Graph patterns are expressed using a MATCH clause,
while optional graph patterns use the OPTIONAL MATCH clause. Within a MATCH
clause, Neo4j applies an edge-isomorphism semantics, while SPARQL uses a
homomorphism semantics [5]; thus Cypher’s query results can differ, but we
found such differences to be marginal in practice. Regarding path patterns, Neo4j
only supports Kleene star (i.e., zero or more, which it denotes by “*”). Where
possible, we rewrite path expressions into other available Neo4j operators, with
concatenations rewritten to basic graph patterns, inverses rewritten by swapping
source and target nodes, etc.; however, not all property paths (2RPQs) can
be supported. Neo4j allows for returning string representations of paths; to be
comparable with SPARQL, we project only the endpoints of paths.



4 Running WDBench

We now turn to using WDBench in order to test the performance of four query
engines. This section specifies the operational parameters for these experiments.

The machine. All experiments were run on a single commodity server with an
Intel®Xeon®Silver 4110 CPU, and 128GB of DDR4/2666MHz RAM, running
Linux Debian 10 with the kernel version 5.10. The hard disk used to store the
data was a SEAGATE ST14000NM001G with 14TB of storage.

How we ran the queries. To simulate a realistic database load, we do not split
queries into cold/hot run segments. Rather we run them in succession, one after
another, after a cold start of each system (and after cleaning the OS cache9).
This simulates the fact that query performance can vary significantly based on
the state of the system buffer, or even on the state of the hard drive, or the state
of OS’s virtual memory. For each system, queries were run in the same order.
We record the execution time of each individual query, which includes iterating
over all results. We set a limit of 100,000 distinct results for each query, again in
order to enable comparability as some engines showed instability when returning
larger results (also Virtuoso is hard-limited to 220 = 1, 048, 576 results). We
replicated this setup for each query set described above. This allows us to gauge
the systems’ performance on each particular type of query.

Handling timeouts. We defined a timeout of 1 minute per query for each system.
This is a common limit available of SPARQL endpoints, so we replicated it in
the benchmark. Apart from that, we note that most systems had to be restarted
upon a timeout as they often showed instability, particularly while evaluating
path queries. This was done without cleaning the OS cache in order to preserve
some of the virtual memory mapping that the OS built up to that point.

Tested engines. We use four persistent graph query engines that are popular
in practice. First, we include three RDF/SPARQL engines: Jena TDB version
4.1.0 [27], Blazegraph (BlazeG for short) version 2.1.6 [42], and Virtuoso version
7.2.6 [18]. We further include a property graph engine: Neo4J community edition
4.3.5 [46]. Jena and Blazegraph were assigned 64GB of RAM, and Virtuoso was
set up with 64GB or more of RAM as is recommended. Neo4J was run with
default settings. The size of the WDBench dataset when loaded into each of the
engines can be found in Table 1.

5 Experimental Results

In this section we present results for the tested engines on each query set spec-
ified in WDBench. We divide the discussion by the different query features de-
scribed in Section 3.2 – namely basic graph patterns, optional graph patterns,

9 This is done by the command “# sync; echo 3 > /proc/sys/vm/drop caches”



Table 1. WDBench dataset sizes when loaded into each engine.

BlazeG Jena Virtuoso Neo4J

70GB 110GB 70GB 112GB

path patterns, navigational graph patterns and their sub-variants – and discuss
explanations for the behaviour we observe. All experimental results, including
runtimes for individual queries on each engine tested, can be found online [4].

5.1 Basic graph patterns

We begin by examining the performance of each query engine for basic graph
patterns (BGPs), considering both Single and Multiple subsets. A summary
of the results can be observed in Table 2 and Figure 1. The box plots are gener-
ated in the standard manner, showing the range between the first and the third
quartile, with the midline representing the median, and the whiskers represented
by thin lines. Table 2 additionally indicates how many queries are supported by
the engine, the number of errors and timeouts, the average, and the median.

