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Abstract
We present an indexing scheme that supports worst-case optimal
(wco) joins over graphs within compact space. Supporting all possi-
ble wco joins using conventional data structures – based on B(+)-
Trees, tries, etc. – requires 6 index orders in the case of graphs
represented as triples. We rather propose a form of index, which
we call a ring, that indexes each triple as a set of cyclic bidirectional
strings of length 3. Rather than maintaining 6 orderings, we can use
one ring to index them all. This ring replaces the graph and uses
only sublinear extra space on top of the graph; in order words, the
ring supports worst-case optimal graph joins in almost no space
beyond storing the graph itself. We perform experiments using our
representation to index a large graph (Wikidata) in memory, over
which wco join algorithms are implemented. Our experiments show
that the ring offers the best overall performance for query times
while using only a small fraction of the space when compared with
several state-of-the-art approaches.

CCS Concepts
• Theory of computation → Database query processing and
optimization (theory); Data structures and algorithms for
data management.
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Figure 1: Example of three relations and their natural join

1 Introduction
A recent development in the efficient processing of database queries
is that of worst-case optimal (wco) join algorithms, which process
join queries in time proportional to the AGM bound [6]: the maxi-
mum possible output size produced by a join query over a relational
database of a certain size. Such algorithms can be strictly better
than any traditional query plan using pairwise joins [38, 44].

Leapfrog-TrieJoin (LTJ) is a seminal wco join algorithm based
on “eliminating” attributes from a query [44]. To illustrate the algo-
rithm (defined in more detail in Section 2.2), consider the relations
R, S, T in Figure 1 along with the query Q = R Z S Z T computing
their natural join. In order to evaluate this query, LTJ assumes an
ordering of the attributes in Q , say (x, y, z) (details of this ordering
are discussed later). For the first attribute x, LTJ finds all constants
a such that the query σx=a (R Z T) gives some solution, here join-
ing all relations that mention x in the join (R and T). In this case
σx=1(R Z T) and σx=2(R Z T) give solutions, while σx=3(R Z T)
does not.We thus say that 1 and 2 eliminate x. Next LTJ eliminates y:
for each constant a found to eliminate x in the previous step, we find
all constants b that eliminate y, that is, such that σx=a∧y=b (R Z S)
gives solutions. Given a = 1, we find b = 2 and b = 3, while given
a = 2 we find b = 3. We thus say that (1, 2), (1, 3) and (2, 3) elimi-
nate (x, y). Finally LTJ eliminates z: for each elimination (a,b) of
(x, y) computed previously, we find all constants c that eliminate z.
Given (a,b) = (1, 2), we find c = 4; given (a,b) = (1, 3), we again
find c = 4; given (a,b) = (2, 3) we find no valid eliminations. Since
the tuples (1, 2, 4) and (1, 3, 4) eliminate all attributes (x,y, z), they
are thus the final solutions of the query Q computed by LTJ.

In order for LTJ to satisfy wco guarantees, the constants that
eliminate a given attribute must be enumerated in time proportional
to the number of results. This is typically enabled by indexing each
relation such that we can assign constants to any subset of attributes
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Figure 2: Illustration of triple indexing schemes

of the relation and efficiently enumerate the results for any other
attribute in sorted order, which enables the efficient intersection of
results coming from multiple relations for that attribute. However,
if using traditional data structures with prefix lookups (B(+)Trees,
tries, etc.), the number of index orders required is exponential in the
arity of the relation. Veldhuizen [44] thus proposes to load indexes
lazily, which may incur high runtime costs and space overhead.

Various works have found that wco join algorithms are well-
suited for graphs, where graphs have low fixed arity, and graph
queries (thus) tend to feature many joins [1, 23, 24, 40]. But consider-
ing graphs with an arity of 3, a complete index supporting wco joins
still requires 6 index orders, leading to high levels of redundancy
and high space requirements; the aforementioned approaches have
mostly focused on time rather than space in wco algorithms. Con-
versely, various proposals of compact data structures for graphs
have been proposed [10, 11, 16, 46], with applications for archiving,
publishing, in-memory databases and caching, etc. These proposals
do not directly address wco joins. However, within the cyclic in-
dexing scheme of Brisaboa et al. [10] we find the seeds of a general
technique to reduce the space needed for evaluating wco joins.

Contribution. We propose an indexing scheme that greatly re-
duces space requirements for supporting wco joins. The scheme in-
dexes graphs composed of a set of subject–predicate–object triples
of the form (s,p,o) (each denotes an edge s

p
−→ o). Like the proposal

of Brisaboa et al. [10], triples are indexed as cyclic strings of length
3. Unlike their proposal, we use text indexing techniques that con-
sider triples as bidirectional cyclic strings, allowing us to support
wco joins with only one index order, and thus with sublinear space
beyond storing the graph itself. We call our indexing scheme a ring.

Figure 2 illustrates the indexing schemes, where we view a graph
as a relation with attributes s, p, o, and circle attributes from which
the index order starts. In the (traditional) flat indexing scheme, we
require six orders for wco joins using LTJ, specifying constants for
attributes in sequence of the given order; we can then read the first
unbound attribute in sorted order. In the cyclic indexing scheme of
Brisaboa et al. [10], we can start at any attribute, and proceed in
the order shown, reading the first unbound attribute; in this case,
two orders are needed to cover all patterns. Our proposal is the ring
scheme, where we can traverse the attributes in either direction,
allowing us to support wco graph joins with only one order.

We show how to implement this ring index using techniques
inspired by text indexing, and characterise the space it requires.
We prove that this implementation enables the evaluation of wco
joins over graphs using an LTJ-style algorithm. Our experiments

on the Wikidata graph show that the ring index uses 6% additional
space beyond the raw data and 4–11 times less space than various
prominent alternatives (Jena, RDF-3X, Blazegraph, Virtuoso) while
being 2–36 times faster in general to solve basic graph patterns.
An exception is EmptyHeaded [1], where our index is 140 times
smaller and slightly faster overall. Only Qdag [35], a recent succinct
index, is smaller than our basic ring index, but a compressed ring we
develop is 150 times faster than Qdag while using 75% of the space it
uses. We further discuss how rings could be applied in future work
to reduce the indexes needed for wco joins in relational settings
(e.g., for arity 6, we require 7 rings instead of 6! = 720 flat indexes).

Limitations. Our proposed indexing scheme, though efficient in
space, is based on an in-memory data-structure that relies heavily
on random accesses, which makes it difficult to migrate to disk and
may be slower than in-memory indexes that enable more sequential
access. The scheme is currently read-only, and uses relatively simple
data loading and query planning techniques; we discuss in the
conclusions how such issues can be concretely addressed as part
of future work. While a ring in one order is sufficient for graphs,
multiple orders are required for higher-arity relations (though far
fewer than traditional indexing schemes, as discussed later). We
currently focus on evaluating basic graph patterns; though support
for other features of graph query languages could be simply layered
on top, it may be possible in the future to optimise such features
by pushing them to lower-level operations over the index.

2 Related works and concepts
We now introduce key concepts and works relating to graph joins
and wco join algorithms, as well as text-indexing techniques.

2.1 Graph joins and patterns
2.1.1 Graphs. We adopt a relational view of graphs, treating them
as a single ternary relationG . A triple (s,p,o) in the graph encodes
an edge s

p
−→ o from node s to node o labelled p, as seen in Figure 3.

We assume the domain of graphs to be drawn from a totally ordered,
countably infinite set U of constants. Given a constant u ∈ U, we
denote by u + 1 the next element in the total order after u inU. We
denote by dom(G) the set of all constants in G.

