
Semantic Web 0 (0) 1 1
IOS Press

Semantics and Canonicalisation
of SPARQL 1.1
Jaime Salas* and Aidan Hogan
DCC, Universidad de Chile; IMFD, Chile
E-mails: jaime.os.salas@gmail.com, ahogan@dcc.uchile.cl

Editor: Guilin Qi, Southeast University, China
Solicited review: Meng Wang, Southeast University, China
Solicited review: Guohui Xiao, Free University of Bozen-Bolzano, Italy
Solicited review: Anonymous Reviewer

Abstract. We define a procedure for canonicalising SPARQL 1.1 queries. Specifically, given two input queries that return the
same solutions modulo variable names over any RDF graph (which we call congruent queries), the canonicalisation procedure
aims to rewrite both input queries to a syntactically canonical query that likewise returns the same results modulo variable re-
naming. The use-cases for such canonicalisation include caching, optimisation, redundancy elimination, question answering, and
more besides. To begin, we formally define the semantics of the SPARQL 1.1 language, including features often overlooked in
the literature. We then propose a canonicalisation procedure based on mapping a SPARQL query to an RDF graph, applying alge-
braic rewritings, removing redundancy, and then using canonical labelling techniques to produce a canonical form. Unfortunately
a full canonicalisation procedure for SPARQL 1.1 queries would be undecidable. We rather propose a procedure that we prove
to be sound and complete for a decidable fragment of monotone queries under both set and bag semantics, and that is sound but
incomplete in the case of the full SPARQL 1.1 query language. Although the worst case of the procedure is super-exponential,
our experiments show that it is efficient for real-world queries, and that such difficult cases are rare.

Keywords: SPARQL, RDF, query, semantics, caching, canonicalisation, congruence, equivalence

1. Introduction

The Semantic Web provides a variety of standards
and techniques for enhancing the machine-readability
of Web content in order to increase the levels of au-
tomation possible for day-to-day tasks. RDF [1] is the
standard framework for the graph-based representation
of data on the Semantic Web. In turn, SPARQL [2]
is the standard querying language for RDF, composed
of basic graph patterns extended with expressive fea-
tures that include path expressions, relational algebra,
aggregation, federation, among others.

The adoption of RDF as a data model and SPARQL
as a query language has grown significantly in recent
years [3, 4]. Prominent datasets such as DBpedia [5]

*Corresponding author. E-mail: jaime.os.salas@gmail.com.

and Wikidata [6] contain in the order of hundreds of
millions or even billions of RDF triples, and their asso-
ciated SPARQL endpoints receive millions of queries
per day [7, 8]. Hundreds of other SPARQL endpoints
are likewise available on the Web [4]. However, a sur-
vey carried out by Buil-Aranda et al. [4] found that a
large number of SPARQL endpoints experience per-
formance issues such as latency and unavailability.
The same study identified the complexity of SPARQL
queries as one of the main causes of these problems,
which is perhaps an expected result given the expres-
sivity of the SPARQL query language where, for ex-
ample, the decision problem consisting of determin-
ing if a solution is given by a query over a graph is
PSPACE-hard for the SPARQL language [9].

One way to address performance issues is through
caching of sub-queries [10, 11]. The caching of queries

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:jaime.os.salas@gmail.com
mailto:ahogan@dcc.uchile.cl
mailto:jaime.os.salas@gmail.com

2 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

is done by evaluating a query, then storing its result set,
which can then be used to answer future instances of
the same query without using any additional resources.
The caching of sub-queries identifies common query
patterns whose results can be returned for queries that
contain said query patterns. However, this is compli-
cated by the fact that a given query can be expressed in
different, semantically equivalent ways. As a result, if
we are unable to verify if a given query is equivalent to
one that has already been cached, we are not using the
cached results optimally: we may miss relevant results.

Ideally, for the purposes of caching, we could use
a procedure to canonicalise SPARQL queries. To for-
malise this idea better, we call two queries equivalent
if (and only if) they return the same solutions over any
RDF dataset. Note however that this notion of equiv-
alence requires the variables of the solutions of both
queries to coincide. In practice, variable names will
often differ across queries, where we would still like
to be able to cache and retrieve the results for queries
whose results are the same modulo variable names.
Hence we call two queries congruent if they return the
same solutions, modulo variable names, over any RDF
dataset; in other words, two queries are congruent if
(and only if) there exists a one-to-one mapping from
the variables in one query to the variables of the other
query that makes the former equivalent to the latter.

In this paper, we propose a procedure by which con-
gruent SPARQL queries can be “canonicalised”. We
call such a procedure sound if the output query is con-
gruent to the input query, and complete if the same out-
put query is given for any two congruent input queries.

Example 1.1. Consider the following two SPARQL
queries asking for names of aunts:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . } UNION { ?w :father ?x. }
?x :sister ?y . ?y :name ?z .

}

SELECT DISTINCT ?z WHERE {
{ ?a :name ?z . ?c :mother ?p . ?p :sister ?a . }
UNION
{ ?a :name ?z . ?c :father ?p . ?p :sister ?a . }

}

Both queries are equivalent: they always return the
same results for any RDF dataset. Now rather consider
a third SPARQL query:

SELECT DISTINCT ?n WHERE {
?a :name ?n . ?b :name ?n .
{ ?v1 :mother ?v2 . ?v2 :sister ?a . } UNION
{ ?v3 :father ?v4 . ?v4 :sister ?a . }

}

Note that the pattern ?b :name ?n . in this query is re-
dundant. This query is not equivalent to the former two
because the variable that is returned is different, and
thus the solutions (which contain the projected vari-
able), will not be the same. However all three queries
are congruent; for example, if we rewrite ?n to ?z in
the third query, all three queries become equivalent.

Canonicalisation aims to rewrite all three (original)
queries to a unique, congruent, output query.

The potential use-cases we foresee for a canonicali-
sation procedure include the following:

Query caching: As aforementioned, a canonicalisa-
tion procedure can improve caching for SPARQL
endpoints. By capturing knowledge about query
congruence, canonicalisation can increase the
cache hit rate. Similar techniques could also be
used to identify and cache frequently appearing
(congruent) sub-queries [11].

Views: In a conceptually similar use case to caching,
our canonical procedure can be used to describe
views [12]. In particular, the canonicalisation pro-
cedure can be used to create a key that uniquely
identifies each of the views available.

Log analysis: SPARQL endpoint logs can be anal-
ysed in order to understand the importance of dif-
ferent SPARQL features [7, 13], to build suitable
benchmarks [7], to understand how users build
queries incrementally [13, 14], etc. Our canoni-
calisation procedure could be used to pre-process
and group congruent queries in logs.

Query optimisation: Canonicalisation may help with
query optimisation by reducing the variants to be
considered for query planning, detecting dupli-
cate sub-queries that can be evaluated once, re-
moving redundant patterns (as may occur under
query rewriting strategies for reasoning [15]), etc.

Learning over queries: Canonicalisation can reduce
superficial variance in queries used to train ma-
chine learning models. For example, recent ques-
tion answering systems learn translations from
natural language questions to queries [16], where
canonicalisation can be used to homogenise the
syntax of queries used for training.

Other possible but more speculative use-cases in-
volve signing or hashing SPARQL queries, discover-
ing near-duplicate or parameterised queries (by con-
sidering constants as variables), etc. Furthermore, with
some adaptations, the methods proposed here could be

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 3

generalised to other query languages, such as to canon-
icalise SQL queries, Cypher queries [17], etc.

A key challenge for canonicalising SPARQL queries
is the prohibitively high computational complexity that
it entails. More specifically, the query equivalence
problem takes two queries and returns true if and only
if they return the same solutions for any dataset, or
false otherwise. In the case of SPARQL, this problem
is intractable (NP-complete) even when simply per-
mitting joins (with equality conditions). Even worse,
the problem becomes undecidable when features such
as projection and optional matches are added [18].
Since a canonicalisation procedure can be directly
used to decide equivalence, this means that canonical-
isation is at least as hard as the equivalence problem
in computational complexity terms, meaning it will
likewise be intractable for even simple fragments and
undecidable when considering the full SPARQL lan-
guage. There are thus fundamental limitations in what
can be achieved for canonicalising SPARQL queries.

With these limitations in mind, we propose a canon-
icalisation procedure that is always sound, but only
complete for a monotone fragment of SPARQL under
set or bag semantics. This monotone fragment permits
unions and joins over basic graph patterns, some ex-
amples of which were illustrated in Example 1.1. We
further provide sound, but incomplete, canonicalisa-
tion of the full SPARQL 1.1 query language, whereby
the canonicalised query will be congruent to the in-
put query, but not all pairs of congruent input queries
will result in the same output query. In the case of
incomplete canonicalisation, we are still able to find
novel congruences, in particular through canonical la-
belling of variables, which further allows for ordering
operands in a consistent manner. Reviewing the afore-
mentioned use-cases, we believe that this “best-effort”
form of canonicalisation is still useful, as in the case of
caching, where missing an equivalence will require re-
executing the query (which would have to be done in
any case), or in the case of learning over queries, where
incomplete canonicalisation can still increase the ho-
mogeneity of the training examples used.

As a high-level summary, our procedure combines
four main techniques for canonicalisation.

1. The first technique is to convert SPARQL queries
to an algebraic graph, which abstracts away syn-
tactic variances, such as the ordering of operands
for operators that are commutative, and the group-
ing of operands for operators that are associative.

2. The second technique is to apply algebraic rewrit-
ings on the graph to achieve normal forms over
combinations of operators. For example, we
rewrite monotone queries – that allow any com-
bination of join, union, basic graphs patterns, etc.
– into unions of basic graph patterns; this would
rewrite the first and third queries shown in Exam-
ple 1.1 into a form similar to the second query.

3. The third technique is to apply redundancy elimi-
nation within the algebraic graph, which typically
involves the removal of elements of the query that
do not affect the results; this technique would re-
move the redundant ?b :name ?n . pattern from
the third query of Example 1.1.

4. The fourth and final technique is to apply a
canonical labelling of the algebraic graph, which
will provide consistent labels to variables, and
which in turn allows for the (unordered) algebraic
graph to be serialised back into the (ordered) con-
crete syntax of SPARQL in a canonical way.

We remark that the techniques do not necessarily
follow the presented order; in particular, the second
and third techniques can be interleaved in order to pro-
vide further canonicalisation of queries.

This paper extends upon our previous work [19]
where we initially outlined a sound and complete pro-
cedure for canonicalising monotone SPARQL queries.
The novel contributions of this extended paper include:

– We close a gap involving translation of monotone
queries under bag semantics that cannot return
duplicates into set semantics.

– We provide a detailed semantics for SPARQL 1.1
queries; formalising and understanding this is a
key prerequisite for canonicalisation.

– We extend our algebraic graph representation in
order to be able to represent SPARQL 1.1 queries,
offering partial canonicalisation support.

– We implement algebraic rewriting rules for spe-
cific SPARQL 1.1 operators, such as those relat-
ing to filters; we further propose techniques to
canonicalise property path expressions.

– We provide more detailed experiments, which
now include results over a Wikidata query log, a
comparison with existing systems from the liter-
ature that perform pairwise equivalence checks,
and more detailed stress testing.

4 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

We also provide extended proofs of results that were
previously unpublished [20], as well as providing ex-
tended discussion and examples throughout.

The outline of the paper is then as follows. Section 2
provides preliminaries for RDF, while Section 3 pro-
vides a detailed semantics for SPARQL. Section 4 pro-
vides a problem statement, formalising the notion of
canonicalisation. Section 5 discusses related works in
the areas of systems that support query containment,
equivalence, and congruence. Sections 6 and 7 discuss
our SPARQL canonicalisation framework for mono-
tone queries, and SPARQL 1.1, respectively. Section 8
presents evaluation results. Section 9 concludes.

2. RDF Data Model

We begin by introducing the core concepts of the
RDF data model over which the SPARQL query lan-
guage will later be defined. The following is a rela-
tively standard treatment of RDF, as can be found in
various papers from the literature [21, 22]. We implic-
itly refer to RDF 1.1 unless otherwise stated.

2.1. Terms and Triples

RDF assumes three pairwise disjoint sets of terms:
IRIs (I), literals (L) and blank nodes (B). Data in RDF
are structured as triples, which are 3-tuples of the form
(s, p, o) ∈ IB × I × IBL denoting the subject s, the
predicate p, and the object o of the triple.1 There are
three types of literals: a plain literal s is a simple
string, a language-tagged literal (s, l) is a pair of a sim-
ple string and a language tag, and (s, d) is a pair of a
simple string and an IRI (denoting a datatype).

In this paper we use Turtle/SPARQL-like syntax,
where :a , xsd:string, etc., denote IRIs; _:b, _:x1,
etc., denote blank nodes; "a", "xy z", etc., denote
plain literals; "hello"@en, "hola"@es, etc., denote
language-tagged literals; and "true"^^xsd:boolean,
"1"^^xsd:int, etc., denote datatype literals.

2.2. Graph

An RDF graph G is a set of RDF triples. It is called a
graph because each triple (s, p, o) ∈ G can be viewed
as a directed labelled edge of the form s

p−→ o, and a set
of such triples forms a directed edge-labelled graph.

1In this paper we concatenate set names to denote their union;
e.g., IBL is used as an abbreviation for the union I ∪ B ∪ L.

2.3. Simple Entailment and Equivalence

Blank nodes in RDF have special meaning; in par-
ticular, they are considered to be existential variables.
The notion of simple entailment [21, 23] captures the
existential semantics of blank nodes (among other fun-
damental aspects of RDF). This same notion also plays
a role in how the SPARQL query language is defined.

Formally, let α : B → IBL denote a mapping that
maps blank nodes to RDF terms; we call such a map-
ping a blank node mapping. Given an RDF graph G,
let bnodes(G) denote all of the blank nodes appearing
in G. Let α(G) denote the image of G under α; i.e., the
graph G but with each occurrence of each blank node
b ∈ bnodes(G) replaced with α(b). Given two RDF
graphs G and H, we say that G simple-entails H, de-
noted G |= H, if and only if there exists a blank node
mapping α such that α(H) ⊆ G [21, 23]. Furthermore,
if G |= H and H |= G, then we say that they are simple
equivalent, denoted G ≡ H.

Deciding simple entailment G |= H is known to be
NP-complete [21]. Deciding the simple equivalence
G ≡ H is likewise known to be NP-complete.

We remark that the RDF standard defines further en-
tailment regimes that cover the semantics of datatypes
and the special RDF and RDFS vocabularies [23]; we
will not consider such entailment regimes here.

2.4. Isomorphism

Given that blank nodes are defined as existential
variables [23], two RDF graphs differing only in blank
node labels are thus considered isomorphic [22, 24].

Formally, if a blank node mapping of the form α :
B → B is one-to-one, we call it a blank node bijection.
Two RDF graphs G and H are defined as isomorphic,
denoted G ≃ H, if and only if there exists a blank node
bijection α such that α(G) = H; i.e., the two RDF
graphs differ only in their blank node labels. We re-
mark that if G ≃ H, then G ≡ H; however, the inverse
does not always hold as we discuss in the following.

Deciding the isomorphism G ≃ H is known to be
GI-complete [22] (as hard as graph isomorphism).

2.5. Leanness and core

Existential blank nodes may give rise to redundant
triples. In particular, an RDF graph G is called lean if
and only if there does not exist a proper subgraph G′ ⊊
G of it such that G′ |= G; otherwise G is called non-
lean. Non-lean graphs can be seen, under the RDF se-

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 5

mantics, as containing redundant triples. For example,
given an RDF graph G = {(:x, :y, :z), (:x, :y, _:b)},
the second triple is seen as redundant: it states that :x
has some value on :y , but we know this already from
the first triple, so the second triple says nothing new.

The core of an RDF graph G is then an RDF graph
G′ such that G′ ≡ G and G′ is lean; intuitively it
is a version of G without redundancy. For example
the core of the aforementioned graph would be G′ =
{(:x, :y, :z)}; note that G′ ≡ G and G′ is lean, but
G′ ̸≃ G. The core of a graph is unique modulo isomor-
phism [21]; hence we refer to the core of a graph.

Deciding whether or not an RDF G is lean is known
to be CONP-complete [21]. Deciding if G′ is the core
of G is known to be DP-complete [21].

2.6. Merge

Blank nodes are considered to be scoped to a local
RDF graph. Hence when combining RDF graphs, ap-
plying a merge (rather than union) avoids blank nodes
with the same name in two (or more) graphs clashing.
Given two RDF graphs G and G′, and a blank node bi-
jection α such that bnodes(α(G)) ∩ bnodes(G′) = ∅,
we call α(G)∪G′ an RDF merge, denoted G⊎G′. The
merge of two graphs is unique modulo isomorphism.

3. SPARQL 1.1 Semantics

We now define SPARQL 1.1 in detail [2]. We
will begin by defining a SPARQL dataset over which
queries are evaluated. We then introduce an abstract
syntax for SPARQL queries. Thereafter we discuss the
evaluation of queries under different semantics.

These definitions extend similar preliminaries found
in the literature. However, our definitions of the se-
mantics of SPARQL 1.1 extend beyond the core of
the language and rather aim to be exhaustive, where
a clear treatment of the full language is a prerequi-
site for formalising the canonicalisation of queries us-
ing the language. Table 1 provides a summary of prior
works that have defined the semantics of SPARQL fea-
tures. We exclude works that came after one of the
works shown and use a subset of the features of that
work (even if they may contribute novel results about
those features). Some SPARQL 1.0 features, such as
UNION, FILTER and OPTIONAL, have been featured in
all studies. In terms of SPARQL 1.1, the most exten-
sive formal definitions have been provided by Polleres
and Wallner [25], and by Kaminski et al. [26]. How-

ever, both works omit query features: Polleres and
Wallner [25] omit federation and aggregation, whereas
Kaminski et al. [26] omit named graphs, federation,
and non-SELECT query forms. Compared to these pre-
vious works, we aim to capture the full SPARQL 1.1
query language, with one simplification: we define
functions and expressions abstractly, rather than defin-
ing all of the many built-ins that SPARQL 1.1 provides
(e.g., +, BOUND, COUNT, IF, etc.)

3.1. Query Syntax

Before we introduce an abstract syntax for SPARQL
queries, we provide some preliminaries:

– A triple pattern (s, p, o) is a member of the set
VIBL×VI×VIBL (i.e., an RDF triple allowing
variables in any position and literals as subject).

– A basic graph pattern B is a set of triple patterns.
We denote by vars(B) :=

⋃
(s,p,o)∈B V ∩ {s, p, o}

the set of variables used in B.
– A path pattern (s, e, o) is a member of the set

VIBL × P × VIBL, where P is the set of all path
expressions defined by Table 2.

– A navigational graph pattern N is a set of paths
patterns and triple patterns (with variable predi-
cates). We denote by vars(N) :=

⋃
(s,e,o)∈N V ∩

{s, e, o} the set of variables used in N.
– A term in VIBL is a built-in expression. Let ⊥

denote an unbound value and ε an error. We call
ϕ a built-in function if it takes a tuple of values
from IBL ∪ {⊥, ε} as input and returns a single
value in IBL ∪ {⊥, ε} as output. An expression
ϕ(R1, . . . ,Rn), where each R1, . . . ,Rn is a built-in
expression, is itself a built-in expression.

– An aggregation function ψ is a function that takes
a bag of tuples from IBL as input and returns a
value in IBL ∪ {⊥, ε} as output. An expression
ψ(R1, . . . ,Rn), where each R1, . . . ,Rn is a built-in
expression, is an aggregation expression.

– If R is a built-in expression, and ∆ is a boolean
value indicating ascending or descending order,
then (R,∆) is an order comparator.