We can observe that as far as Single is concerned, Virtuoso is the most
stable engine, returning no timeouts, nor errors, closely followed by Blazegraph.
In terms of performance, Blazegraph is the clear winner in the Single query
set, followed thereafter by Virtuoso. Both Jena and Neo4j are lagging in terms of
performance, with averages 4–5 times higher than the other two engines. Neo4j’s
median is also above the third quartile for both Blazegraph and Virtuoso. Queries
from the Single set have precisely the same structure. However, depending on
the exact constants they use, the results can vary from timeouts to fast runs,
depending on the data distribution, number of results, etc. For this reason we
believe that it is beneficial to have a large number of queries that might be
structurally similar, but that access different parts of the dataset.
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Figure 1. Performance for all BGPs (left), Single (middle), and Multiple (right)



Table 2. Summary of runtimes (in seconds) for BGPs

Engine Supported Timeouts Error Average Median

BGPs (961 queries)

Blazegraph 961 55 0 6.51 1.05
Jena 961 79 0 10.73 2.71
Virtuoso 961 8 3 6.79 4.90
Neo4j 961 206 1 20.16 6.17

BGPs Single (280 queries)

Blazegraph 280 3 0 1.73 0.07
Jena 280 25 0 9.92 0.46
Virtuoso 280 1 0 2.12 0.28
Neo4j 280 47 0 15.28 2.03

BGPs Multiple (681 queries)

Blazegraph 681 52 0 8.47 1.34
Jena 681 54 0 11.06 3.16
Virtuoso 681 7 3 8.71 8.34
Neo4j 681 159 1 22.17 6.75

When considering join queries in Multiple, we observe a rather similar pat-
tern. Virtuoso is again the most stable engine, but it falls behind Blazegraph
slightly in the average case. Medians and boxplots tell another story here, show-
ing that both Jena and Blazegraph outperform Virtuoso on the majority of the
queries, where even Neo4j’s median, and first to third quartiles, are lower than
that of Virtuoso’s. Thus it would seem that Blazegraph and Jena, in particular,
can evaluate the majority of these queries faster than Virtuoso, but Virtuoso
performs relatively better for higher percentiles (more costly queries).

5.2 Optional graph patterns

The results for Optionals is given in Table 3, and in Figure 2. Blazegraph is
the clear winner here, both in stability, with only 28 timeouts, and in speed, with
its median being below the first quartile of the next best competitor, Jena. Jena
also outperforms Virtuoso by a wide margin, and Neo4j trails further behind.

Considering only well-designed OPTIONAL patterns, the performance of Vir-
tuoso improves drastically. Blazegraph wins in terms of runtimes, but Virtuoso
surpasses other engines in stability, timing out on only 5 of 390 queries. Non
well-designed optionals seems to be a major issue for Virtuoso, where it times
out in 64 of 108 cases, and its performance drops significantly. Other engines ac-
tually perform significantly better on Optionals NWD. Looking a bit deeper
into this performance gain, we speculate that this is mostly due to the non well-
designed optionals simulating a cross-product, which generates 100,000 results,
our query limit, quite fast, at least when the engine is optimised for such cases,
per the results for Blazegraph and Jena (but not Virtuoso nor Neo4j).



Table 3. Summary of runtimes (in seconds) for optional graph patterns

Engine Supported Timeouts Error Average Median

Optionals (498 queries)

Blazegraph 498 37 0 8.55 2.16
Jena 498 59 0 13.56 4.34
Virtuoso 498 69 2 17.29 9.45
Neo4j 498 146 1 27.09 17.87

Optionals Well-Designed (390 queries)

Blazegraph 390 36 0 9.99 2.32
Jena 390 56 0 14.91 4.66
Virtuoso 390 5 1 10.37 7.70
Neo4j 390 113 1 28.21 18.89

Optionals Not Well-Designed (108 queries)