2.1.2 Graph patterns. A basic graph pattern is a graph in which
some constants may be replaced by variables that can be matched
against another graph. To be more precise, let V be an infinite
set of variables, disjoint from U. A triple pattern is then a tuple
(s,p,o) ∈ (U ∪V)3, and a basic graph pattern is a setQ ⊆ 2(U∪V)3

of triple patterns. Each triple pattern represents an atomic query
over the graph, and thus a basic graph pattern corresponds to a
conjunctive query (aka. join query) over the relational representa-
tion of the graph. Let vars(Q) denote the set of variables used in
Q . The evaluation of Q over a graph G is then defined to be the set
of mappings Q(G) = {µ : vars(Q) → dom(G) | µ(Q) ⊆ G} called
solutions, where µ(Q) denotes the image of Q under µ; that is, the
result of replacing each variable x ∈ vars(Q) in Q by µ(x). Figure 4
illustrates a basic graph pattern and its evaluation over a graph,
which yields three solutions. The central problem of interest to us
in this paper is to compute the complete set of solutions for Q(G)
in optimal time and using little space.
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the graph of Figure 3 (right)

2.2 Worst-case optimal joins
2.2.1 AGM bound. The AGM bound [6] defines a limit on the
number of solutions for natural join queries Q = r1 Z . . . Z rm ,
where r1, . . . , rm are (pairwise distinct) relation names. Given a
natural join query Q and a relational instance D, the AGM bound
of Q over D represents the maximum number of tuples generated
by evaluating Q over any instance D ′ of size not greater than D.1
If we simply assume that the size of all relations is in O(n), we can
speak of the AGM bound of Q , or Q∗, as a function of n.

When applying the AGM bound over graph patterns, there are
three details requiring attention. First, graph patterns involve self-
joins on a single ternary relation. But if we rewrite the query to
make each relation name distinct, the AGM bound differs only by a
constant factor. Second, graph patterns involve constants from the
set U; for example, the graph pattern Q of Figure 4 uses constants
win, nom and adv. However, in this case we can recover the bound
by transforming Q into a query Q ′ in which each pattern t ∈ Q
using k (0 ≤ k ≤ 3) constants is transformed into a relation of
arity 3 − k in which we filter the base relation by the appropriate
constants. Third, a triple pattern can use the same variable multiple
times, but again this case can be covered by creating a relation
that uses one attribute to represent the variable and that stores all
tuples with the same value in the corresponding positions. Hence
the same bound applies to graph patterns, within a constant factor.

2.2.2 Worst-case optimality. A join algorithm accepts a join query
Q and a database instance D as input, and enumerates Q(D) – the
solutions for Q over D – as its output. A join algorithm is called
worst-case optimal (wco) if it can run in timeO(Q∗). The intuition is
that in the worst case a join algorithm has to enumerate Q∗ results,
thus taking Ω(Q∗) time. Though join algorithms do exist that run
within timeO(Q∗) [38, 44], a logarithmic factorO(Q∗ logn) is often
permitted to allow more flexibility (e.g., allowing one to choose
binary search over sorted relations rather than hashing [44]).

Query optimisers often convert join queries into binary join
trees, where joins are evaluated pairwise using nested-loop joins,
hash joins, merge joins, etc. Such approaches are not wco. Take,

1The size of an instance D′ over schema r1, . . . , rm is said to be not greater than an
instance D if for each relation ri , the number of tuples of ri in D′ is not greater than
the number of tuples of ri in D

for example, the join query Q of Figure 1. If we first join the pair
Q1 = R Z S in order to later evaluate Q2 = Q1 Z T, then Q∗

1 is
already in the order of n2, while Q∗ is in the order of n3/2, and
hence this plan is not wco. Thus no plan involving pairwise joins
can be wco. Ngo et al. [38] proposed the first wco join algorithm
confirmed to run in timeO(Q∗). Their algorithm was later found to
be outperformed by a simpler and more practical algorithm running
in time O(Q∗ logn), called Leapfrog TrieJoin (LTJ) [44].

2.2.3 Leapfrog TrieJoin. As illustrated in the introduction, LTJ
evaluates join queries one variable-at-a-time (i.e., one attribute-at-
a-time) rather than one relation-at-a-time. Here we provide more
details on the LTJ algorithm in the context of graphs [23], referring
to the original LTJ paper for the full relational setup [44].

Given a graphG , LTJ is built upon an abstraction for data access
called a trie-iterator, which features one operation: leap.

Definition 2.1 (Trie-iterator). A trie-iterator for a graph G is an
implementation of leap : (U ∪V)3 ×V ×U → U∪ {⊥}. Given a
variable x ∈ V , a triple pattern t with the variable x , and a constant
c ∈ U, leap(t, x, c) returns the smallest constant cx ≥ c from U

such that t has solutions in G after replacing x by cx . If there is no
such value cx , then leap(t, x, c) returns the special value ⊥.

Veldhuizen [44] shows that for LTJ to run in O(Q∗ logn) time, it
suffices for the trie iterators to support leap in O(logn) time (data
complexity). Consider a graph pattern Q = {t1, . . . , tm }, and let
v = |vars(Q)|. For a subset S ⊆ vars(Q) of variables, further let
QS denote the set of triple patterns in Q that contain at least one
variable in S . Algorithm 1 details how LTJ uses the leap operation
to evaluate a basic graph patternQ over a graphG . LTJ first defines
an initial ordering (x1, . . . , xv ) of vars(Q); the specific ordering
does not affect wco guarantees, and will be discussed later.

Starting with x1, LTJ finds each elimination c ∈ dom(G) for x1
such that, for each triple pattern t ∈ Q {x1 } , if x1 is replaced by c in
t , then the evaluation of the modified t overG is non-empty. This is
equivalent to intersecting the eliminations of x1 for each individual
triple pattern t ∈ Q {x1 } , for which LTJ uses leap to recursively seek
each triple pattern inQ {x1 } forward to the maximum current value
for all triple patterns, returning values for which all triple patterns
agree, until the eliminations for triple patterns are exhausted.

Upon finding the first elimination c of x1, the algorithm creates
a mapping µ = {(x1 B c)}. Next LTJ finds values d that eliminate
x2 in µ(Q {x2 }) using the same form of intersection as before based
on leap. When the first elimination d of x2 is found, the current
mapping is extended to µ = {(x1 B c), (x2 B d)}. The process then
continues to the next variable until all variables are eliminated,
in which case µ is then a solution. If no elimination is found for
a variable x j and current mapping µ, the process then tries to
eliminate x j for the next mapping generated up to x j−1. The process
terminates when all mappings for x1 have been exhausted.

We are then left to consider the implementation of leap. Per
the name “trie-iterator”, the original implementation in a relational
setting was based on (virtual) tries built for each relation, with
levels of the trie corresponding to attributes of a relation, and each
unique root-to-leaf path encoding a tuple of the relation [44]. In a
graph context, a trie would be defined with one level for subjects,
one for predicates, and one for objects, and with each root-to-leaf



Algorithm 1 LTJ for the evaluation of basic graph patterns

Input: A basic graph pattern Q , a trie-iterator T for a graph G,
and an ordering (x1, . . . , xv ) of the variables in vars(Q)

leapfrog_join():
Output: Reports the tuples in Q(G)

1: call leapfrog_search({}, 1)

leapfrog_search(µ, j):
Input: An index 1 ≤ j ≤ v + 1, and a mapping µ defined for the

variables {xk | k < j}

1: if j = v + 1 then report µ as an output solution
2: else
3: c := seek(µ, j,minU)
4: while c , ⊥ do
5: µ ′ := µ ∪ {(x j := c)}
6: call leapfrog_search(µ ′, j + 1)
7: c := seek(µ, j, c + 1)

seek(µ, j, c):
Input: An index 1 ≤ j ≤ v , a mapping µ defined for the

variables {xk | k < j}, and a value c ∈ U

1: Let t1, . . . , tm be the triple patterns in Q {x j }
2: For 1 ≤ i ≤ m, let µ(ti ) be the triple pattern ti with its variables

xk , for k < j, replaced by µ(xk )
3: while true do
4: for all i ∈ [1 . .m] do ci := T .leap(µ(ti ), x j , c)
5: if ⊥ ∈ {c1, . . . , cm } then return ⊥

6: cmin := min{c1, . . . , cm }; cmax := max{c1, . . . , cm }

7: if cmin = cmax then return cmin
8: c := cmax

path encoding a triple of the graph. However trie-iterators based
on traditional indexes (e.g., on B-trees) can only meet the O(logn)-
time requirement for leap(t, x, c) if the constants in t respect some
predefined index order(s). In the case of graphs, supporting all pos-
sible triple patterns within the necessary time constraints implies
indexing 6 different orders for all permutations of levels for subject,
predicate and object (per “Flat” in Figure 2). More generally, for an
arity of d , we need a total of d! orders (which can be improved to
O(2dd1/2), see Section 6): an exponential number of indexes.