We then define the abstract syntax of a SPARQL
query as shown in Table 3. Note that we abbrevi-
ate OPTIONAL as OPT, FILTER EXISTS as FE, and
FILTER NOT EXISTS as FNE. Otherwise mapping from
SPARQL’s concrete syntax to this abstract syntax is
straightforward, with the following exceptions:

6 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

Table 1
Studies that define the semantics of features in SPARQL (1.1), including Monotone (basic graph patterns, joins, UNION, un-nested SELECT
DISTINCT), Filters, Optionals, Negation (OPTIONAL & !BOUND, MINUS, FILTER (NOT) EXISTS), Named Graphs (GRAPH, FROM (NAMED)), Paths,
Federation (SERVICE), Assignment (BIND, VALUES), Aggregation (GROUP BY and aggregate functions), Sub Queries (nested SELECT), Solution
Modifiers (LIMIT, OFFSET, ORDER BY), Query Forms (CONSTRUCT, ASK, DESCRIBE), Expressions and Functions (e.g., +, BOUND, COUNT, IF), Bag
Semantics; we denote by “*” partial definitions or discussion

Paper Year Mon Filt Opt Neg NGra Path Fed Assn Agg SubQ SolM Form Exp Bag

Perez et al. [9, 27] 2006 ✓ ✓ ✓ * *
Polleres [28] 2007 ✓ ✓ ✓ * ✓ * * *
Alkhateeb et al. [29] 2009 ✓ ✓ ✓ * ✓ *
Arenas and Pérez [30] 2012 ✓ ✓ ✓ * * ✓ ✓ * * ✓

Polleres and Wallner [25] 2013 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ * * ✓

Kaminski et al. [26] 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ * * ✓

Salas and Hogan 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ * ✓

Table 2
SPARQL property path syntax

The following are path expressions
p a predicate (IRI)
!(p1| . . . |pk|^pk+1| . . . |^pn) any (inv.) predicate not listed

and if e, e1, e2 are path expressions
the following are also path expressions:
^e an inverse path
e1/e2 a path of e1 followed by e2
e1|e2 a path of e1 or e2
e* a path of zero or more e

e+ a path of one or more e

e? a path of zero or one e

(e) brackets used for grouping

– For brevity, we consider the following SPARQL
1.1 operators to be represented as functions:

* boolean operators: ! for negation, && for
conjunction, || for disjunction;

* equality and inequality operators: =, <, >, <=,
>=, !=;

* numeric operators: unary + and - for pos-
itive/negative numbers; binary + and - for
addition/subtraction, * for multiplication
and / for division;

for example, replacing ?a+?b, we assume addi-
tion to be defined as a function SUM(?a, ?b).

– We combine FROM and FROM NAMED into one fea-
ture, FROM, so they can be evaluated together.

– A query such as DESCRIBE <x> <y> in the con-
crete syntax can be expressed in the abstract syn-
tax with an empty pattern DESCRIBE{x,y}({}).

– Aggregates without grouping can be expressed
with GROUP{}(Q)(D). We assume that every
query in the abstract syntax with a group-by pat-
tern uses AGG – possibly AGG{}(Q) – to generate
a graph pattern (and “flatten” groups).

– Some aggregation functions in SPARQL take ad-
ditional arguments, including a DISTINCT mod-
ifier, or a delimiter in the case of CONCAT. For
simplicity, we assume that these are distinct func-
tions, e.g., COUNT(·) versus COUNTDISTINCT(·).

– SPARQL allows SELECT * to indicate that val-
ues for all variables should be returned. Other-
wise SPARQL requires that at least one variable
be specified. A SELECT * clause can be written
in the abstract syntax as SELECTV(Q) where Q
is a graph pattern on V . Also the abstract syntax
allows empty projections SELECT{}(Q), which
greatly simplifies certain definitions and proofs;
this can be represented in the concrete syntax as
SELECT ?empty, where ?empty is a fresh variable
not appearing in the query.

– In the concrete syntax, SELECT allows for built-
in expressions and aggregation expressions to be
specified. We only allow variables to be used.
However, such expressions can be bound to vari-
ables using BIND or AGG.2

– In the concrete syntax, ORDER BY allows for using
aggregation expressions in the order comparators.
Our abstract syntax does not allow this as it com-
plicates the definitions of such comparators. Or-

2In our proposed abstract syntax and the concrete syntax, the or-
dering of variables in the SELECT is not meaningful, though in prac-
tice engines may often present variables in the results following the
same order in which they are listed by the SELECT clause.

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 7

Table 3
Abstract SPARQL syntax

– B is a basic graph pattern. ∴ B is a graph pattern on vars(B).

– N is a navigational graph pattern. ∴ N is a graph pattern on vars(N).

– Q1 is a graph pattern on V1.
– Q2 is a graph pattern on V2.

∴ [Q1 AND Q2] is a graph pattern on V1 ∪ V2;
∴ [Q1 UNION Q2] is a graph pattern on V1 ∪ V2;
∴ [Q1 OPT Q2] is a graph pattern on V1 ∪ V2;
∴ [Q1 MINUS Q2] is a graph pattern on V1.

– Q is a graph pattern on V .
– Q1 is a graph pattern on V1.
– Q2 is a graph pattern on V2.
– v is a variable not in V .
– R is a built-in expression.

∴ FILTERR(Q) is a graph pattern on V;
∴ [Q1 FE Q2] is a graph pattern on V1;
∴ [Q1 FNE Q2] is a graph pattern on V1;
∴ BINDR,v(Q) is a graph pattern on V ∪ {v}.

– Q is a graph pattern on V .
– M is a bag of solution mappings on VM =

⋃
µ∈M dom(µ). ∴ VALUESM(Q) is a graph pattern on V ∪ VM.

– Q is a graph pattern on V .
– x is an IRI.
– v is a variable.

∴ GRAPHx(Q) is a graph pattern on V .
∴ GRAPHv(Q) is a graph pattern on V ∪ {v}.

– Q1 is a graph pattern on V1.
– Q2 is a graph pattern on V2.
– x is an IRI.
– ∆ is a boolean value.

∴ [Q1 SERVICE∆x Q2] is a graph pattern on V1 ∪ V2.

– Q is a graph pattern on V .
– Q′ is a group-by pattern on (V′,V).
– V′′ is a set of variables.
– A is an aggregation expression
– Λ is a (possibly empty) set of pairs {(A1, v1), . . . , (An, vn)},

where A1, . . . , An are aggregation expressions, v1, . . . , vn are vari-
ables not appearing in V∪V′ such that vi ̸= v j for 1 ⩽ i < j ⩽ n,
and where vars(Λ) = {v1, . . . , vn}

∴ Q is a group-by pattern on (∅,V).
∴ Q′ is a graph pattern on V′.
∴ GROUPV′′ (Q) is a group-by pattern on (V′′,V).
∴ HAVINGA(Q′) is a group-by pattern on (V′,V).
∴ AGGΛ(Q′) is a graph pattern on (V′ ∪ vars(Λ),V).

– Q is a graph pattern or sequence pattern on V .
– Ω is a non-empty sequence of order comparators.
– k is a non-zero natural number.

∴ Q is a graph pattern and sequence pattern on V
∴ ORDERΩ(Q) is a sequence pattern on V .
∴ DISTINCT(Q) is a sequence pattern on V .
∴ REDUCED(Q) is a sequence pattern on V .
∴ OFFSETk(Q) is a sequence pattern on V .
∴ LIMITk(Q) is a sequence pattern on V .

– Q is a sequence pattern on V that does not contain the same blank
node b in two different graph patterns.

– V′ is a set of variables.
– B is a basic graph pattern.
– X is a set of IRIs and/or variables.

∴ SELECTV′ (Q) is a query and a graph pattern on V′.
∴ ASK(Q) is a query.
∴ CONSTRUCTB(Q) is a query.
∴ DESCRIBEX(Q) is a query.

– Q is a query but not a from query
– X and X′ are sets of IRIs

∴ FROMX,X′ (Q) is a from query and a query.

dering on aggregation expressions can rather be
achieved using sub-queries.

– We use [Q1 SERVICE∆
x Q2] to denote SERVICE,

where ∆ = true indicates the SILENT keyword
is invoked, and ∆ = false indicates that it is not.

– We do not consider SERVICE with variables as it
has no normative semantics in the standard [31].

Aside from the latter point, these exceptions are syn-
tactic conveniences that help simplify later definitions.

3.2. Datasets

SPARQL allows for indexing and querying more
than one RDF graph, which is enabled through the
notion of a SPARQL dataset. Formally, a SPARQL
dataset D := (G, {(x1,G1), . . . , (xn,Gn)}) is a pair of
an RDF graph G called the default graph, and a set of
named graphs of the form (xi,Gi), where xi is an IRI
(called a graph name) and Gi is an RDF graph; addi-
tionally, graph names must be unique, i.e., x j ̸= xk for
1 ⩽ j < k ⩽ n. We denote by GD the default graph G

8 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

of D and by D∗ = {(x1,G1), . . . , (xn,Gn)} the set of
all named graphs in D. We further denote by GD[xi] the
graph Gi such that (xi,Gi) ∈ D∗ or the empty graph if
xi does not appear as a graph name in D∗.

3.3. Services

While the SPARQL standard defines a wide range
of features that compliant services must implement,
a number of decisions are left to a particular service.
First and foremost, a service chooses what dataset to
index. Along these lines, we define a SPARQL service
as a tuple S = (D,R,A,⩽, describe), where:

– D is a dataset;
– R is a set of supported built-in expressions;
– A is a set of supported aggregation expressions;
– ⩽ is a total ordering of RDF terms and ⊥;
– describe is a function used to describe RDF terms.

We will denote by DS the dataset of a particular ser-
vice. The latter two elements will be described in more
detail as they are used. The SPARQL standard does
define some minimal requirements on the set of built-
in expressions, the set of aggregation expressions, the
ordering of terms, etc., that a standards-compliant ser-
vice should respect. We refer to the SPARQL standard
for details on these requirements [2].

3.4. Query Evaluation

The semantics of a SPARQL query Q can be de-
fined in terms of its evaluation over a SPARQL dataset
D, denoted Q(D) which returns solution mappings that
represent “matches” for Q in D.

3.4.1. Solution mappings
A solution mapping µ is a partial mapping from vari-

ables in V to terms IBL. We denote the set of all solu-
tion mappings by M. Let dom(µ) denote the domain of
µ, i.e., the set of variables for which µ is defined. Given
{v1, . . . , vn} ⊆ V and {x1 . . . , xn} ⊆ IBL ∪ {⊥}, we
denote by {v1/x1, . . . , vn/xn} the mapping µ such that
dom(µ) = {vi | xi /∈ {⊥, ε}} for 1 ⩽ i ⩽ n and
µ(vi) = xi for vi ∈ dom(µ). We denote by µ∅ the
empty solution mapping (such that dom(µ∅) = ∅).

We say that two solution mappings µ1 and µ2 are
compatible, denoted µ1 ∼ µ2, if and only if µ1(v) =
µ2(v) for every v ∈ dom(µ1) ∩ dom(µ2). We say that
two solution mappings µ1 and µ2 are overlapping, de-
noted µ1 ∗ µ2, if and only if dom(µ1) ∩ dom(µ2) ̸= ∅.

Given two compatible solution mappings µ1 ∼ µ2,
we denote by µ1 ∪ µ2 their combination such that
dom(µ1 ∪ µ2) = dom(µ1) ∪ dom(µ2), and if v ∈
dom(µ1) then (µ1 ∪ µ2)(v) = µ1(v), otherwise if
v ∈ dom(µ2) then (µ1 ∪ µ2)(v) = µ2(v). Since the
solution mappings µ1 and µ2 are compatible, for all
v ∈ dom(µ1) ∩ dom(µ2), it holds that (µ1 ∪ µ2)(v) =
µ1(v) = µ2(v), and thus µ1 ∪ µ2 = µ2 ∪ µ1.

Given a solution mapping µ and a triple pattern t, we
denote by µ(t) the image of t under µ, i.e., the result
of replacing every occurrence of a variable v in t by
µ(v) (generating an unbound ⊥ if v /∈ dom(µ)). Given
a basic graph pattern B, we denote by µ(B) the image
of B under µ, i.e., µ(B) := {µ(t) | t ∈ B}. Likewise,
given a navigational graph pattern N, we analogously
denote by µ(N) the image of N under µ.

Blank nodes in SPARQL queries can likewise play a
similar role to variables though they cannot form part
of the solution mappings. Given a blank node mapping
α, we denote by α(B) the image of B under α and by
bnodes(B) the set of blank nodes used in B; we define
α(N) and bnodes(N) analogously.

Finally, we denote by R(µ) the result of evaluating
the image of the built-in expression R under µ, i.e., the
results of replacing all variables v in R (including in
nested expressions) with µ(v) and evaluating the re-
sulting expression. We denote by µ |= R that µ satisfies
R, i.e., that R(µ) returns a value interpreted as true.

3.4.2. Set vs. bag vs. sequence semantics
SPARQL queries can be evaluated under different

semantics, which may return a set of solution map-
pings M, a bag of solution mappings M, or a sequence
of solution mappings M. Sets are unordered and do not
permit duplicates. Bags are unordered and permit du-
plicates. Sequences are ordered and permit duplicates.

Given a solution mapping µ and a bag of solution
mappings M, we denote by M(µ) the multiplicity of µ
in M, i.e., the number of times that µ appears in M; we
say that µ ∈ M if and only if M(µ) > 0 (otherwise,
if M(µ) = 0, we say that µ /∈ M). We denote by
|M| =

∑
µ∈M M(µ) the (bag) cardinality of M. Given

two bags M and M′, we say that M ⊆ M′ if and only
if M(µ) ⩽ M′(µ) for all µ ∈ M. Note that M ⊆ M′

and M′ ⊆ M if and only if M = M′.
Given a sequence M of length n (we denote that

|M| = n), we use M[i] (for 1 ⩽ i ⩽ n) to denote the
ith solution mapping of M, and we say that µ ∈ M if
and only if there exists 1 ⩽ i ⩽ n such that M[i] = µ.
We denote by M[i.. j] (for 1 ⩽ i ⩽ j) the sub-sequence
(M[i],M[i + 1], . . . ,M[j − 1],M[j]) of elements i to j

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 9

of M, inclusive, in order; if i = j, then M[i.. j] is de-
fined to be (M[i]); if i > n, then M[i.. j] is defined to be
the empty sequence (); otherwise if j > n, then M[i.. j]
is defined to be M[i..n]. Given two sequences M1 and
M2, we denote by M1M2 their concatenation. For a se-
quence M of length n > 0, we define the deletion of
index i ⩽ n, denoted del(M, i), as the concatenation
M[1..i − 1]M[i + 1..n] if 1 < i ⩽ n, or M[2..n] if i = 1,
or M[1..n − 1] otherwise. We call j a repeated index of
M if there exists 1 ⩽ i < j such that M[i] = M[j]. We
define dist(M) to be the fixpoint of recursively deleting
repeated indexes from M. We say that M′ is contained
in M, denoted M′ ⊆ M, if and only if we can derive M′

by recursively removing zero-or-more indexes from M.
Note that M′ ⊆ M and M ⊆ M′ if and only if M = M′.

Next we provide some convenient notation to con-
vert between sets, bags and sequences. Given a se-
quence M of length n, we denote by bag(M) the bag
that preserves the multiplicity of elements in M (such
that bag(M)(µ) := |{i | 1 ⩽ i ⩽ n and M[i] = µ}|).
Given a set M, we denote by bag(M) the bag such
that bag(M)(µ) = 1 if and only if µ ∈ M; other-
wise bag(M)(µ) = 0. Given a bag M, we denote by
set(M) := {µ | µ ∈ M} the set of elements in M; we
further denote by seq(M) a random permutation of the
bag M (more formally, any sequence seq(M) satisfy-
ing bag(seq(M)) = M). Given a sequence M, we use
set(M) as a shortcut for set(bag(M)), and given a set M,
we use seq(M) as a shortcut for seq(bag(M)). Finally,
given a set M, a bag M and a sequence M, we define
that set(M) = M, bag(M) = M and seq(M) = M.

We continue by defining the semantics of SPARQL
queries under set semantics. Later we cover bag se-
mantics, and subsequently discuss aggregation fea-
tures. Finally we present sequence semantics.

3.5. Query Patterns: Set Semantics

Query patterns evaluated under set semantics return
sets of solution mappings without order or duplicates.
We first define a set algebra of operators and then de-
fine the set evaluation of SPARQL graph patterns.

3.5.1. Set algebra
The SPARQL query language can be defined in

terms of a relational-style algebra consisting of unary
and binary operators [32]. Here we describe the opera-
tors of this algebra as they act on sets of solution map-
pings. Unary operators transform from one set of so-
lution mappings (possibly with additional arguments)
to another set of solution mappings. Binary operators

transform two sets of solution mappings to another set
of solution mappings. In Table 4, we define the oper-
ators of this set algebra. This algebra is not minimal:
some operators (per, e.g., the definition of left-outer
join) can be expressed using the other operators.

3.5.2. Navigational graph patterns
Given an RDF graph G, we define the set of terms

appearing as a subject or object in G as follows:
so(G) :={x | ∃p, y : (x, p, y) ∈ G or (y, p, x) ∈ G}. We
can then define the evaluation of path expressions as
shown in Table 5 [33], which returns a set of pairs of
nodes connected by a path in the RDF graph G that
satisfies the given path expression.

Given a navigational graph pattern N, we denote
by paths(N) := {e ∈ P | ∃s, o : (s, e, o) ∈ N}
the set of path expressions used in N (including sim-
ple IRIs, but not variables). We define the path graph
of G under N, which we denote by GN , as the set of
triples that materialise paths of N in G; more formally
GN := {(s, e, o) | e ∈ paths(N) and (s, o) ∈ e(G)}.

3.5.3. Service federation
The SERVICE feature allows for sending graph pat-

terns to remote SPARQL services. In order to define
this feature, we denote byω a federation mapping from
IRIs to services such that, given an IRI x ∈ I, then
ω(x) returns the service S hosted at x or returns ε in
the case that no service exists or can be retrieved. We
denote by S.Q(DS) the evaluation of a query Q on a
remote service S. When a service of the query evalua-
tion is not indicated (e.g., Q(D)), we assume that it is
evaluated on the local service. Finally, we define that
ε.Q(Dε) invokes a query-level error ε – i.e., the evalu-
ation of the entire query fails – while ε.Q∗(Dε) returns
a set with the empty solution mapping {µ∅}.3

3.5.4. Set evaluation
The set evaluation of a SPARQL graph pattern trans-

forms a SPARQL dataset D into a set of solution map-
pings. The base evaluation is given in terms of B(D)
and N(D), i.e., the evaluation of a basic graph pattern
B and a navigational graph pattern N over a dataset D,
which generate sets of solution mappings. These solu-
tion mappings can then be transformed and combined
using the aforementioned set algebra by invoking the
corresponding pattern. The set evaluation of graph pat-
terns is then defined in Table 6. We remark that for the
definition of FE (filter exists) and FNE (filter not exists),

3We remark that {µ∅} is the join identity; i.e., {µ∅} ⋊⋉ M = M.
On the other hand {} is the join zero; i.e., {} ⋊⋉ M = {}.

10 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

Table 4
Set algebra, where M, M1, and M2 are sets of solution mappings; V is a set of variables and v is a variable; and R is a built-in expression

M1 ▷◁ M2 := { µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2 and µ1 ∼ µ2} natural join
M1 ∪ M2 := { µ | µ ∈ M1 or µ ∈ M2} union
M1 ▷ M2 := { µ1 ∈ M1 | ∄µ2 ∈ M2 : µ1 ∼ µ2} anti-join
M1 − M2 := { µ1 ∈ M1 | ∄µ2 ∈ M2 : µ1 ∼ µ2 and µ1 ∗ µ2} minus
M1 ▷◁ M2 := (M1 ▷◁ M2) ∪ (M1 ▷ M2) left-outer join

πV(M) := { µ′ | ∃µ ∈ M : µ ∼ µ′ and dom(µ′) = V ∩ dom(µ)} projection
σR(M) := { µ ∈ M | µ |= R} selection
βR,v(M) := { µ ∪ {v/R(µ)} | µ ∈ M} bind

Table 5
Path expressions where G is an RDF graph, p, p1 . . . pn are IRIs, and e, e1, e2 are path expressions

p(G) := {(s, o) | (s, p, o) ∈ G} predicate
!(p1| . . . |pn)(G) := {(s, o) | ∃q : (s, q, o) ∈ G and q /∈ {p1, . . . , pn}} negated property set

!(^p1| . . . |^pn)(G) := {(s, o) | ∃q : (o, q, s) ∈ G and q /∈ {p1, . . . , pn}} negated inverse property set
!(p1| . . . |pk|^pk+1| . . . |^pn)(G) := !(p1| . . . |pk)(G) ∪ !(^pk+1| . . . |^pn)(G) negated (inverse) property set

^e(G) := {(s, o) | (o, s) ∈ e(G)} inverse
e1/e2(G) := {(x, z) | ∃y : (x, y) ∈ e1(G) and (y, z) ∈ e2(G)} concatenation
e1|e2(G) := e1(G) ∪ e2(G) disjunction

e+(G) := {(y1, yn+1) | for 1 ⩽ i ⩽ n : ∃(yi, yi+1) ∈ e(G)} one-or-more
e*(G) := e+(G) ∪ {(x, x) | x ∈ so(G)} zero-or-more
e?(G) := e(G) ∪ {(x, x) | x ∈ so(G)} zero-or-one

there is some ambiguity about what µ(Q2) precisely
means when Q2 involves variables mentioned outside
of a basic graph pattern or a path expression; this is a
known issue for the SPARQL 1.1 standard [26, 34–36],
which we will discuss in more detail in Section 3.10.