Blazegraph 108 1 0 3.37 1.89
Jena 108 3 0 8.68 3.46
Virtuoso 108 64 1 42.26 60.00
Neo4j 108 33 0 23.08 5.89
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Table 4. Summary of runtimes (in seconds) for path patterns

Engine Supported Timeouts Error Average Median

Paths (660 queries)

Blazegraph 660 87 0 11.00 0.82
Jena 660 96 0 11.74 0.81
Virtuoso 660 24 27 4.71 0.70
Neo4j 639 134 6 20.89 9.74

Paths Recursive (594 queries)

Blazegraph 594 79 0 11.13 0.78
Jena 594 75 0 10.52 0.62
Virtuoso 594 24 25 4.65 0.43
Neo4j 575 104 5 19.48 9.36

Paths Non-Recursive (66 queries)

Blazegraph 66 8 0 9.89 1.19
Jena 66 21 0 22.71 3.04
Virtuoso 66 0 2 5.23 3.72
Neo4j 64 30 1 33.56 42.95
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Figure 3. Performance for Paths (left), Paths R (middle), and Paths NR (right)

5.3 Path patterns

Considering that property paths are known to give trouble to graph query en-
gines [8], it is interesting to consider their performance in the context of this
benchmark. We summarise our findings in Table 4, and in Figure 3.

Considering all property paths in the Paths query set, we can see that Virtu-
oso is the clear winner, both in stability and performance. Both Jena and Blaze-
graph trail some distance behind, and Neo4j is an order of magnitude slower in
the median case. Similarly as in Single, we can observe that the form of the
query (almost identical for all the queries in the set) does not matter much,
but that the distribution of the data dictates query performance. We even man-
aged to identify paths which use the exact same regular expression to specify
the query, but have a different starting point for the search, where one finishes
almost instantaneously, and the other one times out.



When we analyse queries that use recursion, versus the path queries that use
no recursion, we can see that all engines except Jena perform similarly in the
average case, with Virtuoso being again the most stable and the fastest in terms
of the median case. Blazegraph performs better than the other engines in the
median case for non-recursive paths. Interestingly, Jena seems to perform better
on recursive patterns. Likewise, all systems perform better in the median case
for recursive patterns as compared to non-recursive ones. This is a surprising
result since one should expect recursive queries to be more costly. In the case of
the RDF/SPARQL engines, the SPARQL standard indicates that (most) non-
recursive path patterns should be rewritten to BGPs and unions of BGPs, rather
than evaluating them directly as paths, meaning that implementations following
this strategy will follow very different query evaluation plans when comparing
recursive and non-recursive cases.

5.4 Navigational graph patterns

The results for Navigational are given in Table 5 and Figure 4. As before, we
provide the results for all the queries in this set, and then analyse the recursive
and the non-recursive cases within the set.

When we consider all navigational graph patterns, this set is clearly the most
challenging thus far, where we observe the highest average and median runtimes
for all engines across all patterns, except in the case of Neo4j, which was slower
in the average case for Optionals. Virtuoso is a clear winner in this category,
particularly in the average case, although both Blazegraph and Jena come close
in terms of median runtimes. Neo4j is again the slowest of all the engines.

When comparing recursive and non-recursive navigational graph patterns, we
see different effects on different systems. Blazegraph is slightly slower for non-
recursive queries, Jena is notably faster for non-recursive queries, Virtuoso is
notably slower for non-recursive queries, and finally Neo4j is considerably slower
for non-recursive queries. This is similar to what we observed for Paths, except
in the case of Jena, where the trend is reversed. Many queries in Navigational
that timed out contain a query in Paths that also times out. This would suggest
that an important factor in timeouts is the performance of property paths.

6 Conclusions

We conclude with a recap of our contributions, a summary of our results, and a
discussion on limitations and future directions.