In Section 3 we introduce a read-only indexing scheme for a
graph G that supports leap(t, x, c) in O(logn) time, with no re-
strictions on the order of the constants in t , and with almost no
extra space beyond that required to represent G.

2.2.4 Other wco algorithms. Recent years have seen various fur-
ther proposals of wco algorithms [1, 2, 23–26, 35, 37, 40, 43]. While
many such algorithms are proposed in a relational context, they can
be applied over graphs represented as ternary relations. However,
most such works focus on improving time, or dealing with more
complex queries, rather than reducing space requirements. As an
exception, Navarro et al. [35] use space close to that of the raw
data by using a particular order that eliminates one bit of every
variable in each round. In exchange, the time complexity includes a
factor that is exponential on the arity of the relation. Some recent

papers have looked at ways to combine pairwise joins with wco
joins, which can help address the space requirements of the latter.
Freitag et al. [19] propose a hash-based indexing scheme that can be
efficiently built on-the-fly at query time, and demonstrate how to in-
tegrate these algorithms into a functioning relational database; they
also propose to use wco joins only when beneficial. Our proposal
avoids on-the-fly indexing in the context of graphs. Graphflow [30]
integrates wco joins with pairwise joins in order to generate hybrid
plans for evaluating graph queries. While their work focuses on
query planning, our focus is on space-efficient indexing techniques
– inspired by indexes for text – that support wco joins.

2.3 Text-indexing techniques
2.3.1 Suffix arrays. Let T [1 . .n] be a string over an ordered alpha-
bet Σ, with each T [j] an element in this alphabet except T [n] = $,
which is a special symbol larger than any other in Σ. We write
T [i . . j] to denote T [i] · · ·T [j] and T [i . .] = T [i . .n]. The suffix
array A of T stores all suffixes of T in increasing lexicographic
order: if one identifies each suffix T [i . .n] of T with the position
i at which it starts, A is simply a permutation of [n] that satisfies
T [A[k] . .] < T [A[k + 1] . .] for all k . Intuitively, A[k] indicates the
index at which the kth lexicographically lowest suffix of T begins.
For example, if T = rococo$, then A = ⟨3, 5, 2, 4, 6, 1, 7⟩. One use
of suffix arrays is to find occurrences of a substring P in T . These
occurrences, if any, correspond to an interval A[s . . e]: they are all
suffixes of T starting with P , thus forming a lexicographic range.
2.3.2 Suffix arrays for graphs. Brisaboa et al. [10] propose to use a
compact representation of suffix arrays to evaluate triple patterns.
For a graph G with n triples, they identify each constant in the
domain of graphs with consecutive integers, and treatG as a string
T [1 . . 3n + 1] = s1p1o1 s2p2o2 · · · snpnon $. To save space, they use
an index called a Compressed Suffix Array (CSA) [41]. Using space
close to that of the text, this index supports traversing T (which
allows one to recreate it), and searching for substrings in time
comparable to what is achieved via suffix arrays. They show how to
tweak the CSA of a textT representing a graph to regard the triples
as cyclic, so that instead of traversingT one can jump from any third
component oi of a triple to its first component si . This modification
allows the authors to evaluate triple patterns by finding the suffix
array range A[s . . e] that points to the bound parts of the triple
patterns, and then recovering the variable parts by simulating a
traversal of the cyclic triples T pointed at within A[s . . e]. While
this work could be extended to support wco algorithms like LTJ,
because their CSA-based index can efficiently support leap in only
one direction, two orders would be needed (per Figure 2).

Our work continues the idea of using text indexes to support
graph queries. However, our indexes are based on FM-indexes and
wavelet trees (explained in the following), which, unlike the CSA-
based index of Brisaboa et al. [10], enable the bidirectionality needed
to support wco joins in just one order. Like most works using
compact data structures, we assume the RAM computation model,
where the typical arithmetic and logical operations on machine
words of Θ(logn) bits are carried out in constant time.
2.3.3 BWTs and FM-indexes. The FM-index [17] is an alternative
to the CSA offering similar space and time. It is based on the
Burrows–Wheeler Transform (BWT ) [12] of a text T , which is a



string BWT[1 . .n] that is a permutation ofT : BWT[i] = T [A[i]−1],
except that BWT[i] = T [n] = $ if A[i] = 1. Intuitively BWT[i] indi-
cates the symbol of T directly preceding the ith lexicographically
lowest suffix of T (or the last symbol of T if no such symbol exists).
For example, if T = rococo$, then BWT = oorcc$o.

Let Σ∪{$} = [1, τ ]. The BWT allows one to simulate a backwards
traversal of T . Assume we know that BWT[i] corresponds to T [j].
Then the element corresponding to T [j − 1] is BWT[i ′], where

i ′ = LF(i) = C[c] + rankc (BWT, i), (1)

c = BWT[i], C[c] is the number of occurrences of symbols smaller
than c in T , and rankc (BWT, i) counts the number of times c oc-
curs in BWT[1 . . i] (we discuss its implementation soon). Thus,
if we know that BWT[i] corresponds to T [1], we retrieve T back-
wards with T [n] = BWT[i], T [n − 1] = BWT[LF(i)], and more
generally T [n − k] = BWT[LFk (i)]. The backward traversal of T is
thus achieved by repeated applications of the function LF, called
LF-steps. For example, with T = rococo$ and BWT = oorcc$o,
if we know that BWT[2] refers to T [4] = o, then BWT[LF(2)] =
BWT[2 + 2] = BWT[4] corresponds to the element T [3] = c.

The FM-index uses the BWT to simulate searches in the suffix
array. Given a string P[1 . .m], the goal of this search is to find the
maximal interval A[sP . . eP ] such that the suffixes of the text repre-
sented by this interval are all prefixed by P . This is done via a process
called backward search as follows. The interval A[sP [m] . . eP [m]] of
P[m] is sP [m] := C[P[m]] + 1 and eP [m] := C[P[m] + 1]. Assume
that we know the interval corresponding to the occurrences of
P[i + 1 . .m]. Then, we can find the interval for P[i . .m] as follows:

sP [i . .m] := C[P[i]] + rankP [i](BWT, sP [i+1. .m] − 1) + 1,
eP [i . .m] := C[P[i]] + rankP [i](BWT, eP [i+1. .m]). (2)

This simulates taking simultaneous LF-steps at all the positions k ∈

[sP [i+1. .m] . . eP [i+1. .m]] where BWT[k] = P[i]: the suffixes start-
ing with P[i . .m] are obtained from those starting with P[i+1 . .m]

and preceded by P[i]. If for all i ∈ [1 . .m] we have sP [i . .m] ≤

eP [i . .m], then the range for P is the final A[sP . . eP ]. For exam-
ple, given T = rococo$, BWT = oorcc$o, P = oco, and A =
⟨3, 5, 2, 4, 6, 1, 7⟩, we can find the interval for P[1 . . 3] as follows:

sP [3] := C[o] + 1 = 3
eP [3] := C[p] = 5

sP [2. .3] := C[c] + rankc(BWT, sP [3] − 1) + 1 = 1
eP [2. .3] := C[c] + rankc(BWT, eP [3]) = 2
sP [1. .3] := C[o] + ranko(BWT, sP [2. .3] − 1) + 1 = 3
eP [1. .3] := C[o] + ranko(BWT, eP [2. .3]) = 4

Indeed, the occurrences of P in T start at T [A[3] . . 7] = T [2 . . 7] =
ococo$ and T [A[4] . . 7] = T [4 . . 7] = oco$.

The space required by an FM-index is that used for C and BWT.
We can always store C within n + τ + o(n + τ ) bits, as a bitvector
D[1 . .n + τ ] with 1’s at positions i +C[i]; then C[i] is computed as
select1(D, i) − i . This operation finds the position of the ith 1 in
D, and is computed in constant time by storing o(|D |) bits on top
of D [13, 31]. Regarding BWT, most implementations use a wavelet
tree, which requires space close to that of a plain representation of
BWT, and can solve rankc (BWT, i) queries in time logarithmic on
the alphabet size τ [18], enabling search of P in O(m logτ ) time.
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Figure 5: Example wavelet tree for oorcc$o

2.3.4 Wavelet trees. A wavelet tree [22, 34] is a binary tree that
represents a string S[1 . .n] from an alphabet [1, τ ] using n log2 τ +
o(n logτ ) bits of space (and can use compressed space). Each node
represents a range of alphabet symbols. The root represents [1, τ ]
and the cth left-to-right leaf represents [c, c], i.e., the interval con-
taining only the cth character, which we denote as c . If an internal
node represents [a,b], then its left child represents [a, ⌊(a + b)/2⌋]
and its right child represents [⌊(a + b)/2⌋ + 1,b]. Conceptually, a
node representing [a,b] stores the subsequence Sa,b [1 . .na,b ] of S
formed by the symbols in [a,b]. In practice, this node only stores a
bitvector Ba,b [1 . .na,b ] with a 0 at position i if Sa,b [i] ≤ (a + b)/2
and a 1 otherwise (marking whether Sa,b [i] belongs to its left or
right child). The leaves store nothing. Figure 5 exemplifies the
wavelet tree for oorcc$o; only the bitvectors and pointers are
stored, where other elements are included for illustration purposes.