3.6. Query Patterns: Bag Semantics

Query patterns evaluated under bag semantics return
bags of solution mappings. Like under set semantics,
we first define a bag algebra of operators and then de-
fine the bag evaluation of SPARQL graph patterns.

3.6.1. Bag algebra
The bag algebra is analogous to the set algebra, but

further operates over the multiplicity of solution map-
pings. We define this algebra in Table 7.

3.6.2. Bag evaluation
The bag evaluation of a graph pattern is based on the

bag evaluation of basic graph patterns and navigational
graph patterns, as defined in Table 8, where the mul-
tiplicity of each individual solution is based on how
many blank node mappings satisfy the solution. With
the exceptions of FE and FNE – which are also defined
in Table 8 – the bag evaluation of other graph patterns

then follows from Table 6 by simply replacing the set
algebra (from Table 4) with the bag algebra (from Ta-
ble 7). Note that VALUESM(Q) can now also accept a
bag of solutions, and that there are again issues with
the definition of FE and FNE that will be discussed in
Section 3.10. The set evaluation of paths (from Ta-
ble 5) is again used with the exception that some path
expressions in navigational patterns are rewritten (po-
tentially recursively) to analogous query operators un-
der bag semantics. Table 9 lists these rewritings.

3.7. Group-by Patterns: Aggregation

Let (µ,M) denote a solution group, where µ is a
solution mapping called the key of the solution group,
and M is a bag of solution mappings called the bag of
the solution group. Group-by patterns then return a set
of solution groups M := {(µ1,M1), . . . , (µn,Mn)} as
their output. We now define their semantics along with
the AGG graph pattern, which allows for converting a
set of solution groups to a set of solution mappings.

3.7.1. Aggregation algebra
We define an aggregation algebra in Table 10 under

bag semantics with four operators that support the gen-
eration of a set of solution groups (aka., group by), the

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 11

Table 6
Set evaluation of graph patterns where D is a dataset; B is a basic graph pattern; N is a navigational graph pattern; Q, Q1 and Q2 are graph
patterns; V is a set of variables; R is a built-in expression; v is a variable; M is a set of solution mappings; and x is an IRI

B(D) := {µ | ∃α : µ(α(B)) ⊆ GD and dom(µ) = vars(B) and dom(α) = bnodes(B)}
N(D) := {µ | ∃α : µ(α(N)) ⊆ GN

D ∪ GD and dom(µ) = vars(N) and dom(α) = bnodes(N)}

[Q1 AND Q2](D) := Q1(D) ▷◁ Q2(D)

[Q1 UNION Q2](D) := Q1(D) ∪ Q2(D)

[Q1 FE Q2](D) := {µ ∈ Q1(D) | (µ(Q2))(D) ̸= ∅} (see † below)
[Q1 FNE Q2](D) := {µ ∈ Q1(D) | (µ(Q2))(D) = ∅} (see † below)

[Q1 MINUS Q2](D) := Q1(D)− Q2(D)

[Q1 OPT Q2](D) := Q1(D) ▷◁ Q2(D)

SELECTV(Q)(D) := πV(Q(D))

FILTERR(Q)(D) := σR(Q(D))

BINDR,v(Q)(D) := βR,v(Q(D))

VALUESM(Q)(D) := Q(D) ▷◁ M

GRAPHx(Q)(D) := Q((GD[x],D∗))

GRAPHv(Q)(D) :=
⋃

(xi ,Gi)∈D∗ βxi ,v(Q((Gi,D∗)))

[Q1 SERVICEfalsex Q2](D) := Q1(D) ▷◁ ω(x).Q2(Dω(x))

[Q1 SERVICEtruex Q2](D) := Q1(D) ▷◁ ω(x).Q∗
2(Dω(x))

† µ(Q2) is not well-defined in all cases. Please see Section 3.10 for discussion.

Table 7
Bag algebra where M, M1, and M2 are bags of solution mappings; µ, µ′, µ1 and µ2 are solution mappings; V is a set of variables and v is a
variable; and R is a built-in expression; for legibility, we use Iverson bracket notation where [ϕ] = 1 if and only if ϕ holds; otherwise, if ϕ is
false or undefined, then [ϕ] = 0

M1 ▷◁ M2(µ) :=
∑

(µ1 ,µ2)∈M1×M2
M1(µ1) ·M2(µ2) · [µ1 ∼ µ2 and µ1 ∪ µ2 = µ] natural join

M1 ∪M2(µ) := M1(µ) +M2(µ) union
M1 ▷ M2(µ) := M1(µ) · [∄µ′ ∈ M2 : µ ∼ µ′] anti-join
M1 −M2(µ) := M1(µ) · [∄µ′ ∈ M2 : µ ∼ µ′ and µ ∗ µ′] minus
M1 ▷◁M2(µ) := ((M1 ▷◁ M2) ∪ (M1 ▷ M2))(µ) left-outer join

πV(M)(µ) :=
∑

µ′∈M M(µ′) · [dom(µ) = V ∩ dom(µ′) and µ ∼ µ′] projection

σR(M)(µ) := M(µ) · [µ |= R] selection
βR,v(M)(µ) :=

∑
µ′∈M M(µ′) · [µ′ ∪ {v/R(µ′)} = µ] bind

Table 8
Bag evaluation of graph patterns where D is a dataset; B is a basic graph pattern; N is a navigational graph pattern; Q1, Q2 are graph patterns

B(D)(µ) := |{α | µ(α(B)) ⊆ GD and dom(α) = bnodes(B)}| · [dom(µ) = vars(B)]

N(D)(µ) := |{α | µ(α(N)) ⊆ GN
D and dom(α) = bnodes(N)}| · [dom(µ) = vars(N)]

[Q1 FE Q2](D)(µ) := Q1(D)(µ) · [(µ(Q2))(D) ̸= ∅] (see † below)
[Q1 FNE Q2](D)(µ) := Q1(D)(µ) · [(µ(Q2))(D) = ∅] (see † below)

† µ(Q2) is not well-defined in all cases. Please see Section 3.10 for discussion.

Table 9
Bag evaluation of navigational patterns where D is a dataset, N is a navigational pattern, and x is a fresh blank node

N(D) :=

{(o, e, s)} ∪ (N \ {(s, ^e, o)})(D) if there exists (s, ^e, o) ∈ N

{(s, e1, x), (x, e2, o)} ∪ (N \ {(s, e1/e2, o)})(D) if there exists (s, e1/e2, o) ∈ N

[[{(s, e1, o)} UNION {(s, e2, o)}] AND N \ {(s, e1|e2, o)}](D) if there exists (s, e1|e2, o) ∈ N

N(D) under set semantics otherwise

12 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

selection of solution groups (aka., having), the bind-
ing of new variables in the key of the solution group,
as well as the flattening of a set of solution groups to
a set of solution mappings by projecting their keys.
Note that analogously to the notation for built-in ex-
pressions, given an aggregation expression A, we de-
note by A(M) the result of evaluating A over M, and
we denote by M |= A the condition that M satisfies A,
i.e., that A(M) returns a value interpreted as true. The
aggregation algebra can also be defined under set se-
mantics: letting M denote a set of solution mappings,
we can evaluate γV(bag(M)) before other operators.

3.7.2. Aggregation evaluation
We can use the previously defined aggregation al-

gebra to define the semantics of group-by patterns in
terms of their evaluation, per Table 11.

3.8. Sequence Patterns and Semantics

Sequence patterns return sequences of solutions as
their output, which allow duplicates and also maintain
an ordering. These sequence patterns in general refer
to solution modifiers that allow for ordering solutions,
slicing the set of solutions, and removing duplicate so-
lutions. We will again first define an algebra before
defining the evaluation of sequence patterns.

3.8.1. Sequence algebra
Sequences deal with some ordering over solu-

tions. We assume a total order ⩽ over IBL ∪ {⊥}
to be defined by the service (see Section 3.3), i.e.,
over the set of all RDF terms and unbounds. Given
a non-empty sequence of order comparators Ω :=
((R1,∆1), . . . , (Rn,∆n)), we define the total ordering
⩽Ω of solutions mappings as follows:

– µ1 =Ω µ2 if and only if Ri(µ1) = Ri(µ2) for all
1 ⩽ i ⩽ n;

– otherwise let j denote the least value 1 ⩽ j ⩽ n
such that R j(µ1) ̸= R j(µ2); then:

* R j(µ1) < R j(µ2) and ∆k implies µ1 <Ω µ2;
* R j(µ1) > R j(µ2) and ∆k implies µ1 >Ω µ2;
* R j(µ1) < R j(µ2) and not ∆k implies µ1 >Ω µ2;
* R j(µ1) > R j(µ2) and not ∆k implies µ1 <Ω µ2.

In Table 12, we present an algebra composed of
three operators for ordering sequences of solutions
based on order comparators, and removing duplicates.

3.8.2. Sequence evaluation
Using the sequence algebra, we can then define the

evaluation of sequence patterns as shown in Table 13.

3.9. Safe and possible variables

We now characterise different types of variables that
may appear in a graph pattern in terms of being al-
ways bound, never bound, or sometimes bound in the
solutions to the graph pattern. This characterisation
will become important for rewriting algebraic expres-
sions [37]. Specifically, letting Q denote a graph pat-
tern, recall that we denote by vars(Q) all of the vari-
ables mentioned (possibly nested) in Q; furthermore:

– we denote by svars(Q) the safe variables of Q,
defined to be the set of variables v ∈ V such that,
for all datasets D, if µ ∈ Q(D), then v ∈ dom(µ);

– we denote by pvars(Q) the possible variables of
Q, defined to be the set of variables v ∈ vars(Q)
such that there exists a dataset D and a solution
µ ∈ Q(D) where v ∈ dom(µ).

Put more simply, svars(Q) denotes variables that are
never unbound in any solution, while pvars(Q) denotes
variables that may be unbound but are bound in at least
one solution over some dataset.4

Example 3.1. Consider the query (pattern) Q:

SELECT * WHERE {
{ { ?s :sister ?x } UNION { ?s :brother ?y } }
MINUS { ?s :twin ?z }

}

Now:

– vars(Q) = {?s, ?x, ?y, ?z};
– svars(Q) = {?s};
– pvars(Q) = {?s, ?x, ?y}.

Unfortunately, given a graph pattern Q, deciding if
v ∈ svars(Q) or v ∈ pvars(Q) is undecidable for the
full SPARQL 1.1 language as it can answer the ques-
tion of the satisfiability of Q, i.e., whether or not Q has
any solution over any dataset; specifically, v /∈ vars(Q)
is safe in Q if and only if Q is unsatisfiable, while
v /∈ vars(Q) is possible in BIND1,v(Q) if and only if
Q is satisfiable. For this reason we resort to syntac-
tic approximations of the notions of safe and possible
variables. In fact, when we say that Q1 is a graph pat-
tern on V1, we can consider V1 to be a syntactic over-
approximation of the possible variables of Q (called
“in-scope” variables by the standard [2]), which en-
sures no clashes of variables in solutions (e.g., defining

4It may be tempting to think that svars(Q) ⊆ pvars(Q), but if Q
never returns results (e.g., Q = [Q′ MINUS Q′]), then svars(Q) = V
and pvars(Q) = ∅ per the previous definitions.

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 13

Table 10
Aggregation algebra under bag semantics, where M and M′ are bags of solution mappings; V is a set of variables and v is a variable; A is an
aggregation expression; and M is a set of solution groups; we recall that M is the set of all solution mappings

γV(M) := {(µ,M′) | µ ∈ πV(M) and ∀µ′ ∈ M : M′(µ′) = M(µ′) · [πV({µ′}) = {µ}]} group (bag)
σ′

A(M) := {(µ,M) ∈ M | M |= A} selection (aggregation)
β′A,v(M) := { (µ ∪ {v/A(M)}, βA(M),v(M)) | (µ,M) ∈ M} bind (aggregation)
ζ(M) := {µ | (µ,M) ∈ M} flatten

Table 11
Evaluation of group-by patterns where D is a dataset, Q is a graph pattern or group-by pattern, V is a set of variables, v1, . . . , vn are variables,
and A, A1, . . . , An are aggregation expressions

GROUPV(Q)(D) := γV(Q(D))

HAVINGA(Q)(D) := σ′
A(Q(D))

AGG{(A1 ,v1),...,(An ,vn)}(Q)(D) := ζ(β′A1 ,v1
(. . . (β′An ,vn

(Q(D))) . . .)) note: AGG{}(Q)(D) := ζ(Q(D))

Table 12
Sequence algebra, where M and M′ are sequences of solutions, and Ω is a non-empty sequence of order comparators

orderΩ(M) := M′ such that bag(M′) = bag(M) and M′[i] ⩽Ω M′[j] for all 1 ⩽ i < j ⩽ |M′| order by
distinct(M) := dist(M) distinct
reduced(M) := M′ such that M′ ⊆ M and set(M) = set(M′) reduced

Table 13
Evaluation of sequence patterns where Ω is a non-empty sequence
of order comparators, and k is a (non-zero) natural number

ORDERΩ(Q)(D) := orderΩ(seq(Q(D)))

DISTINCT(Q)(D) := distinct(seq(Q(D)))

REDUCED(Q)(D) := reduced(seq(Q(D)))

OFFSETk(Q)(D) := seq(Q(D))[(k + 1)..∞]

LIMITk(Q)(D) := seq(Q(D))[1..k]

BIND1,v(Q) when Q can bind v). Later (in Table 21) we
will define a syntactic over-approximation of safe vari-
ables to decide when it is okay to apply rewriting rules
that are invalid in the presence of unbound variables.

3.10. Issues with (NOT) EXISTS

The observant reader may have noticed that in Ta-
ble 6 and Table 8, in the definitions of [Q1 FE Q2]
(FILTER EXISTS) and [Q1 FNE Q2] (FILTER NOT
EXISTS), we have used the expression µ(Q2). While
we have defined this for a basic graph pattern B and
a navigational graph pattern N – replace any variable
v ∈ dom(µ) appearing in B or N, respectively, with
µ(v) – per the definition of the syntax, Q2 can be any
graph pattern. This leaves us with the question of how
µ(SELECTV(Q′)) or µ([Q′

1 MINUS Q′
2]), for example,

is defined. Even in the case where Q2 is a basic graph
pattern, it is unclear how we should handle variables

that are replaced with blank nodes, or predicate vari-
ables that are replaced with literals. The standard does
not define such cases unambiguously [26, 34–36]. The
precise semantics of [Q1 FE Q2] and [Q1 FNE Q2] thus
cannot be defined until the meaning of µ(v) – which
the standard calls substitution – is clarified. We pro-
vide an example illustrating one issue that arises.

Example 3.2. We will start with a case that is not se-
mantically ambiguous. Take a query:

SELECT DISTINCT * WHERE {
{ ?x :sister ?y }
FILTER NOT EXISTS { ?y :sister ?z }

}

To evaluate it on a dataset D, we take each solu-
tion µ ∈ {(?x, :sister, ?y)}(D) from the left of the
FILTER NOT EXISTS and keep the solution µ in the fi-
nal results of the query if and only if the evaluation of
the pattern {(µ(?y), :sister, ?z)}(D) is empty.

We next take an example of a query that is syntacti-
cally valid, but semantically ill-defined.

SELECT DISTINCT * WHERE {
{ ?x :sister ?y }
FILTER NOT EXISTS { SELECT ?y WHERE { ?y :sister ?z } }

}

Given a solution µ from the left, if we follow the stan-
dard literally and replace “every occurrence of a vari-
able v in [the right pattern] by µ(v) for each v in
dom(µ)”, the result is a pattern SELECT{µ(?y)}(µ(Q2)).

14 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

For example, if µ(?y) = :a, then the right pattern, in
concrete syntax, would become:

SELECT :a WHERE { :a :sister ?z }

which is syntactically invalid.

A number of similar issues arise from ambiguities
surrounding substitution, and while work is underway
to clarify this issue, at the time of writing, various com-
peting proposals are being discussed [26, 34, 36]. We
thus postpone rewriting rules for negation until a stan-
dard semantics for substitution is agreed upon.

3.11. Queries

A query accepts a set, bag or sequence of solution
modifiers, depending on the semantics selected (and
features supported). In the case of a SELECT query, the
output will likewise be a set, bag or sequence of solu-
tion modifiers, potentially projecting away some vari-
ables. An ASK query rather outputs a boolean value.
Finally, CONSTRUCT and DESCRIBE queries output an
RDF graph. We will define the evaluation of these
queries in terms of solution sequences, though the def-
initions generalise naturally to bags and sets (through
bag(·) and set(·)). First we give preliminary notation.
Given a sequence of solution mappings M, we denote
by πV(M) a projection that preserves the input order
of solution mappings (and such that bag(πV(M)) =
πV(bag(M))). Given a dataset D and a set of RDF
terms X, we assume a function describe(X,D) that re-
turns an RDF graph “describing” each term x ∈ X to
be defined by the service (see Section 3.3); as a simple
example, describe(X,D) may be defined as the set of
triples in GD that mention any x ∈ X. The evaluation
of queries is then shown in Table 14.

3.12. Dataset modifier

Queries are evaluated on a SPARQL dataset D,
where dataset modifiers allow for changing the dataset
considered for query evaluation. First, let X and X′ de-
note (possibly empty or overlapping) sets of IRIs and
let D denote a SPARQL dataset. We then denote by
D(X, X′) := (

⊎
x∈X GD[x], {(x′,GD[x′]) | x′ ∈ X′})

a new dataset formed from D by merging all named
graphs of D named by X to form the default graph
of D(X, X′), and by selecting all named graphs of D
named by X′ as the named graphs of D(X, X′). We de-
fine the semantics of dataset modifiers in Table 15.

3.13. Non-determinism

A number of features can lead to non-determinism
in the evaluation of graph patterns as previously de-
fined. When such features are used, there may be more
than one possible valid result for the graph pattern on
a dataset. These features are as follows:

– Built-in expressions and aggregation expressions
may rely on non-deterministic functions, such as
rand() to generate a random number, SAMPLE to
randomly sample solutions from a group, etc.

– REDUCED(Q)(D) permits a range of multiplici-
ties for solutions (between those for Q(D) under
bag semantics and DISTINCT(Q)(D)).

– The use of sequence patterns without an explicit
ORDERΩ(Q) gives a non-deterministic ordering
(e.g., with OFFSETk(Q) and/or LIMITk(Q)).

In non-deterministic cases, we can say that Q(D)
returns a family of (potentially infinite) valid set-
s/bags/sequences of solutions, denoting the space of
possible results for evaluating the graph pattern. In
practice any such set/bag/sequence of solutions can be
returned. If Q(D) returns a singleton family for all
datasets D, we consider Q to be deterministic (even
if using a non-deterministic feature), where it returns
the set/bag/sequence of solutions rather than the sin-
gleton; for example, we assume that REDUCED(Q) is
deterministic if Q cannot generate duplicates.

3.14. Relationships between the semantics

The SPARQL standard is defined in terms of se-
quence semantics, i.e., it is assumed that the solutions
returned have an order. However, unless the query ex-
plicitly uses the sequence algebra (and in particular
ORDER BY), then the semantics is analogous to bag se-
mantics in the sense that the ordering of solutions in
the results is arbitrary. Likewise when a query does
not use the sequence algebra or the aggregation al-
gebra, but invokes SELECT DISTINCT (in the outer-
most query), ASK, CONSTRUCT or DESCRIBE, then the
semantics is analogous to set semantics. Note how-
ever that when the aggregate or sequence algebra is in-
cluded, set semantics is not the same as bag semantics
with DISTINCT. Under set semantics, intermediate re-
sults are treated as sets of solutions. Under bag seman-
tics, intermediate results are treated as bags of solu-
tions, where final results are deduplicated. If we apply
a count aggregation, for example, then set semantics

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 15

Table 14
Evaluation of queries where D is a dataset, Q is a sequence pattern or graph pattern, V is a set of variables, B is a basic graph pattern, and X is a
set of IRIs and/or variables

SELECTV(Q)(D) := πV(Q(D))

ASK(Q)(D) := true if set(Q(D)) ̸= ∅; false otherwise
CONSTRUCTB(Q)(D) :=

⊎
µ∈Q(D){µ(s, p, o) ∈ IB × I × IBL | (s, p, o) ∈ B}

DESCRIBEX(Q)(D) := describe(X′,D) where X′ := {x′ ∈ IBL | x′ ∈ X, or ∃x ∈ X ∩ V, µ ∈ Q(D) : µ(x) = x′}

Table 15
Evaluation of dataset modifiers where X and X′ are sets of IRIs

FROMX,X′ (Q)(D) := Q(D(X, X′))

will disregard duplicate solutions, while bag semantics
with distinct will consider duplicate solutions (the dis-
tinct is applied to the final count, with no effect).