Contributions: We have developed WDBench: a query benchmark for knowl-
edge graphs based on real-world data (Wikidata) and queries (from Wikidata
logs). The benchmark allows for measuring the performance of RDF/SPARQL
and graph query engines. In this first release, we have focused on analysing four
classes of queries corresponding to core features of graph queries: basic graph



Table 5. Summary of runtimes (in seconds) for navigational graph patterns

Engine Supported Timeouts Error Average Median

Navigational (539 queries)

Blazegraph 539 180 0 22.32 2.58
Jena 539 245 0 30.98 29.83
Virtuoso 539 37 2 10.42 4.36
Neo4j 531 211 0 31.07 24.83

Navigational Recursive (515 queries)

Blazegraph 515 172 0 22.29 2.58
Jena 515 238 0 31.31 35.47
Virtuoso 515 36 2 10.15 4.03
Neo4j 509 199 0 30.69 24.09

Navigational Non-Recursive (24 queries)

Blazegraph 24 8 0 22.96 2.94
Jena 24 7 0 23.97 10.07
Virtuoso 24 1 0 16.24 6.48
Neo4j 22 12 0 40.01 60.00
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Figure 4. Performance for Navigational (left), Navigational R (middle), and Nav-
igational NR (right)



patterns, optional graph patterns, path patterns, and navigational graph pat-
terns. We have further partitioned these sets into finer subsets: single vs. mul-
tiple, well-designed vs. not well-designed, and recursive vs. non-recursive. We
have published two versions of the benchmark: an RDF/SPARQL version, and a
property graph/Cypher version. We have further presented empirical results for
the performance of Blazegraph, Jena, Virtuoso and Neo4j using this benchmark.

Results: We observed that Blazegraph and Virtuoso were the best-performing
query engines for WDBench, followed by Jena, with Neo4j generally offering the
slowest runtimes. Comparing Blazegraph and Virtuoso, the former is slightly
faster than the latter for basic graph patterns, considerably faster for optional
graph patterns (particularly for not well-designed patterns), considerably slower
for path patterns (except the median case of non-recursive queries), and faster
in the median case but slower in the average case for navigational graph pat-
terns. In terms of cases where engines could be better optimised, we see that
Virtuoso underperforms for not well-designed patterns, while Jena underper-
forms for non-recursive path queries. Neo4j does not appear to offer competitive
performance in the Wikidata setting: while there is the caveat that the query
semantics of Cypher varies slightly in some cases from SPARQL, the differences
in performance would seem to go beyond such variations; indeed, our results are
consistent with previous results for querying Wikidata with Neo4j [24].

Limitations and future directions: WDBench currently focuses on core features
of graph queries, where languages such as SPARQL and Cypher include a wide
range of other features that are frequently used in practice. As part of future
work, the same methodology as presented here could be straightforwardly used
for generating sets of SPARQL queries using other features and combinations
thereof. However, as new features are introduced, it will become increasingly
complex to offer analogous versions in Cypher (and other query languages), par-
ticularly for features using built-in expressions, such as filters, aggregations, and
variable binding. We currently compare the performance of four query engines,
but there are other systems that would be interesting to compare in future, in-
cluding QLever [11], RDF-3x [32] (for SPARQL 1.0), RDF4j [14], etc.10 Unlike
synthetic benchmarks, the scale of WDBench is limited by the size of Wiki-
data. While it would be possible to test, for example, on the complete version of
Wikidata, query results would not change. We view WDBench as a real-world
benchmark that can complement other benchmarks, where synthetic benchmarks
can be used for stress-testing scalability. Finally, WDBench is a read-only bench-
mark. An interesting direction for an extended version of the benchmark could
include a workload of real-world updates mined from Wikidata [38].

Supplemental material The Wikidata graph is available on Figshare [3]. Scripts
for data preparation, queries, and detailed results are available on Github [4].

10 We also have results for MillenniumDB [45], which we do not include here since the
system has been developed by the authors. We keep our results third-party.
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