Regarding space, in a wavelet tree for a string S[1 . .n], the total
number of bits stored at the nodes of each non-leaf level is also n.
Since the tree has ⌈log2 τ ⌉ non-leaf levels, storing all the bitvectors
requires at most n⌈log2 τ ⌉ bits, just like a plain representation of S .
To support operations efficiently (e.g., accessing S[i]), all the bitvec-
tors Ba,b are enhanced with o(na,b ) further bits so that operations
rankb (Ba,b , i) and selectb (Ba,b , i) can be answered in constant
time [13, 31]. This adds o(n logτ ) further bits of space. The pointers
of the tree add O(τ logn) bits to its space usage (not negligible for
large τ ). This is avoided in a pointerless variant called a wavelet
matrix [14], which offers the same functionality in less space.

Operations access, rank, and select are solved by traversing
one root-to-leaf path in the wavelet tree, in O(logτ ) time. As an
example, let us show how to access S[i]: we start with [a,b] := [1, τ ]
and i ′ := i at the root. If Ba,b [i ′] = 0, we set b := ⌊(a + b)/2⌋,
i ′ := rank0(Ba,b , i

′), and continue by the left child. Otherwise, we
set a := ⌊(a + b)/2⌋ + 1, i ′ := rank1(Ba,b , i

′), and continue by the
right child. When we arrive at a leaf, it holds a = b = S[i], and
moreover rankS [i](S, i) = i ′ (this is used in the LF formula, Eq. (1)).

For example, we can compute BWT[7] (whose wavelet tree is
shown in Figure 5) by reading Bc,$[i ′ = 7] = 0 in the root bitvector
Bc,$ = 0010010, thus going left with i ′ := rank0(Bc,$, 7) = 5. On
the left child of the root, we read Bc,o[i

′ = 5] = 1, so we go right
with i ′ := rank1(Bc,o, 5) = 3. We then arrive at the leaf [o, o], so
we know that BWT[7] = o and ranko(BWT, 7) = i ′ = 3.

As a more advanced operation, the wavelet tree can return all of
the distinct values c in a range S[s . . e], also computing [sc , ec ] =
[rankc (S, s − 1)+ 1, rankc (S, e)] for each. The algorithm takes time
O(k log(τ/k)) to report the k distinct values in S[s . . e] [21].

Finally, wavelet trees support the range-next-value operation in
time O(logτ ) [21], which we can use for list intersection. Specifi-
cally, given a range S[s . . e] and a threshold cx ∈ [1, τ ], we wish to



find the smallest symbol c ≥ cx that occurs in S[s . . e]. The algo-
rithm also finds the range [sc . . ec ] so that S[s . . e] contains from
the sthc to the ethc occurrence of c in S (i.e., sc = rankc (S, s − 1) + 1
and se = rankc (S, e), similar to the backward search in Eq. (2)).

3 One ring to index them all
We now present our ring index scheme for a graph G , and describe
how to implement the trie-iterator interface over it. This allows LTJ
to evaluate basic graph patterns overG in wco time using almost no
space beyond that of a raw, and even a compressed, representation.

3.1 The BWT of cyclic triples
Wemap all the constants in dom(G) to consecutive integers [1 . .U ].
We then build our index on the resulting set of n integer triples
(s,p,o). We addU to all the values p and 2U to all the values o, so
that all the second components are larger than all the first ones, and
all the third components are larger than all the second ones. Finally,
we sort the resulting triples lexicographically (i.e., by subject, ties
broken with predicates, and then ties broken with objects) to obtain
the ordered triples (si ,pi ,oi ). We then define the text

T [1 . . 3n + 1] = s1p1o1 s2p2o2 · · · snpnon $

concatenating each triple and then $ (the largest symbol of all).

3.1.1 Bended BWT. Next, we build the BWT of T and slightly
modify it so that when we try to find the symbol that precedes si ,
it returns oi instead of oi−1 (or instead of $ if i = 1), thus regarding
triples as cyclic. Loosely speaking, we do this by shifting the objects
in BWT so that oi is now in oi−1’s place. In the following we write
X · Y to denote the concatenation of two strings X and Y .

Definition 3.1. The bended BWT of BWT[1 . . 3n + 1] is

BWT∗[1 . . 3n] = BWT[2 . .n] · BWT[3n + 1] · BWT[n + 1 . . 3n].

Let A be the suffix array of T . The following properties of A and
BWT are useful to understand the bended BWT∗:

(1) Because si < pj < ok for all i, j,k , all the suffixes starting
with subjects (i.e., of the form T [3r + 1 . .] for 0 ≤ r < n)
precede in A all those starting with predicates (i.e., T [3r +
2 . .]), and those precede all the suffixes starting with objects
(i.e.,T [3r+3 . .]). The lexicographically largest suffix isT [3n+
1 . .] = $, so A[3n + 1] = 3n + 1 and thus BWT[3n + 1] = on .

(2) Because the triples are sorted inT , every suffix starting with
si is lexicographically smaller than the one starting with
si+1, and thus it holds thatA[i] = 3(i−1)+1 for all 1 ≤ i ≤ n.
Therefore, BWT[i] = oi−1 for 2 ≤ i ≤ n and BWT[1] = $.

These two properties, and the way in which BWT∗ is obtained
from BWT, imply that BWT∗ is divided into three zones: the ob-
jects, positioned in [1 . .n], the subjects, appearing in [n + 1 . . 2n],
and then the predicates in positions [2n + 1 . . 3n]. Moreover, since
BWT[2 . .n] = o1 · · ·on−1 and BWT[3n + 1] = on , the zone of ob-
jects is exactly o1 · · ·on ; that is, BWT∗[n] denotes the object of the
nth triple in the order. This means that BWT∗ is of the form

BWT∗ = (o1 · · ·on ) · (subjects) · (predicates). (3)

Example 3.2. Figure 6 shows the index corresponding to the
graph of Figure 3. On the top-left, we map dom(G) to the interval

[1 . . 9]. The top-center shows the resulting set of n = 13 triples (e.g.
(Bohr,adv,Thompson) becomes (1, 7, 3)). On the top-right we see
the result of shifting the predicates by U = 9 and the objects by
2U = 18. After sorting the shifted triples, we concatenate them and
append $ to form the text T , where we distinguish identifiers of
subjects in blue, of predicates in red, and of objects in green.

Below T we show its suffix array A, which is largely divided
into zones pointing to subjects, to predicates, and to objects (and
A[40] points to the suffix $). We show how C , below A, identi-
fies the areas of the suffixes starting with each different identifier.
For example, the suffixes A[C[6] + 1 . .C[6 + 1]] = A[5 . . 13] =
⟨13, 16, 19, 22, 25, 28, 31, 34, 37⟩ are those starting with 6.

Below A, we show BWT, which for each q gives T [A[q] − 1].
Again, disregarding its extremes, it is divided into three zones,
composed only of object, subject, and predicate identifiers, left to
right. Below it, we show BWT∗, the bended BWT.

The figure shows how we recover the first triple, (1, 16, 21)
(the shifted version of (1, 7, 3)) by starting from position 1. Since
BWT∗[1] = 21, we know that the object is 21. It is the first 21
(i.e., rank21(BWT∗, 1) = 1), so we go to the next position after
C[21] = 32 (i.e., LF∗(1) = 33), to find the corresponding predi-
cate at BWT∗[33] = 16. Since rank16(BWT∗, 33) = 3, we compute
LF∗(33) = C[16]+3 = 16 and find the subject at BWT∗[16] = 1. Note
also that LF∗(16) = 1 because C[1] = 0 and rank1(BWT∗, 16) = 1,
so if we keep going we cycle over the triple. To find the nth triple,
we apply the same process starting with BWT∗[n]. �

The next lemma, proved in the supplementary material, shows
that this cyclical traversal always occurs, i.e., that our bended BWT
is precisely the Extended BWT [29] of our sorted triples.