3.15. Query containment and equivalence

Query containment states that the results of one
graph pattern are contained in the other. To begin, take
two deterministic graph patterns Q1 and Q2. We say
that Q1 is contained in Q2 under set, bag or sequence
semantics, denoted Q1 ⊑ Q2, if and only if for every
dataset D, it holds that Q1(D) ⊆ Q2(D).

If Q1 and Q2 are non-deterministic, then under set
semantics we assume that Q1(D) and Q2(D) will re-
turn a family of sets of solutions. If for every dataset D,
and for all M1 ∈ Q1(D), there exists an M2 ∈ Q1(D)
such that M1 ⊆ M2, then we say that Q1 is contained
in Q2 under set semantics, again denoted Q1 ⊑ Q2.
On the other hand, if Q1 is deterministic, and Q2 is
non-deterministic, then Q1 ⊑ Q2 if and only if for ev-
ery dataset D and for all M ∈ Q2(D), it holds that
Q1(D) ⊆ M. Conversely if Q2 is deterministic, and
Q1 is non-deterministic, then Q1 ⊑ Q2 if and only if
for every dataset D and for all M1 ∈ Q1(D), it holds
that M1 ⊆ Q2(D). Containment can be defined analo-
gously for bags or sequences.

Query equivalence is a relation between graph pat-
terns that states that the results of one graph pattern
are equal to the other. Specifically, given two graph
patterns Q1 and Q2 (be they deterministic or non-
deterministic), we say that they are equivalent under
set, bag or sequence semantics, denoted Q1 ≡ Q2, if
and only if for every dataset D, it holds that Q1(D) =
Q2(D). We remark that if Q1 and Q2 are determin-
istic, then Q1 ≡ Q2 ⇔ Q1 ⊑ Q2 ∧ Q2 ⊑ Q1

under the corresponding semantics. If they are non-

deterministic, then Q1 ≡ Q2 ⇒ Q1 ⊑ Q2 ∧ Q2 ⊑ Q1,
but Q1 ≡ Q2 ̸⇐ Q1 ⊑ Q2 ∧ Q2 ⊑ Q1.5

Example 3.3. In Figure 1 we provide examples of
query containment and equivalence. The leftmost
query finds the maternal grandparents of :Bob while
the latter three queries find both maternal and paternal
grandparents. Hence the first query is contained in the
latter three queries, which are themselves equivalent.

Regarding equivalence of non-deterministic graph
patterns, we highlight that any change to the possi-
ble space of results leads to a non-equivalent graph
pattern. For example, for a graph pattern Q, it holds
that DISTINCT(Q) ⊑ REDUCED(Q) ⊑ Q, and if
Q cannot return duplicates (e.g., Q is a basic graph
pattern without blank nodes), then DISTINCT(Q) ≡
REDUCED(Q) ≡ Q. However, if Q may give dupli-
cates, then DISTINCT(Q) ̸≡ REDUCED(Q) ̸≡ Q ̸≡
DISTINCT(Q) under bag or sequence semantics. Like-
wise, for example, replacing a function like RAND() in
Q with a constant like 0.5 changes the semantics of Q,
generating a non-equivalent graph pattern.

While the previous discussion refers to graph pat-
terns (which may include use of (sub)SELECT), we re-
mark that containment and equivalence can be defined
for ASK, CONSTRUCT and DESCRIBE in a natural way.
For two deterministic ASK queries Q1 and Q2, we say
that Q1 is contained in Q2, denoted Q1 ⊑ Q2, if and
only if for any dataset D, it holds that Q1(D) implies
Q2(D); i.e., for any dataset which Q1 returns true,
Q2 also returns true. For two deterministic CONSTRUCT
queries or DESCRIBE queries Q1 and Q2, we say that
Q1 is contained in Q2, denoted Q1 ⊑ Q2, if and only
if for any dataset D, it holds that Q2(D) |= Q1(D) un-
der simple entailment. Two queries Q1 and Q2 are then
equivalent, denoted Q1 ≡ Q2 if and only if Q1 ⊑ Q2

and Q2 ⊑ Q1. Containment and equivalence of non-
deterministic queries are then defined as before.

5For example, if Q1(D) = {{µ1, µ2}, {µ1}} and Q2(D) =
{{µ1, µ2}, {µ2}}, this is consistent with Q1 and Q2 being con-
tained in each other, but not with their being equivalent.

16 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

SELECT DISTINCT ?gp
WHERE {
:Bob :mother ?p .
{ ?p :mother ?gp }
UNION
{ ?p :father ?gp }

}

⊑

SELECT DISTINCT ?gp
WHERE {
{ :Bob :mother ?p }
UNION
{ :Bob :father ?p }
{ ?p :mother ?gp }
UNION
{ ?p :father ?gp }

}

≡

SELECT DISTINCT ?gp
WHERE {
{ :Bob :mother [:mother ?gp] .}
UNION
{ :Bob :mother [:father ?gp] .}
UNION
{ :Bob :father [:mother ?gp] .}
UNION
{ :Bob :father [:father ?gp] .}

}

≡

SELECT DISTINCT ?gp
WHERE {
:Bob (:mother|:father)/

(:mother|:father) ?gp .
}

Fig. 1. Examples of query containment and equivalence

SELECT DISTINCT ?gp
WHERE {

{ :Bob :mother ?p }
UNION
{ :Bob :father ?p }
{ ?p :mother ?gp }
UNION
{ ?p :father ?gp }

}

∼=

SELECT DISTINCT ?z
WHERE {

:Bob :father|:mother ?y .
?y :father|:mother ?z .

}

Fig. 2. Example of query congruence

3.16. Query isomorphism and congruence

Many use-cases for canonicalisation prefer not to
distinguish queries that are equivalent up to variable
names. We call a one-to-one variable mapping ρ :
V → V a variable renaming. We say that Q1 and Q2

are isomorphic, denoted Q1 ≃ Q2 if and only if there
exists a variable renaming ρ such that ρ(Q1) = Q2.
Note that in the case of SELECT queries, isomorphism
does not imply equivalence as variable naming matters
to the solutions produced. For this reason we introduce
the notion of query congruence. Formally we say that
two graph patterns Q1 and Q2 are congruent, denoted
Q1

∼= Q2, if and only if there exists a variable renam-
ing ρ such that ρ(Q1) ≡ Q2. It is not difficult to see
that isomorphism implies congruence.

Example 3.4. We provide an example of non-equivalent
but congruent queries in Figure 2. If we rewrite the
variable ?gp to ?x in the first query, we see that the
two queries become equivalent.

Like equivalence and isomorphism, congruence is
reflexive (Q ∼= Q), symmetric (Q1

∼= Q2 ⇔ Q2
∼= Q1)

and transitive (Q1
∼= Q2 ∧ Q2

∼= Q3 ⇒ Q1
∼= Q3);

in other words, congruence is an equivalence relation.
We remark that congruence is the same as equivalence
for ASK, CONSTRUCT and DESCRIBE queries since the
particular choice of variable names does not affect the
output of such queries in any way.

3.17. Query classes

Based on a query of the form SELECTV(Q), we de-
fine eleven syntactic query classes corresponding to
classes that have been well-studied in the literature.

– basic graph patterns (BGPs): Q is a BGP and
V = vars(Q).

– unions of basic graph patterns (UBGPs): Q is a
graph pattern using BGPs and UNION and V =
vars(Q).

– conjunctive queries (CQs): Q is a BGP.
– unions of conjunctive queries (UCQs): Q is a

graph pattern using BGPs and UNION.
– monotone queries (MQs): Q is a graph pattern us-

ing BGPs, UNION and AND.6

– non-monotone queries (NMQs): Q is a graph pat-
tern using BGPs, UNION, AND and MINUS.

– navigational graph patterns (NGPs): Q is an
NGP and V = vars(Q).

– unions of navigational graph patterns (UNGPs):
Q is a graph pattern using NGPs and UNION and
V = vars(Q).

– conjunctive path queries (CPQs): Q is an NGP.
– unions of conjunctive path queries (UCPQs): Q is

a graph pattern using NGPs and UNION.
– monotone path queries (MPQs): Q is a graph pat-

tern using NGPs, UNION and AND.
– non-monotone path queries (NMPQs): Q is a

graph pattern using NGPs, UNION, AND and MI-
NUS.

These query classes are evaluated on an RDF graph
(the default graph) rather than an RDF dataset, though
results extend naturally to the RDF dataset case. Like-
wise, since we do not consider the sequence algebra,

6Here we use “monotone queries” to refer to a syntactic class of
queries, per the work of Sagiv and Yannakakis [38], rather than a
semantic class of queries [39]. All monotone queries are (semanti-
cally) monotonic [39], but there may be monotonic SPARQL queries
that are not (syntactically) monotone.

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 17

we have the (meaningful) choice of set or bag seman-
tics under which to consider the tasks; furthermore,
since the aggregation algebra is not considered, set and
distinct-bag semantics coincide.

Unlike UCQs, which are strictly unions of joins (ex-
pressed as basic graph patterns), MQs further permit
joins over unions. As such, UCQs are analogous to a
disjunctive normal form. Though any monotone query
(under set semantics) can be rewritten to an equiva-
lent UCQ, certain queries can be much more concisely
expressed as MQs versus UCQs, or put another way,
there exist MQs that are exponentially longer when
rewritten as UCQs. For example, the first three queries
of Figure 1 are MQs, but only the third is a UCQ; if
we use a similar pattern as the third query to go search
back n generations, then we would require 2n BGPs
with n triple patterns each; if we rather use the most
concise MQ, based on the second query, we would
need 2n BGPs with one triple pattern each.

CPQs and UCPQs are closely related to the query
fragments of conjunctions of 2-way regular paths
queries (C2RPQs) and unions of conjunctions of 2-way
regular paths queries (UC2RPQs), but additionally al-
low negated property sets and variables in the predi-
cate position [33]. NMQs are semantically related to
the fragment with BGPs, projection, UNION, AND, OP-
TIONAL and FILTER!bound as studied by Pérez et al. [9].

3.18. Complexity

We here consider four decision problems:

QUERY EVALUATION Given a solution µ, a query Q
and a graph G, is µ ∈ Q(G)?

QUERY CONTAINMENT Given two queries Q1 and
Q2, does Q1 ⊑ Q2 hold?

QUERY EQUIVALENCE Given two queries Q1 and
Q2, does Q1 ≡ Q2 hold?

QUERY CONGRUENCE Given two queries Q1 and
Q2, does Q1

∼= Q2 hold?

In Table 16, we summarise known complexity re-
sults for these four tasks considering both bag and set
semantics along with a reference for the result. The
results refer to combined complexity, where the size
of the queries and data (in the case of EVALUATED)
are included. The “Full” class refers to any SELECT
query using any of the deterministic SPARQL fea-
tures7, while BGP′, UBGP′, NGP′ and UNGP′ refer

7We assume that built-in and aggregation expressions can be eval-
uated using at most polynomial space, as is the case for SPARQL.

to BGPs, UBGPs, NGPs and UNGPs without blank
nodes, respectively.8 We do not present results for
query classes allowing paths under bag semantics as
we are not aware of work in this direction; lower
bounds can of course be inferred from the analogous
fragment without paths under bag semantics.

An asterisk implies that the result is not explicitly
stated, but trivially follows from a result or technique
used. These cases include analogous results for rela-
tional settings, upper-or-lower bounds from tasks with
obvious reductions to or from the stated problem, etc.
We may omit references in case a result directly fol-
lows from other results in the table. A less obvious
case is that of CONGRUENCE, which has not been stud-
ied in detail. However, with the exception of queries
without projection (nor blank nodes), the techniques
used to prove equivalence apply analogously for CON-
GRUENCE, which is similar to resolving the problem
of non-projected variables whose names may differ
across the input queries without affecting the given re-
lation. In the case of BGPs (without projection nor
blank nodes), it is sufficient to find an isomorphism
between the input queries; in fact, without projection,
since the input graph is a set of triples9, BGPs cannot
produce duplicates, and thus results for set and bag se-
mantics coincide.

Some of the more notable results include:

– The decidability of CONTAINMENT of CQs under
bag semantics is a long open problem [40].

– EQUIVALENCE (and CONGRUENCE) of CQs
and UCQs are potentially easier under bag se-
mantics (GI-complete) than under set semantics
(NP-complete) as the problem under bag seman-
tics relates to isomorphism, rather than homomor-
phic equivalence under set semantics.

– Although UCQ and MQ classes are semantically
equivalent (each UCQ has an equivalent MQ and
vice versa), under set semantics the problems of
CONTAINMENT and EQUIVALENCE (and CON-
GRUENCE) are potentially harder for MQs than
UCQs; this is because MQs are more concise.

– While CONTAINMENT for NMQs is undecidable
under set semantics (due to the undecidability of
FOL satisfiability), the same problem for UCQs
under bag semantics is already undecidable (it
can be used to solve Hilbert’s tenth problem).

8Blank nodes act like projection, where their complexity then fol-
lows that of *CQs and *CPQs.

9This is also known as bag–set semantics, where the data form a
set of tuples, but the query is evaluated under bag semantics [40].

18 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

These results – in particular those of CONGRUENCE

– form an important background for this work.

4. Problem

With these definitions in hand, we now state the
problem we wish to address: given a query Q, we wish
to compute a canonical form of the query can(Q) such
that can(Q) ∼= Q (sound), and for all queries such that
Q′ ∼= Q, it holds that can(Q) = can(Q′) (complete). In
other words, we aim to compute a syntactically canon-
ical form for the class of queries congruent to Q where
the canonical query is also in that class.

With this canonicalisation procedure, we can de-
cide the congruence Q ∼= Q′ by deciding the equal-
ity can(Q) = can(Q′). We can thus conclude from Ta-
ble 16 that canonicalisation is not feasible for queries
in NMQ as it could be used to solve an undecidable
problem. Rather we aim to compute a sound and com-
plete canonicalisation procedure for MQs (which can
decide a ΠP

2 -complete problem, per Table 16) under
both bag and set semantics, and a sound procedure
for the full language under any semantics. This means
that for two queries Q and Q′ that fall outside the MQ
class, with a sound but incomplete canonicalisation
procedure, can(Q) = can(Q′) implies Q ∼= Q′, but
can(Q) ̸= can(Q′) does not necessarily imply Q ̸∼= Q′.

Indeed, even in the case of MQs, deciding can(Q) =

can(Q′) is likely to be a rather inefficient way to decide
Q ∼= Q′. Our intended use-case is rather to partition
a set of queries Q = {Q1, . . . ,Qn} into the quotient
set Q/∼=, i.e., to find all sets of congruent queries in Q.
This is useful, for example, in the context of caching
applications where Q represents a log or stream of
queries, where given Q j, we wish to know if there ex-
ists a query Qi (i < j) that is congruent in order to
reuse its results. Rather than applying pairwise con-
gruence checks, we can canonicalise queries and use
their canonical forms as keys for partitioning. While
these pairwise checks do not affect the computational
complexity, in practice most queries are small and rel-
atively inexpensive to canonicalise, where the O(|Q|2)
cost of pairwise checks can dominate, particularly for
a large set of queries Q. We will later analyse this ex-
perimentally. As per the introduction, canonicalisation
is also potentially of interest for analysing logs, opti-
mising queries, and/or learning over queries.

5. Related Works

In this section, we discuss implementations of sys-
tems relating to containment, equivalence and canoni-
calisation of SPARQL queries.

A number of systems have been proposed to de-
cide the containment of SPARQL queries. Among
these, Letelier et al. [46] propose a normal form for
quasi-well-designed pattern trees – a fragment of
SPARQL allowing restricted use of OPTIONAL over
BGPs – and implement a system called SPARQL Al-
gebra for deciding containment and equivalence in this
fragment based on the aforementioned normal form.
The problem of determining equivalence of SPARQL
queries can also be addressed by reductions to re-
lated problems. Chekol et al. [47] have used a µ-
calculus solver and an XPath-equivalence checker to
implement SPARQL containment/equivalence checks.
These works implement pairwise checks.

Some systems have proposed isomorphism-based
indexing of sub-queries. In the context of a caching
system, Papailiou et al. [11] apply a canonical labelling
algorithm (specifically Bliss [48]) on BGPs in order
to later find isomorphic BGPs with answers available;
their approach further includes methods for general-
ising BGPs such that it is more likely that they will
be reused later. More recently, Stadler et al. [49] pro-
pose a system called JSAG for solving the contain-
ment of SPARQL queries. The system computes nor-
mal forms for queries, before representing them as a
graph and applying subgraph isomorphism algorithms
to detect containments. Such approaches do not dis-
cuss completeness, and would appear to miss con-
tainments for CQs under set semantics (and distinct-
bag semantics), which require checking for homomor-
phisms rather than (sub-graph) isomorphisms.

We remark that in the context of relational database
systems, there are likewise few implementations of
query containment, equivalence, etc., as also observed
by Chu et al. [50, 51], who propose two systems
for deciding the equivalence of SQL queries. Their
first system, called Cosette [50], translates SQL into
logical formulae, where a constraint solver is used
to try to find counterexamples for equivalence; if
not found, a proof assistant is used to prove equiv-
alence. Chu et al. [51] later proposed the UDP sys-
tem, which expresses SQL queries – as well as pri-
mary and foreign key constraints – in terms of un-
bounded semiring expressions, thereafter using a proof
assistant to test the equivalence of those expressions;
this approach is sound and complete for testing the

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 19

Table 16
Complexity of SPARQL tasks on core fragments (considering combined complexity for EVALUATION)

Set semantics

EVALUATION CONTAINMENT EQUIVALENCE CONGRUENCE

BGP′ PTIME [9] PTIME [41]* PTIME [41]* GI-complete [40, 41]*
UBGP′ PTIME [9]* PTIME [38, 41]* PTIME [38, 41]* GI-hard, NP
CQ NP-complete [9] NP-complete [42]* NP-complete [42]* NP-complete
UCQ NP-complete [9] NP-complete [42]* NP-complete [42]* NP-complete
MQ NP-complete ΠP

2 -complete [38]* ΠP
2 -complete [38]* ΠP

2 -complete
NMQ PSPACE-complete [9] Undecidable [43]* Undecidable [43]* Undecidable

NGP′ PTIME [33] PSPACE-complete [33] PSPACE GI-hard, EXPSPACE

UNGP′ PTIME [33] PSPACE-complete [33] PSPACE GI-hard, EXPSPACE

CPQ NP-complete [33] EXPSPACE-complete [33] NP-hard, EXPSPACE NP-hard, EXPSPACE

UCPQ NP-complete [33] EXPSPACE-complete [33] NP-hard, EXPSPACE NP-hard, EXPSPACE

MPQ NP-hard [33]* EXPSPACE-hard [33]* ΠP
2 -hard ΠP

2 -hard
NMPQ PSPACE-hard Undecidable Undecidable Undecidable

Full PSPACE-hard Undecidable Undecidable Undecidable

Bag semantics

EVALUATION CONTAINMENT EQUIVALENCE CONGRUENCE

BGP′ PTIME PTIME [41]* PTIME [41]* GI-complete
CQ NP-complete NP-hard, Decidability open GI-complete [40]* GI-complete
UCQ NP-complete Undecidable [44]* GI-complete [45]* GI-complete
MQ NP-complete Undecidable GI-hard GI-hard
NMQ PSPACE-complete Undecidable Undecidable [18]* Undecidable

Full PSPACE-hard Undecidable Undecidable Undecidable

equivalence of UCQs under both set and bag seman-
tics. Zhou et al. [52] recently propose the EQUI-
TAS system, which converts SQL queries into FOL-
based formulae, reducing the equivalence problem to a
satisfiability-modulo-theories (SMT) problem, which
allows for capturing complex selection criteria (in-
equalities, boolean expressions, cases, etc.). Aside
from targeting SQL, a key difference with our ap-
proach is that such systems apply pairwise checks.

In summary, while problems relating to containment
and equivalence have been well-studied in the theoret-
ical literature, relatively few practical implementations
have emerged, perhaps because of the high computa-
tional costs, and indeed the undecidability results for
the full SPARQL/SQL language. Of those that have
emerged, they either offer sound and complete checks
in a pairwise manner for query fragments, such as
UCQs (e.g., [51]), or they offer sound but incomplete
canonicalisation focused on isomorphic equivalence
(e.g., [11]). To the best of our knowledge, the approach
that we propose here, which we call QCan, is the only

one that allows for canonicalising queries with respect
to congruence, and that is sound and complete for
monotone queries under both set and bag semantics.
Our experiments will show that despite high theoreti-
cal computational complexity, QCan can be deployed
in practice to detect congruent equivalence classes in
large-scale, real-world query logs or streams, which
are dominated by relatively small and simple queries.

6. Canonicalisation of Monotone Queries

In this section, we will first describe the differ-
ent steps of our proposed canonicalisation process for
monotone queries (MQs), i.e., queries with basic graph
patterns, joins, unions, outer projection and distinct
(see Section 3.17). In fact, we consider a slightly larger
set of queries that we call extended monotone queries
(EMQs), which are monotone queries that additionally
support property paths using the (non-recursive) fea-
tures “/” (followed by), “^” (inverse) and “|” (disjunc-

20 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

tion); property paths using such queries can be rewrit-
ten to monotone queries. We will cover the (sound
but incomplete) canonicalisation of other features of
SPARQL 1.1 later in Section 7.

As mentioned in the introduction, the canonicalisa-
tion process consists of: algebraic rewriting of parts of
the query into normal forms, the representation of the
query as a graph, the minimisation of the monotonic
parts of the query by leaning and containment checks,
the canonical labelling of the graph, and finally the
mapping back to query syntax. We describe these steps
in turn and then conclude the section by proving that
canonicalisation is sound and complete for EMQs.

6.1. UCQ normalisation

In this section we describe the rules used to rewrite
EMQs into a normal form based on unions of conjunc-
tive queries (UCQs). We first describe the steps we ap-
ply for rewriting property paths into monotone features
(where possible), thus converting EMQs into MQs. We
then describe the rewriting of MQs into UCQ normal
form. We subsequently describe some postprocessing
of variables to ensure that those with the same name
are correlated and that variables that are always un-
bound are removed. Finally we extend the normal form
to take into account set vs. bag semantics.

6.1.1. Property path elimination
Per Table 9, property paths that can be rewritten to

joins and unions are considered to be equivalent to
their rewritten form under both bag and set semantics.
We make these equivalences explicit by rewriting such
property paths to joins and unions; i.e.:

(o, ^e, s) ⇒ (s, e, o)

(s, e1/e2, o) ⇒ (s, e1, x), (x, e2, o)

(s, e1|e2, o) ⇒ [(s, e1, o) UNION (s, e2, o)]

where x denotes a fresh blank node. The exact rewrit-
ing is provided in Table 9. These rewritings may be
applied recursively, as needed. If the input query is an
EMQ, then the output of the recursive rewriting will be
an MQ, i.e., a query without property paths.

Example 6.1. Consider the following query based on
Example 1.1 looking for names of aunts.

SELECT DISTINCT ?z WHERE {
?x ^(:mother|:father) ?w .
?x :sister/:name ?z .

}

This query will be rewritten to:

SELECT DISTINCT ?z WHERE {
?w (:mother|:father) ?x .
?x :sister _:y . _:y :name ?z .

}

And then recursively to:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . } UNION { ?w :father ?x . }
?x :sister _:y . _:y :name ?z .

}

In this case we succeed in removing all property paths;
however, property paths with * or + cannot be rewrit-
ten to other query features in this way.

6.1.2. Union normalisation
Pérez et al. [9] establish that, under set semantics,

joins and unions in SPARQL are commutative and
associative, and that joins distribute over unions. We
summarise these results in Table 17. Noting that un-
der set semantics, the multiplicity of joins and unions
is given by the multiplication and addition of natural
numbers, respectively; that both multiplication and ad-
dition are commutative and associative; and that mul-
tiplication distributes over addition; the same results
also apply under bag semantics.

Another (folklore) result of interest is that BGPs can
be rewritten to equivalent joins of their triple patterns.
However, care must be taken when considering blank
nodes in BGPs; otherwise the same blank node in two
different triple patterns might be matched to two differ-
ent terms, breaking the equivalence. Along these lines,
let η : B → V denote a one-to-one mapping of blank
nodes to variables; we assume that η will rewrite blank
nodes to fresh variables not appearing elsewhere in a
query. Given a basic graph pattern B = {t1, . . . , tn}
and a mapping η such that η(B) = {t′1, . . . , t

′
n} – where

t′i = η(ti) for 1 ⩽ i ⩽ n – the following holds:

B ≡ SELECTvars(B)([{t′1} AND [. . . AND {t′n}]])

i.e., a BGP B is equivalent to the result of rewriting its
blank nodes to fresh variables, joining the individual
triple patterns, and projecting only the variables origi-
nally in B. This equivalence again holds under bag se-
mantics since the multiplicity of a solution µ ∈ B(D)
under bag semantics is defined in SPARQL as the num-
ber of blank node mappings satisfying the solution µ.

These known results give rise to a UCQ normal
form for MQs [9]. More specifically, given a pat-
tern [Q1 AND [Q2 UNION Q3]], we can rewrite this to
[[Q1 AND Q2] UNION [Q1 AND Q3]]; in other words,
we translate joins of unions to (equivalent) patterns in-

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 21

Table 17
Equivalences given by Pérez et al. [9] for set semantics

Join is commutative [Q1 AND Q2] ≡ [Q2 AND Q1]

Union is commutative [Q1 UNION Q2] ≡ [Q2 UNION Q1]

Join is associative [Q1 AND [Q2 AND Q3]] ≡ [[Q1 AND Q2] AND Q3]

Union is associative [Q1 UNION [Q2 UNION Q3]] ≡ [[Q1 UNION Q2] UNION Q3]

Join distributes over union [Q1 AND [Q2 UNION Q3]] ≡ [[Q1 AND Q2] UNION [Q1 AND Q3]]

volving unions of joins. Also, as Schmidt et al. [37]
observe, [Q AND Q] ≡ Q and [Q UNION Q] ≡ Q un-
der set semantics. Hence we can abstract the commu-
tativity and associativity of both joins and unions by
introducing two new syntactic operators:

AND(Q1, . . . ,Qn) := [Q1 AND [. . . AND Qn]]

UNION(Q1, . . . ,Qn) := [Q1 UNION [. . . UNION Qn]]

Given the aforementioned equivalences, the argu-
ments of AND(·) and UNION(·) can be considered
as a set of operands under set semantics and a bag
of operands under bag semantics (wherein duplicate
operands may affect the multiplicities of results).

The UCQ normal form for MQs is then of the form
SELECTV(UNION(Q1, . . . ,Qn)), where each Qi (1 ⩽
i ⩽ n) is of the form AND({ti,1}, . . . , {ti,m}), where
each ti, j (1 ⩽ k ⩽ m) is a triple pattern. Given that
duplicate triple patterns in a join do not affect the mul-
tiplicity of results, we can further remove these du-
plicates such that in our normal form, ti, j ̸= ti,k for
1 ⩽ j < k ⩽ m. For this reason, in the case of UCQs,
we can analogously consider each Q1, . . . ,Qn to be a
set of triple patterns without blank nodes.

Example 6.2. We show a case where the multiplicity
of union operands changes the multiplicity of results
under bag semantics. Consider the following MQ Q:

SELECT ?s ?o WHERE {
{ ?s :p ?o } UNION { ?s :p ?o }
{ ?s :p ?o } UNION { ?s :p ?o }

}

Assume a dataset D with a default graph {(:s, :p, :o)}.
Let µ = {?s/:s, ?o/:o}. Note that Q(D)(µ) = 4 since
each union generates µ twice, where the multiplicity of
the join is then the product of both. We can describe
the multiplicity of µ as (1 + 1)(1 + 1) = 4.

If we rewrite this query to a UCQ, in the first step,
pushing the first join inside the union, we generate:

SELECT ?s ?o WHERE {
{ ?s :p ?o { ?s :p ?o } UNION { ?s :p ?o } }
UNION

{ ?s :p ?o { ?s :p ?o } UNION { ?s :p ?o } }
}

We may now describe the multiplicity of µ as 1(1+1)+

1(1 + 1) = 4. In the next step, we have:

SELECT ?s ?o WHERE {
{ { ?s :p ?o . ?s :p ?o } UNION { ?s :p ?o . ?s :p ?o } }
UNION

{ { ?s :p ?o . ?s :p ?o } UNION { ?s :p ?o . ?s :p ?o } }
}

The multiplicity of this query is described as (1 ·1+1 ·
1)+(1·1+1·1) = 4. Since BGPs are sets of triple pat-
terns, we should remove the duplicates. Subsequently
unnesting the unions, the query then becomes:

SELECT ?s ?o WHERE {
{ ?s :p ?o . }
UNION { ?s :p ?o . }
UNION { ?s :p ?o . }
UNION { ?s :p ?o . }

}

The multiplicity is then 1+1+1+1 = 4. In this case,
the duplicate union operands are needed to preserve
the original multiplicities of the query.

As was previously mentioned, the UCQ normal
form may be exponentially larger than the original
MQ; for example, a relatively concise EMQ of the
form {(x, (p1|q1)/ . . . /(pn|qn), y)} would be rewritten
to an MQ with a join of n unions with two triple pat-
terns each, and then to a UCQ with a union of 2n BGPs
(for each combination of pi and qi), with each BGP
containing n triple patterns.

Example 6.3. Let us take the output query of Exam-
ple 6.1 and apply the UCQ normal form.

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . } UNION { ?w :father ?x . }
?x :sister _:y . _:y :name ?z .

}

Blank nodes are rewritten to variables, and then join
is distributed over union, giving the following query:

22 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . ?x :sister ?y . ?y :name ?z . }
UNION
{ ?w :father ?x . ?x :sister ?y . ?y :name ?z . }

}

If we were to consider the names of aunts or un-
cles (:sister|:brother) then we would end up
with four unions of BGPs with four triple patterns
each. If we were to consider the names of children
(:son|:daughter) of aunts or uncles, we would end
up with eight unions of BGPs with five triple patterns
each. In this way, the UCQ rewriting may result in a
query that is exponentially larger than the input.

6.1.3. Unsatisfiability normalisation
We recall that a graph pattern Q is considered un-

satisfiable if and only if there does not exist a dataset
D such that Q(D) is non-empty; i.e., the graph pat-
tern never generates solutions. There is one trivial
case of unsatisfiability for UCQs that must be taken
into account: when subjects are literals. Specifically,
SPARQL allows literal subjects even though they
are disallowed in RDF graphs; this was to enable
forwards-compatibility with a possible future gener-
alisation of RDF to allow literal subjects, which has
not happened as of RDF 1.1. As such, BGPs with any
literal subject are unsatisfiable.

Lemma 6.1. Let Q denote a BGP. Q is unsatisfiable if
and only if it contains a literal subject.

Please see Appendix A.1.1 for the proof.

Moving to UCQs, it is not difficult to see that a union
is satisfiable if and only if one of its operands is satisfi-
able, or, equivalently, that it is unsatisfiable if and only
if all of its operands are unsatisfiable.

Lemma 6.2. Let Q = UNION(Q1, . . . ,Qn). Q is un-
satisfiable if and only if all of Q1, . . . ,Qn are unsatis-
fiable. Further assume that Qk is unsatisfiable and let
Q′ = UNION(Q1, . . . ,Qk−1,Qk+1, . . . ,Qn) denote Q
removing the operand Qk. It holds that Q ≡ Q′.

Please see Appendix A.1.2 for the proof.

To deal with CQs of the form SELECTV(Q), where
Q is a BGP containing a triple pattern with a lit-
eral subject, we simply replace this CQ with an arbi-
trary but canonical unsatisfiable query Q∅; for exam-
ple, Q∅ := SELECT{?u}({("uns", ?u, ?u)}). In the case
of UCQs, we remove operand BGPs that are unsatis-
fiable; if all operands are unsatisfiable, we replace the
entire UCQ with the canonical query Q∅. If Q∅ is pro-
duced, canonicalisation can stop.

Example 6.4. Take the CQ:

SELECT DISTINCT ?x WHERE { "x" :x ?x }

We replace this with the canonical query:

SELECT ?u WHERE { "uns" ?u ?u }

Next take the UCQ:
SELECT ?x WHERE { { "x" :x ?x } UNION { ?x :x "x" } }

We will rewrite this to
SELECT ?x WHERE { ?x :x "x" }

by removing the unsatisfiable operand.

6.1.4. Variable normalisation
The same variable may sometimes occur in multi-

ple query scopes such that replacing an occurrence of
the variable in one scope with a fresh variable does
not change the query results. We say that such vari-
able occurrences are not correlated. There is one case
where this issue may arise in UCQs. We call a vari-
able v a union variable if it occurs in a union Q =
UNION(Q1, . . . ,Qn) (n > 1). An occurrence of v does
not correlate with other occurrences of v in different
operands of the same union unless v is correlated out-
side of Q in a query.10 In the particular case of UCQs,
occurrences of non-projected union variables in differ-
ent operands of the union do not correlate.

Lemma 6.3. Let Q = SELECTV(UNION(Q1, . . . ,Qn))
denote a UCQ. Let λ1, . . . , λn denote variable-to-
variable mappings such that for 1 ⩽ i ⩽ n, λi :
V → V where dom(λi) = vars(Qi) \ V , and, for all
v ∈ dom(λi), it holds that λi(v) /∈ vars(Q) and there
does not exist λ j (1 ⩽ i < j ⩽ n) and v′ ∈ dom(λ j)
such that λi(v) = λ j(v′). In other words, each variable-
to-variable mapping rewrites each non-projected vari-
able of each union operand to a fresh variable. Then
the following equivalence holds:

SELECTV(UNION(Q1, . . . ,Qn)) ≡

SELECTV(UNION(λ1(Q1), . . . , λn(Qn)))

Please see Appendix A.1.3 for the proof.

These non-correlated variables give rise to non-
trivial equivalences based on the “false” correspon-
dences between variables with the same name that
have no effect on each other. We address such cases by

10If considering the direct results of a query pattern, then the nam-
ing of variables matters as they are bound in the solutions.

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 23

differentiating union variables that appear in multiple
operands of the union but not outside the union.

Example 6.5. We take the output of Example 6.3:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . ?x :sister ?y . ?y :name ?z . }
UNION
{ ?w :father ?x . ?x :sister ?y . ?y :name ?z . }

}

The variable ?z correlates across both operands be-
cause both occurrences correlate with the same ex-
ternal appearance of ?z in the SELECT clause. Con-
versely, the variables ?w, ?x and ?y do not correlate
across both operands of the union as they do not cor-
relate with external occurrences of the same variable.
Hence we differentiate ?w, ?x and ?y in both operands:

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?x1 . ?x1 :sister ?y1 . ?y1 :name ?z . }
UNION
{ ?w2 :father ?x2 . ?x2 :sister ?y2 . ?y2 :name ?z . }

}

The resulting query is equivalent to the original query,
but avoids “false correspondences” of variables.

Next we apply a simple rule to remove variables
that are always unbound in projections. Left unat-
tended, such variables could otherwise constitute a
trivial counterexample for the completeness of canon-
icalisation. We recall from Section 3.9 the notation
pvars(Q) to denote the possible variables of a graph
pattern, i.e., the variables that are bound to some RDF
term in some solution of Q over some dataset D.

Lemma 6.4. Let Q be a graph pattern, let V ′ be a set
of variables, and let V ′′ be a set of variables such that
pvars(Q) ∩ V ′′ = ∅. It holds that:

SELECTV′(Q) ≡ SELECTV′∪V′′(Q)

Please see Appendix A.1.4 for the proof.

We deal with such cases by removing variables that
are always unbound from the projection.11

Example 6.6. Take a query:

SELECT DISTINCT ?w ?z WHERE {
?w :mother ?m .

}

11In concrete SPARQL syntax, a SELECT query must specify ei-
ther * or at least one variable. Allowing an empty projection in the
abstract syntax avoids having to deal explicitly with the empty pro-
jection case, simplifying matter. When mapping from abstract syn-
tax to concrete syntax we can simply add a fresh canonical variable
to the SELECT clause in order to represent empty projections.

We can remove the variable ?z without changing the
semantics of the query as it will always be unbound,
no matter what dataset is considered. In practice en-
gines may return solution tables with blank columns
for variables like ?z, but our definitions do not allow
such columns (such columns can easily be added in
practice if required).

6.1.5. Set vs. bag normalisation
The presence or absence of DISTINCT (or REDUCED)

in certain queries does not affect the solutions that are
generated because no duplicates can occur. In the case
of UCQs, this can occur under two specific conditions.
The first such case involves CQs.

Lemma 6.5. Let Q denote a satisfiable BGP. It holds
that:

DISTINCT(SELECTV(Q)) ≡ SELECTV(Q) .

if and only if vars(Q) ⊆ V and bnodes(Q) = ∅.

Please see Appendix A.1.5 for the proof.

The second case involves unions.

Lemma 6.6. Let Q1, . . . ,Qn denote satisfiable BGPs
and let Q = Q1 ∪ . . .∪Qn denote the set union of their
triple patterns. It holds that:

DISTINCT(SELECTV(UNION(Q1, . . . ,Qn))) ≡

SELECTV(UNION(Q1, . . . ,Qn))

if and only if vars(Q) ⊆ V , bnodes(Q) = ∅ and
vars(Qi) ̸= vars(Q j) for all 1 ⩽ i < j ⩽ n.

Please see Appendix A.1.6 for the proof.

The same equivalences trivially hold for REDUCED,
which becomes deterministic when no duplicate solu-
tions are returned. We deal with all such equivalences
by simply adding DISTINCT in such cases (or replacing
REDUCED with DISTINCT).12

Example 6.7. Take a query such as:

SELECT ?w ?x ?y ?z WHERE {
?w :mother ?x . ?x :sister ?y . ?y :name ?z .

}

12The choice to add rather than remove DISTINCT is for conve-
nience: it allows us to later keep track of queries that can be nor-
malised under set semantics. However, if performance were a fo-
cus, removing DISTINCT might lead to slightly more efficient queries
where the planner will not invoke unnecessary deduplication.

24 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

Since the query is a BGP with all variables projected
and no blank nodes, no duplicates can be produced,
and thus we can add a DISTINCT keyword to ensure
that canonicalisation will detect equivalent or con-
gruent queries irrespective of the inclusion or exclu-
sion of DISTINCT or REDUCED in such queries. If the
query were to not project a single variable, such as ?z,
then duplicates become possible and adding DISTINCT
would change the semantics of the query.

An example of a case involving union is as follows:

SELECT ?w ?x ?y ?z ?n WHERE {
{ ?w :parent ?x . ?x :name ?n . }
UNION { ?w :father ?y . ?y :name ?n . }
UNION { ?w :mother ?z . ?z :name ?n . }

}

First we note that the individual basic graph pat-
terns forming the operands of the UNION do not con-
tain blank nodes and have all of their variables pro-
jected; hence they cannot lead to duplicates by them-
selves. Regarding the union, the set of variables is dif-
ferent in each operand, and hence no duplicates can
be given: the first operand will (always and only) pro-
duce unbounds for ?y, ?z in its solutions; the second
will produce unbounds for ?x, ?z; and the third will
produce unbounds for ?x, ?y. Hence no operand can
possibly duplicate a solution from another operand.
Since the query cannot produce duplicates, we can add
DISTINCT without changing its semantics. If we were
instead to project {?w, ?n}, then adding DISTINCT
would change the semantics of the query as the three
operands may produce the same solution, and individ-
ual BGPs may duplicate solutions.

6.1.6. Summary
Given an EMQ Q, we denote by U(Q) the process

described herein involving the application of:

1. property path elimination (§ 6.1.1);
2. union normalisation (§ 6.1.2);
3. unsatisfiability normalisation (§ 6.1.3);
4. variable normalisation (§ 6.1.4);
5. set vs. bag normalisation (§ 6.1.5).