Lemma 3.3. BWT∗ sees T [1 . . 3n] as the concatenation of n cyclic
triples: calling LF∗ its LF function according to Eq. (1), for every 1 ≤

t ≤ n, where T [A[t] . .] = stptot · · · , it holds that T [A[LF∗(t)]] = ot ,
T [A[LF∗(LF∗(t))]] = pt , and LF∗(LF∗(LF∗(t))) = t .

Backward search then works on the set of cyclic triples as well,
because each step simulates a batch of LF∗ operations. In the sequel
we use BWT to denote its bended variant, BWT∗, for simplicity.

3.1.2 Space requirements. The ring index of the n triples is com-
posed of the wavelet tree of the bended BWT plus its C array to
support LF-steps and backward searches. We note that the BWT
representation is not in addition to the raw data, but it replaces the
raw data, because we can retrieve the ith triple as

(BWT[LF(LF(i))], BWT[LF(i)] −U , BWT[i] − 2U ),

where the wavelet trees compute LF(·) and BWT[·] in timeO(logU ).
The representation of the bended BWT using wavelet trees re-

quires 3n log2(3U )+o(n logU ) bits; note 3n log2(3U ) = 3n log2U +
O(n). Another O(n) bits are required for the bitvector D. Note that
O(n) ⊂ o(n logU ) because the n triples are distinct and thus U =
Ω(n1/3). The total space used by the ring index is then 3n log2U +
o(n logU ) bits, which is only sublinear space on top of the 3n log2U
bits required for the raw representation of the triples.

The BWT can be computed (and bended) in O(n) time and
O(n logU ) bits of working space [8]. Its wavelet tree is then built
in time O(n logU /

√
logn) [33], which is O(n

√
logU ) asU ≤ n.
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Figure 6: Our ring index for the graph of Figure 3

Theorem 3.4. Let |G | = 3n log2U be the space in bits of a raw
representation of a graphG with n edges andU = |dom(G)| different
identifiers. Then the ring index of G uses |G | + o(|G |) bits of space,
and can retrieve any desired edge in O(logU ) time. The ring index is
built in O(n

√
logU ) time within O(|G |) bits of working space.

This space is worst-case. Sections 4 and 5 show that we can make
the ring index use space close to a compressed representation of T
(we explain why in the supplementary material).

3.2 Processing joins
We now describe how to support leap over the BWT representation
of a graph in O(logU ) time, building on the algorithms described
in Section 2.3.4. This running time for leap implies the worst-case
optimality of LTJ (Algorithm 1) over our representation [44]. Thus,
in this section we prove the following theorem.

Theorem 3.5. On a graphG , our ring index evaluates a basic graph
patternQ formed bym triple patterns inO(Q∗ ·m log |dom(G)|) time,
where Q∗ is the maximum possible output (AGM bound) of such a
query on some graph of size |G |. The working space of the query
algorithm is O(1 + |var(Q)|) words.

Let Q = {t1, . . . , tm } be a basic graph pattern. In this section
we assume that the constants in each ti have been appropriately
transformed into integers and shifted, summing U to the predicate
constants, and 2U to the object constants in each ti , as is done for
the BWT representation ofG (see Figure 6). We further assume that
no variable appears more than once in a triple pattern ti ; the other
case is discussed in the supplementary material. We use t(G) as
shorthand for the evaluation of the (singleton) basic graph pattern
{t}(G) (see Section 2.1). We denote by Gt = {µ(t) | µ ∈ t(G)} the
occurrences of t in G, that is, the set of triples in G matching t .

3.2.1 Computing the occurrences of a triple pattern. Because the
constants in a triple pattern t are always consecutive when t is
regarded as cyclic, there is a range BWT[s . . e] such that A[s . . e]
points to all the subjects, all the predicates, or all the objects of
Gt . The following lemma, proved in the supplementary material,
shows how to find [s . . e] in O(logU ) time.

Lemma 3.6. Let t = (α, β,γ ) be a triple pattern with 0 ≤ b ≤ 3
constants. In O(logU ) time, we can find values s, e such that:

• If |Gt | = 0, then s = e = ⊥; otherwise
• e = s+ |Gt |−1, andA[s . . e] points inT to either the subjects, the
predicates, or the objects inGt , whichever is the first following
a variable in t if b < 3; in particular,
– if b = 1, and d is the constant in t , then T [A[k]] = d
∀k ∈ [s . . e].

3.2.2 Supporting leaps. We show how to support leap(t ′i , x, c),
where t ′i is either a triple pattern ti from Q , or one of its progres-
sively bound versions µ(ti ) in Algorithm 1.

To evaluate leap(t ′i , x, c), we start by obtaining the values si , ei
of Lemma 3.6 for ti . If si , ei = ⊥ we simply return ⊥. Otherwise,
let t ′i = (αi , βi ,γi ). We search for cx ≥ c (recall Definition 2.1)
differently depending on where x and the constants in ti are. If
only αi is a constant and βi = x , or only βi is a constant and
γi = x , or only γi is a constant and αi = x , then we will find
cx forwards, because x follows the part of the triple pattern that
is already bound. Otherwise, we will find cx backwards, that is,
looking for x preceding the substring that is already bound.

When we process a triple pattern t ′i = (αi , βi ,γi ) backwards, we
have the range A[si . . ei ] pointing to the first constant of the occur-
rences of t ′i , and want to find the smallest cx ≥ c such that some
of the (cyclic) suffixes T [A[k] . .], si ≤ k ≤ ei , are preceded by cx .
Equivalently, we want to find the smallest cx ≥ c in BWT[si . . ei ].
This corresponds to the range-next-value operation of Section 2.3.4,
which is supported in O(logU ) time by the wavelet tree of BWT.

When we rather process (αi , βi ,γi ) forwards, only one of αi ,
βi , or γi , is bound. By Lemma 3.6, we know that T [A[k]] = d
for all si ≤ k ≤ ei . We must thus find the smallest cx ≥ c that
follows some of those ds in T , i.e., T [A[k] + 1] = cx . We solve this
by, first, finding the leftmost occurrence of d in BWT[C[c] + 1 . .],
where the suffixes in A start with a symbol c or larger. Such an
occurrence q is found in O(logU ) time using the wavelet tree, by
making p := rankd (BWT,C[c]) and q := selectd (BWT,p + 1).
This is the position in A of the leftmost suffix A[q] that starts with



a symbol cx ≥ c and is preceded by d . To find the value of cx , we
binary search for q in C , looking for C[cx ] < q ≤ C[cx + 1].2

Lemma 3.7. LetG be a graph, t be a triple pattern, x be a variable
that appears exactly once in t , and c ∈ U a constant. Then the BWT
representation of G supports leap(t, x, c) in O(logU ) time.

Finally, note that Algorithm 1 can be modified so that, except
for µ, the working space used by seek is constant (i.e., only main-
taining cmin and cmax, not every ci ); the same holds for leap and
leapfrog_search. We can further maintain µ in constant space per re-
cursive call by storing only the last assignment and pointing to the
previous one in the stack. Thus, the working space of Algorithm 1
is O(v + 1), since the maximum stack height is v = |vars(Q)|.

4 Engineering and implementation
We describe in this section the most relevant engineering and im-
plementation aspects of our ring index. Our implementation is
available for reviewing online [5].

4.1 Representation
In order to reduce the size of the universe, we work with a repre-
sentation that is slightly more involved. Following Eq. (3), we cut
the BWT into three components:

BWT[1 . . 3n] = BWTo [1 . .n] · BWTs [1 . .n] · BWTp [1 . .n],

where BWTo is formed only by objects, BWTs only by subjects,
and BWTp only by predicates. With a little more work and three
independent C arrays, Co , Cs , and Cp , we can use the identifiers in
non-shifted form (i.e., without addingU and 2U ). This reduces the
alphabet size, which improves both space and operation time for the
wavelet trees. The mapping from dom(G) to consecutive integers
is done by sorting the triples by predicate (using std::sort), and
then hashing subjects and objects to ensure uniqueness.3

4.2 Algorithm
We implement Algorithm 1 with some improvements on the de-
scription of Section 3.2. First, for each t ′i we maintain the values
si , ei instead of computing them from scratch during each leap.
We find si , ei at the beginning of leapfrog_search as described in
Lemma 3.6, and then update them after each further binding of t ′i .
The working space then rises to O(mv), which is still very low.

The second optimisation is to handle the lonely variables [23],
i.e., variables that appear in only one triple pattern ti , in a different
way: once the other variables of ti have been bound, we report
all the possible bindings of our ranges. From the current values
si , ei , we bind the remaining variables backwards, one by one. For
each variable x , this corresponds to finding all the distinct values
in BWT[si . . ei ], which is done as described in Section 2.3.4.

4.3 Variable elimination order
The running time of LTJ can often sharply depend on selecting a
good order in which variables are eliminated. It turns out that our
2As mentioned in Section 2.3.3,C might be stored as a bitvector to save space for large
alphabets. In this case the binary search is replaced by cx = select0(D , q) − q .
3In initial experiments with different alphabet orders, we found minor space benefits
only for the compressed version of the ring. An interesting future direction would be
to explore optimisations based on carefully choosing this order [4].

ring index can also be used to provide relevant statistics on the fly,
computed in logarithmic time, and without additional profiling.

Recall that given a triple pattern ti , our index quickly computes
the initial ranges A[si . . ei ], so that the number of triples matching
the pattern is exactly ei − si + 1. We use this to construct the
following elimination order for variables that appear in more than
one triple pattern. First we compute c(ti ) = (ei − si + 1)/n for each
such triple ti . Then we estimate the cardinality of each variable
x as cmin(x) = mint ∈Q{x } c(t). The variables x are then bound by
increasing order of cmin(x), but ensuring that each new variable
shares a triple pattern with some previous one, if possible.

4.4 Indexing
We implemented the ring index in C++11 over the succinct data
structures library, sdsl (https://github.com/simongog/sdsl-lite). To
construct the indexes, we first build the suffix array A with quick-
sort, and then extract the BWTs. Because the alphabets are generally
large, we implemented the wavelet trees as wavelet matrices [14].
We provide two flavours of indexes, with the bitvectors of the
wavelet matrices stored either in plain or compressed form. The
compressed bitvectors enable high-order entropy compression of
the BWT [27]. These bitvectors use a parameter b in sdsl; larger
values for b offer better compression but slower operations.

5 Experimental results
We now compare our system – running a modified version of LTJ
over a ring index – versus state-of-the-art alternatives in terms of
the space used for indexing and the time for evaluating basic graph
patterns. We expect that our system will use less space than non-
compact alternatives, and that it will use less time for evaluating
queries than non-wco alternatives, while remaining competitive
with wco alternatives. We further compare compressed and uncom-
pressed variants of the ring index, where we expect the compressed
variant to use less space but to have slower query times.

We run two benchmarks over the Wikidata graph [45], which
we choose for its scale, diversity, prominence, data model (it has
labelled edges) and real-world query logs [9, 28]. The first bench-
mark is the Wikidata Graph Pattern Benchmark (WGPB) proposed
by Hogan et al. [23] for a sub-graph of Wikidata, with diverse
graph patterns. The second benchmark evaluates real-world graph
patterns extracted from Wikidata query logs at full scale.

We begin by describing our setup; further details for reproducing
experiments are given in the online material [5].

5.1 Experimental setup
Our experiments compare various wco algorithms, as follows.

Ring and C-Ring: LTJ running over our ring index using plain
and compressed bitvectors, respectively. The latter uses pa-
rameter b = 16. The system operates in main memory.

EmptyHeaded: An implementation [1] of NPPR [38], which is an
instance of the same wco algorithm as LTJ [39]. Triples are
stored as 6 different tries (all orders) in main memory.

Graphflow: A graph query engine that indexes property graphs
using in-memory sorted adjacency lists and supports hybrid
plans blending wco and pairwise joins [30].

https://github.com/simongog/sdsl-lite


Qdag: The only previous succinct wco index [35], based on a quad-
tree representation of the graph that runs in main memory.

We disregard other compressed graph indexes [3, 10] that sup-
port only single triple patterns or pairwise joins. For reference we
further include results for prominent graph database systems:
Jena: A reference implementation of the SPARQL standard. We

use TDB, with B+-trees indexes in three orders: spo, pos, and
osp. The system supports nested-loop joins.

Jena LTJ: An implementation [23] of LTJ on top of Jena TDB. All
six different orders on triples are indexed in B+-trees.

RDF-3X: The reference scheme [36] that indexes a single table
of triples in a compressed clustered B+-tree. The triples are
sorted, so that those in each B+-tree leaf can be differentially
encoded. RDF-3X handles triple patterns by scanning ranges
of triples and uses a query optimiser based on pairwise joins.

Virtuoso: A widely used graph database hosting the public DBpe-
dia endpoint, among others [15]. It provides a column-wise
index of quads with an additional graph (д) attribute, with
two full orders (psog, posg) and three partial indexes (so,
op, gs) optimised for patterns with constant predicates. The
system supports nested loop joins and hash joins.

Blazegraph: The graph database system [42], hosting the official
Wikidata Query Service [28]. We run the system in triples
mode wherein B+-trees index three orders: spo, pos, and osp.
The system supports nested-loop joins and hash joins.

The wco algorithms – Ring, C-Ring, EmptyHeaded, Graphflow
and Qdag – work in memory with dictionary-encoded numeric con-
stants in the queries, graphs, and results, while the database systems
– Blazegraph, Jena, Jena-LTJ, RDF-3X and Virtuoso – may use sec-
ondary storage and work with strings as constants in the queries,
graphs, and results (though internally they may use dictionary-
encoded numeric constants). The results for these popular database
systems are included as a point of reference; we discuss the overhead
of dictionary decoding/encoding in the supplementary material.

We run our experiments on an Intel(R) Xeon(R) CPU E5-2630 at
2.30GHz, with 6 cores, 15 MB of cache, and 96 GB of RAM. Our code
was compiled using g++with flags -std=c++11, -O3, and -msse4.2.
Systems are then configured per vendor recommendations [5]. All
queries are run with a timeout of 10 minutes and a limit of 1000
results (as originally proposed for WGPB [23]).

5.2 Graph patterns benchmark
We first run the Wikidata Graph Pattern Benchmark (WGPB) [23],
which uses a Wikidata sub-graph with n = 81,426,573 triples,
19,227,372 subjects, 2,101 predicates, and 37,641,486 objects. The
benchmark provides 17 query patterns of different widths and
shapes, including cyclic and acyclic queries, as shown in Figure
7. Each pattern is instantiated with 50 queries built using random
walks such that the results are nonempty. The benchmark allows
us to compare different alternatives for different abstract patterns.
All predicates are constant, all subjects and objects are variables,
and each variable appears at most once in the same triple pattern.

5.2.1 Indexing and space. There are 4,869,562 identifiers that are
both subjects and objects in the graph, so we use a common alphabet
for both of size |S | = |O | = 51,999,296. Our ring index, in either

(a) P2. (b) P3. (c) P4. (d) T2. (e) Ti2.

(f) T3. (g) Ti3. (h) J3. (i) T4. (j) Ti4. (k) J4.

(l) Tr1. (m) Tr2. (n) S1. (o) S2. (p) S3. (q) S4.

Figure 7: Query patterns for the Wikidata benchmark

variant, was built in 12.6 minutes, that is, at a rate of around 6.4
million triples per minute. The working space used for indexing
was 2.3 GB, about twice the size of the text T of triples (which uses
932 MB). The construction of the BWTs takes about a minute; the
rest is spent in building the wavelet matrices.

Let us contextualise the space used by the ring index. A simple
representation of the dataset using 32-bit integers for all the val-
ues requires 12 bytes per triple. A packed representation requires
log2 ⌈|S |⌉ + log2 ⌈|P |⌉ + log2 ⌈|O |⌉ = 26 + 12 + 26 = 64 bits, or 8
bytes, per triple. Our ring index with plain bitvectors privileges
time performance, and thus its rank and select structures pose a
57% space overhead, which adding the bitvectorsD sums up to 12.70
bytes per triple, very close to the size of the simple representation.
Instead, our ring index using compressed bitvectors with b = 16
requires 6.68 bytes per triple, less than the packed representation.