6.2. Graph Representation

Given an EMQ as input, the previous steps either
terminate with a canonical unsatisfiable query, or pro-
vide us with a satisfiable query in UCQ normal form,
with blank nodes replaced by fresh variables, non-
correlated variables differentiated, variables that are
always unbound removed from the projection (while
ensuring that the projection is non-empty), and the

DISTINCT keyword invoked in cases where duplicate
solutions can never be returned. Before continuing,
we first review an example that illustrates the remain-
ing syntactic variations and redundancies in congruent
UCQs that are left to be canonicalised.

Example 6.8. Consider the following UCQs:

SELECT DISTINCT ?n WHERE {
{ ?w :mother ?x . ?x :sister ?y , ?z . ?y :name ?n }
UNION

{ ?a :father ?b . ?b :sister ?c . ?c :name ?n . ?d ?e ?n }
}

SELECT DISTINCT ?z WHERE {
{ ?a :name ?z . ?b :sister ?a . ?c :father ?b . }
UNION

{ ?d :name ?z . ?e :sister ?d . ?f :mother ?e . }
UNION

{ ?g :name ?z . ?h :sister ?g . :Jo :mother ?h . }
}

These queries are congruent, but differ in:

1. the ordering of triple patterns within BGPs;
2. the ordering of BGPs within the UCQ;
3. the naming of variables;
4. a redundant triple pattern in each BGP of the first

query (those containing ?z and ?d, ?e);
5. the redundant third BGP in the second query.

We are left to canonicalise such variations.

Our overall approach to address such variations is
to encode queries as RDF graphs that we call repre-
sentational graphs (r-graphs). This representation will
allow for identifying and removing redundancies, and
for canonically labelling variables such that elements
of the query can be ordered deterministically.

We first establish some notation. Let λ() denote a
function that returns a fresh blank node, and λ(x) de-
note a function that returns a fresh blank node unique
to x. Let ι(·) denote an id function such that:

– if x ∈ IL, then ι(x) = x;
– if x ∈ VB, then ι(x) = λ(x);
– if x is a natural number then
ι(x) = "x"^^xsd:integer;

– if x is a boolean value then
ι(x) = "x"^^xsd:boolean;

– otherwise ι(x) = λ().

We assume that natural numbers and boolean values
produce datatype literals in canonical form (for exam-
ple, we assume that ι(2) = "2"^^xsd:integer rather
than, say, "+02"^^xsd:integer).

Table 18 then provides formal definitions for trans-
forming a UCQ Q in abstract syntax into its r-graph

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 25

Table 18
Definitions for representational graphs R(Q) of a UCQ Q, where “a” abbreviates rdf:type, B is a basic graph pattern, Q1, . . . ,Qn,Q′ are graph
patterns, V is a set of variables, and (s, p, o) is a triple pattern

· R(·)

AND(Q1, . . . ,Qn) {(ι(·), :arg, ι(Q1)), . . . , (ι(·), :arg, ι(Qn)), (ι(·), a, :And)} ∪ R(Q1) ∪ . . . ∪ R(Qn)

UNION(Q1, . . . ,Qn) {(ι(·), :arg, ι(Q1)), . . . , (ι(·), :arg, ι(Qn)), (ι(·), a, :Union)} ∪ R(Q1) ∪ . . . ∪ R(Qn)

SELECTV(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), a, :Select)} ∪
⋃

v∈V{(ι(·), :var, ι(v))} ∪ R(Q′)

DISTINCT(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), a, :Distinct)} ∪ R(Q′)

(s, p, o) {(ι(·), :s, ι(s)), (ι(·), :p, ι(p)), (ι(·), :o, ι(o)), (ι(·), a, :TP)}

Table 19
Mapping UCQs to r-graphs

SPARQL 7→ Representational graph

x for x ∈ IL 7→ x

x for x ∈ B 7→ _:bx

x for x ∈ V 7→ _:vx

(x, y, z) 7→
ι(·) x:s

:TPrdf:type

y:p

z
:o

AND(Q1, . . . ,Qn) 7→
ι(·) Q1:arg

:Andrdf:type

. . .
:arg

Qn

:arg

UNION(Q1, . . . ,Qn) 7→
ι(·) Q1:arg

:Unionrdf:type

. . .
:arg

Qn

:arg

SELECT{v1 ,...,vn}(Q) 7→

ι(·) Q:arg

:Selectrdf:type

v1
:var

. . .

:var

vn

:var

DISTINCT(Q) 7→
ι(·) Q:arg

:Distinctrdf:type

R(Q); we assume that a BGP is expressed as a join of
its triple patterns. Note that for brevity, when we write
ι(·), we assume that the same blank node is used for
the current expression as was assigned in the parent ex-
pression. The result is then deterministic modulo iso-
morphism. In order to capture the intuition, we provide
a more visual depiction of this transformation of UCQs

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?x1 . ?x1 :sister ?y1 . ?y1 :name ?z . }
UNION
{ ?w2 :father ?x2 . ?x2 :sister ?y2 . ?y2 :name ?z . }

}

_:t1
:TP

:mother:p

_:vw1
:s

_:vx1
:o

_:t2
:TP

:father :p

_:vw2
:s

_:vx2
:o

_:t3
:TP

:s

:sister:p

_:vy1
:o

_:t4
:TP

:s

:p

_:vy2
:o

_:t5
:TP

:s

:name:p

_:vz
:o

_:a1
:And

:arg

:arg

:arg

_:t6
:TP

:s

:o

:p

_:a2
:And

:arg

:arg

:arg

_:s
:Select

:var
_:d

:Distinct
:arg

_:u1
:Union

:arg :arg

:arg

Fig. 3. UCQ (above) and its r-graph (below)

in Table 19, where dashed nodes of the form x are
replaced with ι(x) , and the graph extended with R(x).
We further provide the following example.

Example 6.9. We present an example of a UCQ and its
r-graph in Figure 3. For clarity (in particular, to avoid
non-planarity), we embed the types of nodes into the
nodes themselves; e.g., the lowermost node expands to
_:u1 :Unionrdf:type . Given an input query Q′

1 that
varies from Q1 in the naming of variables, applying
the same process, the r-graph for Q1 and Q′

1 would be
isomorphic, varying only in blank node labels.

Part of the benefit of this graph representation is that
it abstracts away the ordering of the operands of query
operators where such order does not affect the seman-
tics of the operator. This representation further allows

26 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

us to leverage existing tools to eliminate redundancy
and later canonically label variables.

6.3. Minimisation

The minimisation step removes two types of redun-
dancies: redundant triple patterns in BGPs, and re-
dundant BGPs in unions. It is important to note that
such redundancies only apply in the case of set seman-
tics [38]; under bag semantics, these “redundancies”
affect the multiplicity of results, and thus cannot be re-
moved without changing the query’s semantics.

6.3.1. BGP minimisation
The first type of redundancy we consider stems

from redundant triple patterns. Consider a BGP Q
(without blank nodes, for simplicity). We denote by
ρ : V → VIBL a partial mapping from vari-
ables to variables and RDF terms, whose domain is
denoted by dom(ρ). Now, for a given mapping ρ

such that dom(ρ) = vars(Q), it holds that ρ(Q) ≡
DISTINCT(SELECTvars(ρ(Q))(Q)) if and only if ρ(Q) ⊆
Q. This is due to a classical result by Chandra and Mer-
lin [42], where ρ is a homomorphism of Q onto itself:
Q and ρ(Q) are homomorphically equivalent.

One may note a correspondence to RDF entailment
(see Section 2.5), which is also based on homomor-
phisms, where the core of an RDF graph represents a
redundancy-free (lean) version of the graph. We can
exploit this correspondence to remove redundancies in
BGPs by computing their core. However, care must be
taken to ensure that we do not remove variables from
the BGP that are projected; we achieve this by tem-
porarily replacing them with IRIs so that they cannot
be eliminated during the core computation.

Example 6.10. Consider the following query, Q:

SELECT DISTINCT ?z WHERE {
{ :Jo :mother ?x . }
UNION { ?w :father ?x. ?x :sister ?y . }
UNION { ?c :mother ?d . ?d :sister ?y . }
?d ?p ?e . ?e :name ?f . ?x :sister ?y . ?y :name ?z .

}

Though perhaps not immediately obvious, this query is
congruent with the three queries of Example 1.1. After
applying UCQ normal forms and creating the base r-
graph for Q, we end up with an r-graph analogous to
the following query with a union of three BGPs:

SELECT DISTINCT ?z WHERE {
{ :Jo :mother ?x1 . ?d1 ?p1 ?e1 . ?e1 :name ?f1 .

?x1 :sister ?y1 . ?y1 :name ?z . }
UNION { ?w2 :father ?x2 . ?x2 :sister ?y2 .

?d2 ?p2 ?e2 . ?e2 :name ?f2 .
?x2 :sister ?y2 . ?y2 :name ?z . }

UNION { ?c3 :mother ?d3 . ?d3 :sister ?y3 .
?d3 ?p3 ?e3 . ?e3 :name ?f3 .
?x3 :sister ?y3 . ?y3 :name ?z . }

}

We then replace the blank node for the projected vari-
able ?z with a fresh IRI, and compute the core of
the sub-graph for each BGP (the graph induced by
the BGP node with type :And and any node reach-
able from that node in the directed r-graph). Figure 4
depicts the sub-r-graph representing the third BGP
(omitting the :And -typed node for clarity: it will not
affect the core). Dashed nodes and edges are removed
from the core per the blank node mapping:

{ _:vx3/_:vd3, _:t35/_:t32, _:t33/_:t32, _:vp3/:sister,

:ve3/:vy3, _:t34/_:t36, _:vf3/:vz, . . .}

with the other nodes mapped to themselves. Observe
that the projected variable :vz is now an IRI, and
hence it cannot be removed from the graph.

If we consider applying this core computation over
all three conjunctive queries, we would end up with an
r-graph corresponding to the following query:

SELECT DISTINCT ?z WHERE {
{ :Jo :mother ?x1 . ?x1 :sister ?y1 . ?y1 :name ?z . }
UNION
{ ?w2 :father ?x2 . ?x2 :sister ?y2 . ?y2 :name ?z . }
UNION
{ ?c3 :mother ?d3 . ?d3 :sister ?y3 . ?y3 :name ?z . }

}

We see that the projected variable is preserved in all
BGPs. However, we can still see (inter-BGP) redun-
dancy with respect to the first and third BGPs (the first
is contained in the third), which we address now.

6.3.2. Union minimisation
After removing redundancy from the individual

BGPs, we may still be left with a union containing
redundant BGPs as highlighted by the output of Ex-
ample 6.10, where the first BGP is contained in the
third BGP: when we take the union, the names of :Jo’s
aunts returned by the first BGP will already be con-
tained in the third, and since we apply distinct/set se-
mantics, the duplicates (if any) will be removed. Hence
we must now apply a higher-level normalisation of
unions of BGPs in order to remove such redundancy.
Specifically, we must take into consideration the fol-

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 27

{ ?c3 :mother ?d3 . ?d3 :sister ?y3 .
?d3 ?p3 ?e3 . ?e3 :name ?f3 .
?x3 :sister ?y3 . ?y3 :name ?z . }

_:t31
:TP

:mother :p

_:vc3
:s

_:vd3
:o

_:t32
:TP

:s

:sister :p

_:vy3
:o

_:t36
:TP

:s

:name :p

:vz
:o

_:t35
:TP

:o

:p

_:vx3
:s

_:t33
:TP

:s

_:vp3:p

_:ve3
:o

_:t34
:TP

:s

:p

_:vf3
:o

Fig. 4. BGP (above) and its r-graph (below) with the sub-graph re-
moved during the core computation shown dashed (and in blue)

lowing equivalence [38]; let Q := UNION(Q1, . . . ,Qn)
and Q′ := UNION(Q1, . . . ,Qk−1,Qk+1, . . .Qn); then:

DISTINCT(SELECTV(Q)) ≡ DISTINCT(SELECTV(Q′))

if and only if SELECTV(Qk) ⊑ SELECTV(Q j) for
i ⩽ j ⩽ n, i ⩽ k ⩽ n, j ̸= k. 13 To resolve such
equivalences, we remove from Q:

1. all Qk (1 ⩽ k ⩽ n) such that there exists Q j

(1 ⩽ j < k ⩽ n) such that SELECTV(Q j) ≡
SELECTV(Qk); and

2. all Qk (1 ⩽ k ⩽ n) where there exists Q j (1 ⩽
j ⩽ n) such that SELECTV(Q j) ⊏ SELECTV(Qk)
(and SELECTV(Q j) ̸≡ SELECTV(Qk));

i.e., we first remove all but one BGP from each group
of equivalent BGPs and then remove all BGPs that
are properly contained in another (considering in both
cases the projected variables V).

To implement condition (1), let us first assume that
all BGPs contain all projected variables. Note that in
the previous step we have removed all redundancy
from the CQs and hence it is sufficient to check for iso-
morphism between them; we can thus take the current
r-graph G j for each Q j and apply iso-canonicalisation
of G j, removing any other Qk (k > j) whose Gk is
isomorphic. Thereafter, to implement step (2), we can
check the simple entailment Gk |= G j (j ̸= k), where
if such an entailment holds, we can remove Gk (and
thus Qk); more specifically, we can implement this en-

13One may observe that this relates to the aforementioned rule for
unsatisfiability in the case of UCQs; however, while the unsatisfia-
bility rule applies in the case of both bag and set semantics, this rule
only applies in the case of set semantics.

tailment check using a boolean SPARQL ASK query
encoding G j and evaluated over Gk (which will return
true if the entailment holds). Note that in both pro-
cesses, we should preserve projected variables in V ,
meaning they should only be mapped to each other; to
ensure this, we can simply maintain the unique IRIs
created for them earlier.

Per this process, the first BGP in the output of
Example 6.10 is removed as it is contained in the
third BGP, with the projected variable corresponding
in both. We now take another example.

Example 6.11. Consider the following UCQ, where
each BGP contains the lone projected variable:

SELECT DISTINCT ?n WHERE {
{ ?m1 :cousin ?n . } UNION { ?n :cousin ?m2 . }
UNION { ?n :cousin ?x3 . } UNION { ?x4 ?y4 ?n . }
UNION { ?w5 ?x5 ?n . ?n ?y5 ?z5 . }
UNION { ?x6 :name ?n . }

}

If we consider the first two BGPs, they do not con-
tribute the same results to ?n; however, had we left
the blank node _:vn to represent ?n, their r-graphs
would be isomorphic whereas temporarily grounding
:vn ensures they are no longer isomorphic. On the
other hand, the r-graphs of the second and third BGP
will remain isomorphic and thus one will be removed
(for the purposes of the example, let’s arbitrarily say
the third is removed). There are no further isomorphic
CQs and thus we proceed to containment checks.

The fourth BGP maps to (i.e., contains) the first
BGP, and thus the first BGP will be removed. This con-
tainment check is implemented by creating the follow-
ing ASK query from the r-graph for the fourth BGP:

ASK WHERE {
_:and4 a :And ; :arg _:tp41 .
_:tp41 a :TP ; :s _:x4 ; :p _:y4 ; :o :vn .

}

and applying it to the r-graph of the first BGP:

_:and1 a :And ; :arg _:tp11 .
_:tp11 a :TP ; :s _:m1 ; :p :cousin ; :o :vn .

This returns true and hence the first BGP is removed.
Likewise the fourth BGP maps to the fifth BGP and
also the sixth BGP and hence the fifth and sixth BGPs
will also be removed. This leaves us with an r-graph
representing the following UCQ query:

SELECT DISTINCT ?n WHERE {
{ ?n :cousin ?m2 . } UNION { ?x4 ?y4 ?n . }

}

This UCQ query is redundancy-free.

Now we drop the assumption that all CQs contain
the same projected variables in V , meaning that we

28 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

can generate unbounds. To resolve such cases, we can
partition the BGP operands Q = {Q1, . . . ,Qn} of the
union into sets of queries {Q1, . . . ,Qm} based on the
projected variables they contain. More formally, given
two graph patterns Q1 and Q2, let Q1 ∼V Q2 denote
the equivalence relation such that pvars(Q1) ∩ V =
pvars(Q2) ∩ V . Then {Q1, . . . ,Qm} is the quotient set
of Q by ∼V . We can then apply the same procedure as
described previously, checking equivalence and con-
tainment within each such set Q1, . . . ,Qm.

Example 6.12. Take the following UCQ, where the
BGPs now contain different projected variables:

SELECT DISTINCT ?v ?w WHERE {
{ ?v :cousin ?w . } UNION { ?w :cousin ?v . }
UNION { ?v :cousin ?x3 . } UNION { ?v :cousin ?y4 . }
UNION { :a :b :c . } UNION { ?x6 ?y6 ?z6 . }

}

Let {Q1, . . . ,Q6} denote the six BGPs, respectively.
Further let V = {?v, ?w} denote the set of pro-
jected variables. Partitioning the BGPs by the pro-
jected variables, we end up with three sets of BGPS:
{{Q1,Q2}, {Q3,Q4}, {Q5,Q6}} given by {?v, ?w},
{?v} and {}, respectively. Within each group we ap-
ply the previous conditions. Thus, for example, we do
not remove Q1 even though it would be naively con-
tained in, for example, Q3 (where ?x3 in Q3 would
map to the IRI :vw in Q1). Rather, Q1, Q2, Q3 (or Q4),
and Q6 would be maintained, resulting in the query:

SELECT DISTINCT ?v ?w WHERE {
{ ?v :cousin ?w . } UNION { ?w :cousin ?v . }
UNION { ?v :cousin ?x3 . } UNION { ?x6 ?y6 ?z6 . }

}

The first two BGPs can return multiple solutions,
where none can have an unbound; the third BGP will
return the same solutions for ?v as the first CQ but ?w
will be unbound each time; the fourth CQ will return a
single tuple with an unbound for ?v and ?w if and only
if the RDF graph is not empty.

The result of this process will be an r-graph for a
redundancy-free UCQ. On this r-graph, we apply some
minor post-processing: (i) we replace the temporary
IRIs for projected variables with their original blank
nodes to allow for canonical labelling in a subsequent
phase; and (2) we remove unary AND or UNION oper-
ators from the r-graph, reconnecting child and parent.

6.3.3. Summary
Given a UCQ Q being evaluated under set seman-

tics (with distinct), we denote by M(Q) the result of
minimising the UCQ, involving the two procedures:

1. BGP minimisation (§ 6.3.1);

2. union minimisation (§ 6.3.2).

Given a UCQ Q being evaluated under bag seman-
tics (without distinct), we define that M(Q) = Q. If bag
semantics is selected, the UCQ can only contain a syn-
tactic form of redundancy: exact duplicate triple pat-
terns in the same BGP, which are implicitly removed
since we model BGPs as sets of triple patterns. Any
other form of redundancy mentioned previously – be
it within or across BGPs – will affect the multiplicity
of results [40]. Hence if bag semantics is selected, we
do not apply any redundancy elimination other than re-
moving duplicate triple patterns in BGPs.

6.4. Canonical Labelling

The second-last step of the canonicalisation pro-
cess consists of applying a canonical labelling to the
blank nodes of the RDF graph output from the pre-
vious process [22]. Specifically, given an RDF graph
G, we apply a canonical labelling function L(·) such
that L(G) ≃ G and for all RDF graphs G′, it holds
that G ≃ G′ if and only if L(G) = L(G′); in other
words, L(·) bijectively relabels the blank nodes of G
in a manner that is deterministic modulo isomorphism,
meaning that any isomorphic graph will be assigned
the same labels. This is used to assign a deterministic
labelling of query variables represented in the r-graph
as blank nodes; other blank nodes presenting query op-
erators will also be labelled as part of the process but
their canonical labels are not used.

6.5. Inverse mapping

The final step of the canonicalisation process is to
map from the canonically labelled r-graph to query
syntax. More specifically, we define an inverse r-
mapping, denoted R−(G), to be a partial mapping
from RDF graphs to query expressions such that
R−(R(Q)) = Q; i.e. converting Q to its r-graph and
then applying the inverse r-mapping yields the query
Q again.14 We can achieve this by applying the inverse
of Table 18, where canonical blank nodes in RDF term
or variable positions (specifically, the objects of triples
in the r-graph with predicate :s, :p, :o, or :el) are

14Here we assume the use of UNION(·), etc., to abstract away the
ordering of operands of commutative operators.

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 29

mapped to canonical variables or blank nodes using a
fixed, total, one-to-one mapping ξ : B → VB [19].15

To arrive at a canonical concrete syntax, we order
the operands of commutative operators using a syntac-
tic ordering on the canonicalised elements, and then
serialise these operands in their lexicographical order.
This then concludes the canonicalisation of EMQs.