As explained, our index replaces the representation of the triples,
because one can obtain any desired triple from the index. The
time to retrieve any arbitrary triple is 5 microseconds with plain
bitvectors and 20 microseconds with compressed bitvectors.

Table 1 compares the space of the indexes, showing that even the
uncompressed Ring uses 5.7–142 times less space than all other non-
ring indexes except Qdag, which is also succinct. Qdag, however,
uses 32% more space than C-Ring.

Graphflow failed to index the graph both on the experimental
machine (with 96 GB of RAM), and another machine on which it
was assigned 680 GiB (∼730 GB) of Java heap space. Reviewing
the source code, Graphflow loads in-memory adjacency lists with
p × v arrays of 32-bit integers, where p is the number of unique
predicates (i.e., edge labels) and v is the number of unique sub-
jects/objects (i.e., nodes), thus requiring Ω(pv) space. Hence it was
not feasible to load the Wikidata graph for which p = 2,101 and
v = 51,999,296. The system rather targets property graphs with
few edge labels (unique predicates) and does not support queries
with node identifiers (constant subjects and objects, as needed for
our second set of experiments, described presently).4 We conclude
that Ring and C-Ring occupy much less space than Graphflow, but
comparison of query runtimes was not possible for the selected
experiments due to insufficient RAM.

One may compare the space of C-Ring with plain data compres-
sors applied to the text T of triples. We thus built an additional
4From personal communication with the first author of the Graphflow paper [30].



Table 1: Index space, in bytes per triple, on theWikidata sub-
graph, and average query time on WGPB data and queries

System (Data + Indexes) Space Time (msec)

Ring 12.70 31
C-Ring 6.68 97
EmptyHeaded 1,809.84 118
Graphflow >8,966.90 —
Qdag 8.86 14,873

Jena 72.32 127
Jena LTJ 144.64 59
RDF-3X 107.65 182
Virtuoso 104.49 1,135
Blazegraph 99.86 1,709

C-Ring variant with b = 64, which uses just 5.35 bytes per triple,
close to the space obtained by typical compressors like gzip -9
(4.83), bzip2 -9 (4.78) and ppmdj (4.61). Stronger compressors ob-
tain considerably less space, such as rar -m5 (3.52), p7zip (2.67),
and a special-purpose front-coding plus δ -coding of the differences
that we implemented inspired in the RDF-3X encoding (1.87). We
do not run queries on C-Ring with b = 64 because it is considerably
slower, for example it takes 73 microseconds to retrieve an arbitrary
triple. Still, it can be regarded as a reasonable compression format
that supports random access and even (slow) queries.

5.2.2 Query times. Table 1 gives the average time taken by each
index to sequentially evaluate all the queries. Ring is the fastest
index overall, outperforming EmptyHeaded (which uses 142 times
more space) by a slight margin5 and all the other non-succinct
indexes by a factor of 2–36. C-Ring is about three times slower
than Ring, but it is the smallest index, using about half the space of
Ring while still offering faster runtimes than most other indexes. In
particular, it is 150 times faster than Qdag, the next smallest index.6

Figure 8 shows the distribution of the times for the 17 query
types. For readability, the plots omit Jena, which was always slower
than Jena-LTJ, showing the benefits for query times of wco joins
(per Table 1, Jena-LTJ is about twice as fast overall versus Jena).
Considering the median values, Ring is the fastest in 8 of the 17
patterns, Qdag in 5, and EmptyHeaded in the other 4.

Ring is the best, or near the best, in all acyclic queries except
for the short paths of P2. Qdag is the best, or near the best, in all
queries with just three variables (P2, T2, Ti2, Tr1, Tr2), but has
problems with some of the larger queries, particularly acyclic ones.
EmptyHeaded is the best, or near the best, in all cyclic queries, and
in some acyclic queries, but has bad cases for long paths (P4) and
some tree-like queries (T3, T4, J4)). More generally, we observe that
Ring offers more stable query times than EmptyHeaded and Qdag:
the 75% percentile never exceeds 0.05 seconds.

5EmptyHeaded does not support limiting the number of results to 1,000. When com-
puting unlimited results, EmptyHeaded outperforms all the other indexes except Ring,
which is still faster: 110 vs. 118 milliseconds for EmptyHeaded (Table 1). The absence
of this limit is less noticeable in Figure 8, as very few queries exceed 1,000 results.
6Qdag does not handle constants in the triple patterns. Since these queries have
constant predicates, we use a Qdag to index one binary relation per predicate.

Table 2: Index space (in bytes per triple) and some statistics
on the query times (in seconds) on the full Wikidata graph.
The last column counts the queries taking over 10 minutes

System Space Min Avg Median Timeouts

Ring 13.86 10−5 3.920 0.021 5
Jena 95.83 0.002 11.513 0.035 19
Jena LTJ 168.84 0.003 1.939 0.162 1
RDF-3X 85.73 0.007 8.239 0.126 13
Virtuoso 60.07 0.002 4.882 0.050 8
Blazegraph 90.79 0.008 9.220 0.054 14

Comparing Ring with Qdag, the latter uses an encoding that
grows exponentially with the number of nodes in patterns [35],
so the gains of Ring for larger queries is expected. Comparing
Ring with EmptyHeaded, we speculate that the advantage of Ring
in acyclic queries is mostly due to the lonely variables optimisa-
tion. To be more precise, consider queries in T4, Ti4, J4. In the
case of Ring, once the central variable connecting the other four
variables is eliminated, the remaining variables are subsequently
eliminated using the lonely variables optimisation (see Section 4.2).
EmptyHeaded rather processes acyclic queries using a version of
the traditional Yannakakis algorithm [47]7, which we speculate is
not so well optimised for simple tree-like queries or long paths that
may give rise to multiple lonely variables at the end.

C-Ring uses the least space among all the indexes but, like Ring,
offers quite consistent times, being roughly a constant factor slower
than Ring for each pattern. Compared with Qdag, the closest index
in terms of space, C-Ring is faster in 7 patterns and slower in 10.
As Table 1 shows, however, C-Ring is much more stable than Qdag.

5.3 Real-world benchmark
In order to test these systems for a realistic workload at scale, we
perform experiments evaluating basic graph patterns taken from
real-world queries over the full Wikidata graph of n = 958,844,164
triples, which occupies 10.7 GB in plain form and 7.9 GB in packed
form. In search of challenging examples, we downloaded queries
that gave timeouts from the Wikidata query logs [28], and selected
queries with a single basic graph pattern, obtaining 1,315 unique
queries. The minimum, mean and maximum number of triple pat-
terns and variables per query were (1, 2.4, 22) and (1, 2.6, 16), re-
spectively. Unlike the queries used previously, this set contains
constant subjects and objects, variable predicates, etc. Letting s, p,
o denote any constant and ? any variable, themost common types of
triple pattern patterns were (?, p, ?) (51.5%), (?, p, o) (38.3%), (?, ?, ?)
(6.7%), (s, ?, ?) (1.2%), (s, p, ?) (1.2%), (?, ?, o) (1.1%), (s, ?, o) (0.04%).

We exclude EmptyHeaded from these results because its index
requires 900 GB and cannot be loaded into our main memory, Qdag
because the index does not handle triple patterns with constants in
arbitrary positions as occur in this benchmark, and Graphflow as
we estimate that it would require terabytes of main memory and
does not support constants in arbitrary positions.

7EmptyHeaded works with the generalised tree decomposition of queries, which allows
one to decompose complex queries into cyclic parts connected through a tree, where
the tree is evaluated using Yannakakis’ algorithm [47].
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Figure 8: Comparison of query times (in seconds). The boxes span from the 25% to the 75% percentile, with themedianmarked
inside. The lines extend from minima to maxima, removing outliers

The ring index is built over this graph in 2.75 hours (5.8 million
triples per minute) using 22 GB of RAM. It occupies 12.4 GB (13.86
bytes per triple) with plain bitvectors. Table 2 shows index space
and some statistics on the query times obtained on our benchmark.
The two wco-join algorithms (Jena-LTJ, Ring) outperform the alter-
natives. While Ring is the smallest by a factor of 4.3–12 and has the
lowest median, Jena LTJ is twice as fast on average, featuring more
stable times in this benchmark. The other systems (all of which are
non-wco) are slower than Ring for all the statistics.