6.6. Soundness and completeness

Given an EMQ as input, we prove soundness – i.e.,
that the output query is congruent to the input query –
and completeness – i.e., that the output for two input
queries is the same if and only if the input queries are
congruent – for the proposed canonicalisation scheme.

6.6.1. Soundness
We begin the proof of soundness by showing that

the UCQ normalisation preserves congruence.

Lemma 6.7. For an EMQ Q, it holds that:

U(Q) ∼= Q .

Please see Appendix A.1.7 for the proof.

Next we prove that the canonical labelling of blank
nodes in the r-graph does not affect the properties of
the inverse r-mapping.

Lemma 6.8. Given a UCQ Q, it holds that:

R−(L(R(Q))) ∼= Q .

Please see Appendix A.1.8 for the proof.

Finally we prove that the minimisation of UCQs
through their r-graphs preserves congruence.

Lemma 6.9. Given a UCQ Q, it holds that:

R−(M(R(Q))) ∼= Q .

Please see Appendix A.1.9 for the proof.

The following theorem then establishes soundness;
i.e., that the proposed canonicalisation procedure pre-
serves congruence of EMQs.

15Inverting Table 19, we can define ξ as ξ(_:vx) = ?x,
ξ(_:bx) = _:x, and so forth for all blank nodes and variables. For
the case of EMQs, all blank nodes are mapped to variables since
blank nodes in BGPs were replaced earlier by variables.

Theorem 6.1. For an EMQ Q, it holds that:

R−(L(M(R(U(Q))))) ∼= Q .

Please see Appendix A.1.10 for the proof.

6.6.2. Completeness
We now establish completeness: that for any two

EMQs, they are congruent if and only if their canoni-
calised queries are equal. We will prove this by prov-
ing lemmas for various cases.

We begin by stating the following remark, which
will help us to abbreviate some proofs.

Remark 6.1. The following hold:

1. if Q1 ≃ Q2, then U(Q1) ≃ U(Q2).
2. if U(Q1) ≃ U(Q2), then R(U(Q1)) ≃ R(U(Q2));
3. if R(U(Q1)) ≃ R(U(Q2)), then

M(R(U(Q1))) ≃ M(R(U(Q2)));
4. if M(R(U(Q1))) ≃ M(R(U(Q2))), then

L(M(R(U(Q1)))) = L(M(R(U(Q2))));
5. if L(M(R(U(Q1)))) = L(M(R(U(Q2)))), then

R−(L(M(R(U(Q1))))) = R−(L(M(R(U(Q2))))).

Thus, if any premise 1–5 is satisfied, it holds that
R−(L(M(R(U(Q1))))) = R−(L(M(R(U(Q2))))).

In order to prove the result for various cases, our
goal is thus to prove isomorphism of the input queries,
the queries in UCQ normal form, the r-graphs of the
queries, or the minimised r-graphs.

Our first lemma deals with unsatisfiable UCQs,
which is a corner-case specific to SPARQL.

Lemma 6.10. Let Q1 and Q2 denote UCQs. If Q1 and
Q2 are unsatisfiable (which implies Q1

∼= Q2), then:

R−(L(M(R(U(Q1))))) = R−(L(M(R(U(Q2))))) .

Please see Appendix A.1.11 for the proof.

In practice, if a UCQ Q is unsatisfiable, then the
canonicalisation process can stop after U(Q) yields
Q∅. We state the result in this way to align the process
for both satisfiable and unsatisfiable cases. We can now
focus on cases where both queries are satisfiable.

We will start with satisfiable CQs evaluated under
set semantics (with distinct).

Lemma 6.11. Let Q1 and Q2 denote satisfiable BGPs
and V1 and V2 sets of variables. Further let Q′

1 =
DISTINCT(SELECTV1(Q1)) and likewise let Q′

2 =
DISTINCT(SELECTV2

(Q2)). If Q′
1
∼= Q′

2 then

R−(L(M(R(U(Q′
1))))) = R−(L(M(R(U(Q′

2))))) .

30 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

Please see Appendix A.1.12 for the proof.

We move to CQs evaluated under bag semantics
(without distinct; the result also considers cases where
the CQ cannot return duplicates).

Lemma 6.12. Let Q1 and Q2 denote satisfiable BGPs
and V1 and V2 sets of variables. Further let Q′

1 =
SELECTV1(Q1) and Q′

2 = SELECTV2(Q2). If Q′
1
∼= Q′

2

then

R−(L(M(R(U(Q′
1))))) = R−(L(M(R(U(Q′

2))))) .

Please see Appendix A.1.13 for the proof.

We now move to UCQs evaluated under set seman-
tics (with distinct).

Lemma 6.13. Let Q1 and Q2 denote satisfiable UCQs
with distinct. If Q1

∼= Q2 then

R−(L(M(R(U(Q1))))) = R−(L(M(R(U(Q2))))) .

Please see Appendix A.1.14 for the proof.

We next consider UCQs under bag semantics (with-
out distinct; again, this also holds in the case that the
UCQs cannot return duplicates).

Lemma 6.14. Let Q1 and Q2 denote satisfiable UCQs
without distinct. If Q1

∼= Q2 then

R−(L(M(R(U(Q1))))) = R−(L(M(R(U(Q2))))) .

Please see Appendix A.1.15 for the proof.

Finally we consider what happens when one (U)CQ
has distinct, and the other does not but is congruent to
the first query.

Lemma 6.15. Let Q denote a satisfiable UCQ without
distinct. Let Q′ = DISTINCT(Q). If Q ∼= Q′, then:

R−(L(M(R(U(Q))))) = R−(L(M(R(U(Q′))))) .

Please see Appendix A.1.16 for the proof.

Having stated all of the core results, we are left to
make the final claim of completeness.

Theorem 6.2. Given two EMQs Q1 and Q2, if Q1
∼=

Q2 then

R−(L(M(R(U(Q1))))) = R−(L(M(R(U(Q2))))) .

Please see Appendix A.1.17 for the proof.

Finally we can leverage soundness and complete-
ness for the following stronger claim.

Theorem 6.3. Given two EMQs Q1 and Q2, it holds
that Q1

∼= Q2 if and only if

R−(L(M(R(U(Q1))))) = R−(L(M(R(U(Q2))))) .

Please see Appendix A.1.18 for the proof.

6.6.3. Complexity
With respect to the complexity of the problem of

computing the canonical form of (E)MQs in SPARQL,
a solution to this problem can be trivially used to de-
cide the equivalence of MQs, which is ΠP

2 -complete.
With respect to the complexity of the algorithm

R−(L(M(R(U(·))))), for simplicity we will assume as
input an MQ Q such that all projected variables are
contained in the query16, which will allow us to con-
sider the complexity at the level of triple patterns. We
will denote by n the number of triple patterns in Q.

Letting n = km, then the largest query that can be
produced by U(Q) is when we have as input:

Q = AND(UNION({t1,1}, . . . , {t1,k}),
. . . ,

UNION({tm,1}, . . . , {tm,k}))

which will produce a query with a union of km BGPs,
each of size m:

U(Q) = UNION({t1,1, . . . , t1,k}×
. . .×
{tm,1, . . . , tm,k})

Thus U(Q) may produce a UCQ with mkm triple pat-
terns in total. Given n = km, when n > 2, then km is
maximised in the general case when k = ⌈e⌉ = 3 (e is
Euler’s number) and m = n/k = n/3. We thus have at
most O(mkm) = O((n/3)3n/3) = O(n3n/3) triple pat-
terns for U(Q) in the worst case, with at most O(3n/3)
BGPs, and the largest BGP having at most O(n) triple
patterns. We remark that the complexity of the other
steps for U(Q) is trivially upper-bounded by O(n3n/3).

16Other cases are not difficult to manage, but require consider-
ing the length of a property path, the number of projected variables
not appearing the query, etc., in the input, which we consider to be
inessential to the complexity, and to our discussion here.

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 31

With respect to R(·), the number of triples in the
r-graph is O(j) on j the number of triple patterns in
the input query, giving us O(n3n/3) for the R(·) step in
R(U(·)), i.e., applying R(·) on the result of U(·).

With respect to M(·), first we consider BGP min-
imisation, which requires computing the core of each
BGP’s r-graph G. Letting j denote the number of
unique subject and objects in G being minimised,
which is also an upper bound for the number of blank
nodes, we will assume a brute-force O(j j) algorithm
that searches over every mapping of blank nodes to
terms in G, looking for the one that maps to the fewest
unique terms (this mapping indicates the core [22]).
Note that the number of triples in the r-graph for each
BGP is bounded by O(n), and so is the number of
unique subjects and objects. Furthermore, the num-
ber of BGPs is bounded by O(3n/3). Thus the cost
of minimising all BGPs is O(3n/3ncn) for some con-
stant c > 1. We must also check containment between
each pair of BGP r-graphs (G′,G′′) in order to ap-
ply UCQ minimisation. Again, assuming the number
of subjects and objects in G′ ∪ G′′ to be bounded by
j, we can assume a brute-force O(j j) algorithm that
considers all mappings. Given O(3n/3) BPGs, we have
O((3n/3)2) = O(32n/3) pairs of BGPs to check, giving
us a cost of O(32n/3ncn). Adding both BGP and UCQ
minimisation costs, we have O(ncn(3n/3 + 32n/3)) =
O(ncn32n/3) for the M(·) step in M(R(U(·))). We can
then reduce O(ncn32n/3) to O(2cn log n) by converting
both bases to 2 and removing the constant factors.17

With respect to L(·), letting j denote the number
of triples in the input, we will assume a brute-force
O((c j)!) algorithm, for some constant c > 0, that
searches over all ways of canonically labelling blank
nodes from the set {_:x1, . . . , _:xb}, where b is the
number of blank nodes (in O(j)). We remark that the
total size of the r-graph is still bounded by O(n3n/3),
as the minimisation step does not add to the size of the
r-graph. Since the number of blank nodes is bounded
by O(n3n/3), the cost of the L(·) step in L(M(R(U(·))))
is O((cn3n/3)!) for some constant c > 0.

Finally, given a graph with j triples, then R−(·)
is possible in time O(j log j), where some sorting
is needed to ensure a canonical form. Given an in-
put r-graph of size O(n3n/3), we have a cost of
O(n3n/3 log n3n/3) = O(n3n/3(log n + (n/3) log 3)) =
O(n23n/3) for the R−(·) step in R−(L(M(R(U(·))))).

17With ncn = (2log n)cn = 2cn log n, and 32n/3 = (2log 3)2n/3 =

22n/3 log 3, then ncn32n/3 = 2cn log n+2n/3 log 3 ∈ O(2cn log n).

Putting it all together, the complexity of canonicalis-
ing an MQ Q with n triple patterns using the procedure
R−(L(M(R(U(Q))))) is as follows:

O(n3n/3 + n3n/3 + 2cn log n + (cn3n/3)! + n23n/3)

which we can reduce to O((cn3n/3)!), with the facto-
rial canonical labelling of the complete exponentially-
sized UCQ r-graph yielding the dominant term.

Overall, this complexity assumes worst cases that
we expect to be rare in practice, and our analysis
assumes brute-force methods for finding homomor-
phisms, computing cores, labelling blank nodes, etc.,
whereas we use more optimised methods. For exam-
ple, the exponentially-sized UCQ r-graphs form a tree-
like structure connecting each BGP, where it would be
possible to canonically label this structure in a more ef-
ficient manner than suggested by this worst-case anal-
ysis. Thus, though the method has a high computa-
tional cost, this does not necessarily imply that it will
be impractical for real-world queries. Still, we can con-
clude that the difficult cases for canonicalisation are
represented by input queries with joins of unions, and
that minimisation and canonical labelling will likely
have high overhead. We will discuss this further in the
context of experiments presented in Section 8.

7. Canonicalisation of SPARQL 1.1 Queries

While the previous section describes a sound and
complete procedure for canonicalising EMQs, many
SPARQL 1.1 queries in practice use features that
fall outside of this fragment. Unfortunately we know
from Table 16 that deciding equivalence for the full
SPARQL 1.1 language is undecidable, and thus that
an algorithm for sound and complete canonicalisa-
tion (that is guaranteed to halt) does not exist. Since
completeness is not a strong requirement for certain
use-cases (e.g., for caching, it would imply a “cache
miss” that would otherwise happen without canonical-
isation), we rather aim for a sound canonicalisation
procedure that supports all features of SPARQL 1.1.
Such a procedure supports all queries found in prac-
tice, preserving congruence, but may produce different
canonicalised output for congruent queries.

7.1. Algebraic rewritings

We now describe the additional rewritings we apply
in the case of SPARQL 1.1 queries that are not EMQs,

32 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

in particular for filters, for distinguishing local vari-
ables, and for property paths (RPQs). We further de-
scribe how canonicalisation of monotone sub-queries
is applied based on the previous techniques.

7.1.1. Filter normalisation
Schmidt et al. [37] propose a number of rules for

filters, which form the basis for optimising queries by
applying filters as early as possible to ensure that the
number of intermediate results are reduced. We im-
plement the rules shown in Table 20. It is a folklore
result that such rewritings further hold in the case of
bag semantics, where they are used by a wide range
of SPARQL engines for optimisation purposes: intu-
itively, filters set to zero the multiplicity of solutions
that do not pass in the case of both bag or set seman-
tics, and preserve the multiplicity of other solutions.

With respect to the latter two rules, we remark that
this holds only if the variables of the filter expression
R are contained within the safe variables of Q1, i.e.,
the variables that must be bound in any solution of
Q1 over any dataset. While we defined this notion se-
mantically in Section 3.9, in order to apply such rules
in practice, Schmidt et al. [37] define safe variables
syntactically. We extend their syntactic definitions to
cover more features of SPARQL 1.1, as shown in Ta-
ble 21. These syntactic definitions do not cover all
cases, but rather under-approximate the set of safe vari-
ables; as was mentioned in Section 3.9, deciding if a
variable is (semantically) safe or not is undecidable.
By conservatively under-approximating safe variables,
we will apply rewritings in a subset of the cases in
which they may actually apply, choosing soundness
over completeness in the face of undecidability.

In our case, rather than decomposing filters with dis-
junction or conjunction, we join them together, creat-
ing larger filter expressions that can be normalised.

Example 7.1. Consider the following query:

SELECT DISTINCT ?x ?y ?z WHERE {
{ ?x :sibling ?y FILTER(?x != ?y) }
OPTIONAL { ?x :twin ?z FILTER(?x != ?z) }
FILTER(isIRI(?x)) FILTER(strlen((str(?x))) > 4)

}

We will rewrite this as follows:

SELECT DISTINCT ?x ?y ?z WHERE {
{ ?x :sibling ?y
FILTER(isIRI(?x) && ?x != ?y && strlen((str(?x))) > 4)

}
OPTIONAL { ?x :twin ?z FILTER(?x != ?z) }

}

Note that the FILTER inside the optional cannot be
moved: if there is a solution µ such that µ(?x) =

µ(?z), having the filter inside the OPTIONAL may result
in ?z being unbound, while having it outside would al-
ways filter the solution entirely.

7.1.2. Local variable normalisation
Like in the case of union variables, we identify an-

other case where the correspondences between vari-
ables in different scopes is coincidental; i.e., where
variables with the same name do not correlate. Specifi-
cally, we call a variable v local to a graph pattern Q on
V (see Table 3) if v ∈ vars(Q) and v ̸∈ V . Much like
in the case of union variables, we can simply rename
local variables to distinguish them from variables with
the same name in other scopes.

Example 7.2. Consider the following query looking
for the names of aunts of people without a father or
without a mother.
SELECT DISTINCT ?z WHERE {
{ ?w :mother ?m . ?m :sister ?y . ?y :name ?z .
MINUS { ?w :father ?f }

}
UNION
{ ?w :father ?f . ?f :sister ?y . ?y :name ?z .
MINUS { ?w :mother ?m }

}
}

In this case, we distinguish the union variables. How-
ever, the variables ?f and ?m are local to the first and
second MINUS clauses, respectively, and thus we can
also differentiate them as follows:

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?m1 . ?m1 :sister ?y1 . ?y1 :name ?z .
MINUS { ?w1 :father ?f1 }

}
UNION
{ ?w2 :father ?f2 . ?f2 :sister ?y2 . ?y2 :name ?z .
MINUS { ?w2 :mother ?m2 }

}
}

The resulting query is equivalent to the original query,
but avoids “false correspondences” of variables.

7.1.3. UCQ normalisation
We continue to apply many of the rules of UCQ

normalisation described in Section 6.1. Most of these
rules were stated in a general way, and thus apply when
other (non-EMQ) features are used in the subqueries
of the union and join operators (or outside such oper-
ators). There are, however, certain caveats to consider
in the more general case:

– In the case of variable normalisation, deciding the
set of possible variables becomes undecidable for
the full language. It suffices for soundness (but
not completeness) to use an overapproximation;

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 33

Table 20
Equivalences given by Schmidt et al. [37] for filters under set semantics

Pushing filters inside/outside union [FILTERR(Q1) UNION FILTERR(Q2)] ≡ FILTERR([Q1 UNION Q2])

Filter conjunction FILTERR1 (FILTERR2 (Q1)) ≡ FILTERR1∧R2 (Q)

Filter disjunction [FILTERR1 (Q) UNION FILTERR2 (Q)] ≡ FILTERR1∨R2 (Q)

Pushing filters inside/outside join [FILTERR(Q1) AND Q2] ≡ FILTERR([Q1 AND Q2]) if vars(R) ⊆ svars(Q1)

Pushing filters inside/outside optional [FILTERR(Q1) OPT Q2] ≡ FILTERR([Q1 OPT Q2]) if vars(R) ⊆ svars(Q1)

Table 21
Syntactic approximation of safe variables where B is a basic graph pattern; N is a navigational graph pattern; Q′, Q1 and Q2 are graph patterns;
x is an IRI, v is a variable; V is a set of variables; R s a built-in expression; M is a bag of solution mappings; Λ is a set of aggregation expression–
variable pairs; and Q′′ is a group-by pattern

Q = B ∴ svars(Q) = vars(B)

Q = N ∴ svars(Q) = vars(N)

Q ∈ {[Q1 AND Q2], [Q1 SERVICEfalsex Q2]} ∴ svars(Q) = svars(Q1) ∪ svars(Q2)

Q = [Q1 UNION Q2] ∴ svars(Q) = svars(Q1) ∩ svars(Q2)

Q ∈ {[Q1 FE Q2], [Q1 FNE Q2], [Q1 MINUS Q2], [Q1 OPT Q2], [Q1 SERVICEtruex Q2]} ∴ svars(Q) = svars(Q1)

Q ∈ {SELECTV(Q′), GROUPV(Q′)} ∴ svars(Q) = svars(Q′) ∩ V

Q ∈ {FILTERR(Q′), BINDR,v(Q′), GRAPHx(Q′)} ∴ svars(Q) = svars(Q′)

Q = GRAPHv(Q′) ∴ svars(Q) = svars(Q′) ∪ {v}
Q = VALUESM(Q′) ∴ svars(Q) = svars(Q′) ∪ svars(M)

Q ∈ {HAVINGA(Q′′), AGGΛ(Q′′)} ∴ svars(Q) = svars(Q′′)

given a graph pattern Q on V , we can thus simply
take V as the set of possible variables.

– In the case of unsatisfiability normalisation, there
are now many other possible causes of unsatisfi-
able graph patterns; unfortunately, deciding if a
pattern is unsatisfiable or not for the full language
is undecidable [43]. We currently only remove
BGPs with literal subjects, as before for EMQs.

– In the case of set vs. bag normalisation, deciding
whether or not a query can return duplicate so-
lutions is undecidable (noting that UNION(Q,Q)
cannot return duplicates if and only if Q is unsat-
isfiable). Currently we only apply this normalisa-
tion in EMQs, though this could be extended in
future to consider other cases (such as C2RPQs).

7.1.4. Well-designed pattern normalisation
As mentioned in Section 3, SPARQL allows the

querying of optional data, that is, values are returned
if they are matched by a graph pattern, or are unbound
otherwise. Well-designed patterns denote a class of
graph patterns where for each sub-pattern of the form
Q = [Q1 OPT Q2] it follows that all variables that ap-
pear both outside of Q and in Q2 must also appear
in Q1. We can check for well-designedness in linear
time over the size of the query pattern and the num-
ber of optional sub-patterns it contains. A classical re-

sult for SPARQL is that well-designed patterns can
avoid leaps in computational complexity for the evalu-
ation of queries when adding (unrestricted) OPTIONAL.
Furthermore, well-designed patterns permit additional
normal forms involving OPTIONAL to be applied [9],
per Table 22. We exploit these rules to capture addi-
tional equivalences involving such patterns.