6 Rings in higher dimensions
Our ring can be generalised to indexing relations with d attributes,
provided we can always choose an index where the bounded vari-
ables form a range in the tuples. At each stage of the computation,
we maintain the BWT range of the leftmost constant. We can ex-
tend the range to include the preceding column in O(logU ) time
per intersection step, but extending the range forwards takes us
O(d logU ) time, because we have to navigate from the leftmost
to the rightmost bounded value for each intersection step. Since
there can be Θ(d) variables in each query tuple, the time that mul-
tiplies Q∗ (the AGM bound) is now O(d2m logU ). Unlike in the
case of graphs, which have fixed arity, we cannot handle variables
appearing multiple times in the same tuple pattern (i.e., equality
selections on attributes of the same relation) without incurring a
super-exponential penalty factor on arity in the query time. We
provide more details in the supplementary material. Such queries
are not typically considered by wco join algorithms in a relational

setting. In practice, this penalty may be avoided by only consider-
ing equalities that occur in some tuple of the relation instance, or
accepting non-wco joins in such cases.

Theorem 6.1. On a set ofn tuples in [1 . .U ]d , the ring index solves
a basic graph pattern query of m tuple patterns with no variables
repeated in the same tuple in timeO(Q∗ ·d2m logU ), whereQ∗ is the
maximum possible output of such a query on some set of n tuples in
[1 . .U ]d (the AGM bound). The working space of the query algorithm
is O(v + 1) words, where v is the number of distinct variables in the
query. The size of the ring index is dn log2U + o(dn logU ) bits times
the number of orders it has to index.

The remaining question is how many orders must the ring index
so that, independently of the variable elimination order, the con-
stants are always contiguous in the tuple patterns. We have shown
that one order suffices for d = 3, but we need more for d ≥ 4.

A classical index (called flat in Figure 2) on d columns needs
to store, in principle, all the d! possible orders to support wco
algorithms. We refer to these indexes as class W (for Worst-case-
optimal). For d ≥ 4, we can reduce the number of index orders
needed through a strategy we call trie switching, which allows
for variables already bound to be reordered. For example, when
indexing quads (s,p,o,д), this avoids storing a trie with the order
дspo if we have tries for дsop and sдpo since we can process дs with
the first index and then switch to the second index (reordering to
sд) if we require p next. This strategy can be enabled, for example,
with inter-trie pointers between the corresponding nodes of дs and
sд. We call TW the class of indexes that support trie switching.



Table 3: Number of orders that must be indexed to support
wco algorithms depending on the index capabilities

d
Flat Cyclic Ring

W TW CW CTW CBW CBTW

2 2 2 1 1 1 1
3 6 6 2 2 1 1
4 24 12 6 4 2 2
5 120 30 24 8 5 5
6 720 60 120 [10,12] 10 7
7 5040 140 720 [20,25] [23,37] [10,13]
8 40320 280 5040 [35,50] [79,168] [18,25]

Trie switching can be used with our indexes as well, without stor-
ing any extra space: if we have found a range for some contiguous
bounded variables in one index, we can search another index for
the same variable values in another desired order using backward
search, so long as they are contiguous too. Each such change of
index costs O(d logU ) time, which is within the time complexity
given in Theorem 6.1. Trie switching can be further combined with
tuple circularity (C) and bidirectionality (B), giving rise to various
classes of indexes. For example, using trie switching, the cyclic
unidirectional index [10] is of class CTW and our ring index is of
class CBTW. By callingw , tw , cw , ctw , cbw , and cbtw the number
of orders that must be indexed by indexes of the corresponding
classes, we can prove various bounds (see supplementary material).

Theorem 6.2. The following bounds hold, with sw(d) =
( d
⌊d/2⌋

)
:

• w(d) = d! and cw(d) = (d − 1)!.
• ⌈cw(d)/2d−2⌉ ≤ cbw(d) ≤ cw(d)/2 for d > 2.
• tw(d) = ⌈d2 ⌉ · sw(d) = Θ(2dd1/2).
• ⌈tw(d)/d⌉ ≤ ctw(d) ≤ tw(d − 1), so ctw(d) = Ω(2dd−1/2).
• ctw(d) ≤ 2 · sw(⌊d/2⌋) · tw(⌈d/2⌉) = O(2d ).
• ⌈ctw(d)/2⌉ ≤ cbtw(d) ≤ ctw(d), so cbtw(d) = Θ(ctw(d)).

Thus, the ring must index between Ω(2dd−1/2) and O(2d ) orders.

We ran exhaustive searches to find the exact number of orders
that suffice for running wco algorithms in each case, for d ≤ 8.
When the search space was too large, we resorted to approximation
algorithms for set cover. Table 3 shows the results, which verified
our exact formulas for w(d), tw(d), and cw(d). However, there is
a gap between our lower bounds for ctw(d), cbw(d), and cbtw(d),
and the approximations we obtained for the larger values of d .

In summary, our support for cyclic bidirectional tuples slashes
the number of required orders by an order of magnitude, enabling
wco algorithms on dimensions that would be intractable with clas-
sical approaches (flat indexes), even using trie switching.

In comparison, Qdag [35] needs to index only one order, but
query time is O(Q∗ · 2dm logU ). On the other hand, a cyclic unidi-
rectional index would have query time complexityO(Q∗ ·dm logU ),
by always going backwards, but it would need to index ctw(d) or-
ders, roughly twice as many as our ring index. We can implement
such a cyclic unidirectional index with our BWT too, while extend-
ing the index of Brisaboa et al. [10] would yield O(Q∗ · d2m logU )

time because it can move forwards, not backwards.

7 Conclusions
We have introduced the ring: an index that regards the triples of a
graph database as cyclic and bidirectional, so that it can simulate
the 6 triple orders as one. The ring index supports the worst-case-
optimal Leapfrog TrieJoin algorithm using almost no extra space
on top of the raw triple data, and even in compressed space. Our
ring index further offers fast on-the-fly statistics to help query
optimisation. Our experiments show that the ring index uses a
fraction of the space of traditional indexes while ranking amongst
the best in terms of query response times as well.

Regarding future directions, per Section 6, it would be of interest
to investigate ring indexes that support higher-arity relations for
relational databases, property graphs, etc. An interesting trade-off
to explore is between maintaining high-arity relations, which ne-
cessitate fewer joins, and decomposing those relations into several
lower-arity relations, which necessitate fewer index orders.

Currently our index is read-only, but it could support inser-
tion and deletion of graph edges in O(logU logn) time using a
compressed representation of string collections based on dynamic
wavelet trees [27]. This structure would still use |G | + o(|G |) bits
on a graph G (and even compressed space); the price would be an
additional penalty factor of O(logn) in query times. Alternatively,
we can trade such a penalty factor for amortised update times by
taking the union of results over a small dynamic text index where
new triples are added, and a constant amount of increasing static
rings for handling space overflows [32]. Various static rings can be
merged periodically with the dynamic index to build a bigger ring,
which can be done with efficient algorithms to merge BWTs [7].

Our focus has been on indexing for wco joins, where our query
planning strategy is currently based on simple techniques. Future
work could explore further techniques from the literature, such as
tree decompositions for variable ordering [1], low-level caching
techniques to reuse intermediate results [24], adaptive plans that
use statistics collected during query evaluation [30], hybrid plans
that combine wco and non-wco join algorithms for higher-arity
relations [19, 30], among others. Our index may further support
custom optimisations. For example, a useful statistic would be to
find how many different elements are associated with a BWT range,
which can be computed, at least in the backward direction, in log-
arithmic time, by roughly doubling the space [20]. The backward
direction also enables faster intersection [21], which makes opti-
misations using a purely backwards (unidirectional) BWT-based
index worth exploring. Supporting further query operators, such
as projection, regular path queries, aggregation, etc., would also be
of interest, particularly regarding the possibilities of pushing such
operators to low-level operations on the index.

More generally, we believe that this paper opens up many inter-
esting lines of research regarding time vs. space trade-offs in the
context of worst-case optimal join algorithms.

Source code, scripts, queries, data, instructions for running experi-
ments and omitted proofs are available online [5].
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