Example 7.3. Let us consider the query Q1:

SELECT DISTINCT ?x ?y ?n WHERE {
{ ?x :father ?y }
OPTIONAL { ?y :firstname ?n }

?x :firstname ?n .
}

This query is not well-designed due to the variable ?n
appearing on the right but not the left of an OPTIONAL,
while also appearing outside the OPTIONAL.

On the other hand, the following query Q2 contains
a well-designed pattern inside its WHERE:

SELECT DISTINCT ?x ?y ?n1 ?n2 WHERE {
{ ?x :father ?y }
OPTIONAL { ?y :firstname ?n2 }

?x :firstname ?n1 .
}

Thus we can rewrite it to:
SELECT DISTINCT ?x ?y ?n1 ?n2 WHERE {
{ ?x :father ?y . ?x :firstname ?n1 }
OPTIONAL { ?y :firstname ?n2 }

}

34 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

Table 22
Equivalences given by Pérez et al. [9] for set semantics and well-designed patterns

Join can be pushed into optional [Q1 AND [Q2 OPT Q3]] ≡ [[Q1 AND Q2] OPT Q3]

Join can be pushed into optional [[Q1 OPT Q2] AND Q3] ≡ [[Q1 AND Q3] OPT Q2]

Filter expression can be pushed into optional FILTERR([Q1 OPT Q2]) ≡ [FILTERR(Q1) OPT Q2]

per the second rule of Table 22.
Note that if we were to try to apply the same rule on

the non-well-designed pattern in Q1, we would get:

SELECT DISTINCT ?x ?y ?n WHERE {
{ ?x :father ?y . ?x :firstname ?n }
OPTIONAL { ?y :firstname ?n }

}

This query is not equivalent to Q1: it returns the first
names (?n) of children (?x) with some father (?y); in
other words, the OPTIONAL is redundant. On the other
hand, Q1 returns the first names (?n) of children (?x)
with some father (?y) that does not have a first name
or has a first name the same as the child (?n); this is
because in the original query, the variable ?n is po-
tentially bound to the father’s first name (if it exists)
before the join on the child’s first name is applied.

We note that for queries with well-designed pat-
terns, these rules are not sufficient for the purposes
of completeness; we will show an example of incom-
pleteness later in Section 7.5.4. Per the results of Pich-
ler and Skritek [18], equivalence considering projec-
tion and well-designed patterns is already undecidable.

7.1.5. Summary
Given a SPARQL 1.1 query Q, we denote by A(Q)

the process involving the application of:

1. filter normalisation (§ 7.1.1);
2. local variable normalisation (§ 7.1.2);
3. UCQ normalisation (§ 7.1.3);
4. well-designed pattern normalisation (§ 7.1.4).

7.2. Graph Representation

We extend the graph representation defined for
EMQs in Section 7.2 so as to cover all SPARQL 1.1
query features. This extension is provided in Table 23
(we again include the EMQ features for reference).

The reader may have noted that we omitted three de-
tails from Table 23: how to represent built-in and ag-
gregate expressions, and property paths. We now dis-
cuss these representations in turn.

7.2.1. Expressions
We recall that a term in VIBL is a built-in expres-

sion, and that if ϕ takes a tuple of values from IBL ∪
{⊥, ε} as input and returns a single value in IBL ∪
{⊥, ε} as output, then an expression ϕ(R1, . . . ,Rn),
where each R1, . . . ,Rn is a built-in expression, is it-
self a built-in expression. If a built-in expression R is
simply a term R ∈ VIBL, then we use ι(R) to rep-
resent the expression, where R(R) = ∅. Otherwise, if
R = ϕ(R1, . . . ,Rn) and either ϕ has at most one argu-
ment, or ϕ is an commutative function – i.e., the order
of arguments is not meaningful – then:

R(R) ={(ι(R), a, :BIExp), (ι(R), :func, ι(ϕ))}

∪
n⋃

i=1

({(ι(R), :arg, ι(Ri))} ∪ R(Ri))

where ι(ϕ) is an IRI that is assumed to uniquely iden-
tify the function, and ι(R), ι(Ri) are fresh blank nodes.
If ϕ has more than one argument and is not com-
mutative – i.e., if the order of argument is meaning-
ful – then for each Ri, we additionally add a triple
(ι(Ri), :ord, ι(i)) to the above transformation.

As previously remarked, we consider operators
(e.g., &&, +, =, etc.) to be represented by functions.
We assume that commutative (and associative) oper-
ators – e.g., ?a+?b+?c, are represented as commuta-
tive n-ary functions – e.g., SUM(?a, ?b, ?c). This al-
lows for the representational graphs to abstract away
details regarding the ordering of operands of commu-
tative functions. We further remark that [Q1 FE Q2] and
[Q1 FNE Q2] are considered to be filters in the concrete
syntax; given that they do not use a built-in expression,
we have rather defined their representation in Table 18.

With respect to aggregation expressions, we recall
that if ψ is a function that takes a bag of tuples from
IBL and returns a value in IBL ∪ {⊥, ε}, then an ex-
pression A = ψ(R1, . . . ,Rn), where each R1, . . . ,Rn is
a built-in expression, is an aggregation expression. An
expression A of this form can be represented as:

R(A) ={(ι(A), a, :AggExp), (ι(A), :func, ι(ψ))}

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 35

Table 23
Definitions for representational graphs R(Q) of graph patterns Q, where “a” abbreviates rdf:type, B is a basic graph pattern, N is a navigational
graph pattern, Q1, . . . ,Qn,Q′ are graph patterns, c is an RDF term, e is a non-simple property path (not an IRI), k is a non-zero natural number,
v is a variable, w is a variable or IRI, x is an IRI, y is a variable or property path, µ is a solution mapping, ∆ is a boolean value, V is a set of
variables, X is a set of variables and/or IRIs, Y and Y′ are sets of IRIs, R is a built-in expression, A is an aggregate expression, M is a bag of
solution mappings, Λ is a set of aggregate expression–variable pairs, and Ω is a non-empty sequence of order comparators

· R(·)

B {(ι(·), a, :And)} ∪
⋃

(s,p,o)∈B{(ι(·), :arg, ι((s, p, o))} ∪ R((s, p, o))

N {(ι(·), a, :And)} ∪
⋃

(s,y,o)∈N{(ι(·), :arg, ι((s, y, o))} ∪ R((s, y, o))

AND(Q1, . . . ,Qn) {(ι(·), :arg, ι(Q1)), . . . , (ι(·), :arg, ι(Qn)), (ι(·), a, :And)} ∪ R(Q1) ∪ . . . ∪ R(Qn)

UNION(Q1, . . . ,Qn) {(ι(·), :arg, ι(Q1)), . . . , (ι(·), :arg, ι(Qn)), (ι(·), a, :Union)} ∪ R(Q1) ∪ . . . ∪ R(Qn)

[Q1 MINUS Q2] {(ι(·), :left, ι(Q1)), (ι(·), :right, ι(Q2)), (ι(·), a, :Minus)} ∪ R(Q1) ∪ R(Q2)

[Q1 OPT Q2] {(ι(·), :left, ι(Q1)), (ι(·), :right, ι(Q2)), (ι(·), a, :Optional)} ∪ R(Q1) ∪ R(Q2)

FILTERR(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :exp, ι(R)), (ι(·), a, :Filter)} ∪ R(Q′) ∪ R(R)

[Q1 FE Q2] {(ι(·), :left, ι(Q1)), (ι(·), :right, ι(Q2)), (ι(·), a, :Exists)} ∪ R(Q1) ∪ R(Q2)

[Q1 FNE Q2] {(ι(·), :left, ι(Q1)), (ι(·), :right, ι(Q2)), (ι(·), a, :NotExists)} ∪ R(Q1) ∪ R(Q2)

BINDR,v(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :exp, ι(R)), (ι(·), :var, ι(v)), (ι(·), a, :Bind)} ∪ R(Q′) ∪ R(R)

VALUESM(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :vals, ι(M)), (ι(·), a, :Values)} ∪ R(Q′) ∪ R(M)

GRAPHw(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :graph, ι(w))} ∪ R(Q′)

[Q1 SERVICE∆x Q2] {(ι(·), :left, ι(Q1)), (ι(·), :right, ι(Q2)), (ι(·), :srv, x), (ι(·), :sil, ι(∆)), (ι(·), a, :Service)} ∪ R(Q1) ∪ R(Q2)

GROUPV(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), a, :GroupBy)} ∪
⋃

v∈V{(ι(·), :var, ι(v))} ∪ R(Q′)

HAVINGA(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :exp, ι(A)), (ι(·), a, :Having)} ∪ R(Q′) ∪ R(A)

AGGΛ(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :exp, ι(Λ)), (ι(·), a, :Aggregate)} ∪ R(Q′) ∪ R(Λ)

ORDERΩ(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :exp, ι(Ω)), (ι(·), a, :OrderBy)} ∪ R(Q′) ∪ R(Ω)

DISTINCT(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), a, :Distinct)} ∪ R(Q′)

REDUCED(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), a, :Reduced)} ∪ R(Q′)

OFFSETk(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :off, ι(k)), (ι(·), a, :Offset)} ∪ R(Q′)

LIMITk(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :limit, ι(k)), (ι(·), a, :Limit)} ∪ R(Q′)

SELECTV(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), a, :Select)} ∪
⋃

v∈V{(ι(·), :var, ι(v))} ∪ R(Q′)

ASK(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), a, :Ask)} ∪ R(Q′)

CONSTRUCTB(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :cons, ι(B)), (ι(·), a, :Construct)} ∪ R(Q′) ∪ R(B)

DESCRIBEX(Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :desc, ι(X)), (ι(·), a, :Describe)} ∪ R(Q′) ∪ R(X)

FROMY,Y′ (Q′) {(ι(·), :arg, ι(Q′)), (ι(·), :from, ι(Y)), (ι(·), :fromn, ι(Y′)), (ι(·), a, :From)} ∪ R(Q′) ∪ R(Y) ∪ R(Y′)

(s, p, o) {(ι(·), :s, ι(s)), (ι(·), :p, ι(p)), (ι(·), :o, ι(o)), (ι(·), a, :TP)}
(s, e, o) {(ι(·), :s, ι(s)), (ι(·), :p, ι(e)), (ι(·), :o, ι(o)), (ι(·), a, :NP)} ∪ R(e)

e minimal DFA with ι(e) as start node; see Section 7.2.2
X {(ι(·), a, :IriVarSet)} ∪

⋃
x∈X{(ι(·), :el, x)}

Y {(ι(·), a, :IriSet)} ∪
⋃

y∈Y{(ι(·), :el, y)}
M {(ι(·), a, :SolBag)} ∪ (

⋃
µ∈M{(ι(·), :sol, ι((µ,M(µ))))} ∪ R((µ,M(µ))))

(µ, k) {(ι(·), a, :Binding), (ι(·), :num, ι(k))} ∪ (
⋃

v∈dom(µ){(ι(·), :el, ι((v, µ(v))))} ∪ R((v, µ(v)))

(v, c) {(ι(·), :var, ι(v)), (ι(·), :val, ι(c))}
R see Section 7.2.1
A see Section 7.2.1
Λ {(ι(·), a, :ABindSet)} ∪ (

⋃
(A,v)∈Λ{(ι(·), :arg, ι((A, v)))} ∪ R((A, v)))

(A, v) {(ι(·), :exp, ι(A)), (ι(·), :var, ι(v))} ∪ R(A)

Ω {(ι(·), a, :OBExpSeq)} ∪ (
⋃|Ω|

k=1{(ι(·), :arg, ι((Ω[k], k)))} ∪ R((Ω[k], k)))

((R,∆), k) {(ι(·), :exp, ι(R)), (ι(·), :asc, ι(∆)), (ι(·), :ord, ι(k))} ∪ R(R)

36 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

∪
n⋃

i=1

({(ι(A), :arg, ι(Ri))} ∪ R(Ri))

where ι(ψ) is an IRI that uniquely identifies the func-
tion ψ, and ι(A), ι(Ri) are fresh blank nodes.18

7.2.2. Property Paths
Because property paths without inverses and negated

property sets are regular expressions, and any regular
expression can be transformed into a finite automa-
ton, and a finite automaton has a graph-like structure,
we opt to represent property paths based on finite au-
tomata. This approach allows us to apply known nor-
mal forms for finite automata, providing, in turn, a nor-
mal form for RPQs, i.e., property paths without in-
verses or negated property sets; it further provides par-
tial canonicalisation in the case of full property paths.
Another benefit of this approach is that the automaton
can be converted straightforwardly into RDF and used
for the graph representation.

Given an RPQ, we apply the following process:

1. we construct a non-deterministic finite automa-
ton (NFA) based on Thompson’s construction for
transforming regular expressions to NFAs [53];

2. we convert this NFA into a deterministic finite au-
tomaton (DFA) by a standard subset expansion
(the resulting DFA may be exponential on the
number of states in the NFA);

3. we perform a minimisation of the DFA using
Hopcroft’s algorithm [54], which produces a
canonical DFA such that all regular expressions
that express the same language will produce the
same DFA (modulo isomorphism on states).

We now provide an example to illustrate the process.

Example 7.4. Consider an RPQ (:p*/:p*)*. In Fig-
ure 5 we provide an example of the corresponding NFA
produced by Thompson’s algorithm, the DFA produced
by subset expansion, and the minimal DFA produced
by Hopcroft’s algorithm.

The minimal DFA produced by Hopcroft’s algo-
rithm for the RPQ e can then be encoded as an r-graph
R(e) where each state is assigned a fresh blank node,
and transitions are labelled with their predicate IRI.

In order to generalise this process to full property
paths, we must also support inverses and negated prop-

18Though not necessary for SPARQL, :ord triples can be added
if the order of operands matters, as before for built-in expressions.

erty sets. For inverses, we initially attempt to eliminate
as many inverses as possible; for example, ^(^:p)*
would be rewritten to simply :p* Thereafter, any re-
maining inverses or negated property sets are repre-
sented with a canonical IRI; for example, ^:p* be-
comes :p-inv*. Thus the property path again becomes
a regular expression, and is converted into a DFA us-
ing the aforementioned process. It is worth noting that
the resulting DFA may not be canonical, and may
thus miss equivalences between property paths (e.g.,
:p*/^p*, ^:p*/p* and (:p|^p)* should all be equiv-
alent, but are not when represented as :p*/:p-inv*,
:p-inv*/:p* and (:p|:p-inv)*, respectively). The
r-graph can then be computed as before, where for a
negated property set e = !(p1| . . . |pn), we also add:

R(e) = { (ι(e), a, :notOneOf),

(ι(e), :arg, ι(p1)), . . . , (ι(e), :arg, ι(pn))} .

We will discuss the inverse mapping from the minimal
DFA back to a path expression in Section 7.4.

7.3. Minimisation and Canonicalisation

Minimisation is applied only to BGPs and UBGPs
that are contained within the larger query in the r-
graph, considering any variable appearing outside of
the BGP or union as a projected variable. We apply
canonicalisation on the entire r-graph as before, com-
puting a deterministic labelling for blank nodes.

7.4. Inverse Mapping

The inverse mapping is defined analogously such
that R−(R(Q)) = Q, with one exception: property
paths. This is because we do not represent property
paths syntactically in the r-graph, but rather convert
them to a minimal DFA, from which we must construct
the property path once again. In order to construct the
property path from the minimal DFA, we convert it
into a regular expression by using the state elimination
method [55], from which we can retrieve a normalised
RPQ. Finally the inverse and negated property set IRIs
are substituted accordingly (if present).

Example 7.5. Consider the following DFA:

1 2

:d

:a
3

:c

:b-inv

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 37

0 1
ϵ

2
ϵ

3
ϵ

4

ϵ

ϵ
f

ϵ

ϵ

5

ϵ

6:p

ϵ ϵ

7

ϵ

8

ϵ

:p

ϵ

(a) NFA

0 f
:p

:p

(b) DFA

0

:p

(c) Minimal DFA

Fig. 5. NFA, DFA and minimal DFA produced for the RPQ (:p∗/:p∗)∗

The first step consists in transforming this DFA into
an equivalent NFA by introducing a new initial state q0
and a single accepting state q f . We add an ϵ transition
from q0 to q1, and from all accepting states to q f .

1 2

:d

:a
3

:c

:b-inv

0

ϵ

f

ϵ

To eliminate a state qa we have to replace all tran-
sitions that pass through qa. Assuming there exists a
path between qi and q j that passes through qa, we de-
fine the new transition ei j as ei j = (eia/e∗a/ea j)|e′i j. In
this expression, we have eia, the transition from qi to
qa, followed by zero or more instances of ea, which rep-
resents any self-loops in qa, or ϵ if no such self-loops
exist. This is then followed by ea j, the transition from
qa to q j. Finally, we have to consider the fact that there
may have already been a path from qi to q j, denoted
here by e′i j; hence we append . . . |e′i j to the expression
to include the existing transition.

We now eliminate q1 following this process. Since
q1 has no self-loops and there are no existing paths
between q0 and q2, these terms are excluded from the
expression. Then e02 = (e01/e∗1/e12)|e02 = ϵ/:a =
:a, and e03 = (e01/e∗1/e13)|e03 = ϵ/:c = :c.

0

2

:d

:a

3

:c

:b-inv

f

ϵ

Next we eliminate q2. In this case, q2 does have
a self-loop, and there exists a transition between

q0 and q3 so the expression is as follows: e03 =
(e02/e∗2/e23)|e03 = (:a/:d∗/:b-inv) | :c.

0 3
(:a/:d∗/:b-inv)|:c

f
ϵ

We now eliminate q3. In this case:

0 f
(:a/:d∗/:b-inv) | :c

Finally, we substitute the IRI :b-inv for the inverse
expression ^:b, yielding (:a/:d∗/^:b)|:c.

7.5. Soundness, completeness and incompleteness

Given a SPARQL 1.1 query Q, the canonicalisation
procedure is then defined by R−(L(M(R(A(Q))))). We
now discuss some formal properties of this procedure.

7.5.1. Soundness and completeness for EMQs
First we look at the case of EMQs, and ask if the ex-

tended canonicalisation procedure is sound and com-
plete for this fragment.

Lemma 7.1. Given two EMQs Q1 and Q2, it holds
that Q1

∼= Q2 if and only if

R−(L(M(R(A(Q1))))) = R−(L(M(R(A(Q2))))) .

Please see Appendix A.2.1 for the proof.

7.5.2. Soundness for SPARQL 1.1
Next we show that the process is sound for queries

in the full SPARQL 1.1 query language.

Lemma 7.2. For a SPARQL 1.1 query Q, it holds that:

R−(L(M(R(A(Q))))) ∼= Q .

38 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

Please see Appendix A.2.2 for the proof.

7.5.3. Complexity
In terms of the complexity of (partially) canonicalis-

ing queries with these additional features, if we assume
that the size of the input query Q is in O(n), where n
is the number of unique triple patterns and path pat-
terns in Q, then the complexity remains bounded by
that of canonicalising monotone queries: O(2cn log n)
for some constant c > 0. This assumes that features
of the query that do not involve triple or path patterns
(e.g., BIND, VALUES, FILTER, etc.) are of bounded size
and bounded in number, while path expressions are of
bounded length. This may be an oversimplification.

We may rather consider the “token length” of the
query, which is the number of terminals – RDF terms,
variables, keywords, etc. – appearing in the syntax
of the query. In this case, we must additionally con-
sider the costs of computing a normal form for RPQs.
Given an RPQ of length l, which includes the num-
ber of non-parenthetical symbols (including IRIs, *,
+, |, /) Thompson’s construction creates an NFA of
size O(l). Subset expansion may then create a DFA
with O(2l) states that remains exponential after min-
imisation. This will result in an exponentially-sized
representation of the RPQ. Minimisation is only ap-
plied on (U)BGPs, and thus does not apply on this rep-
resentation. However, canonical labelling will occur
on this representation, where assuming again a brute-
force method in the order of O(b!) for b the number
of blank nodes, we now have a complexity of O(2l!)
for canonicalising the RPQ representation graph of a
property path of length l, and given that we may have
n such property paths, where n is the number of triple
patterns and path expressions, this generates a cost
of O((cn2l)!) for canonically labelling a navigational
graph pattern, which we can add to the cost for mono-
tone queries: O((cn2l)! + (cn3n/3)!), where l is the
length of the longest property path, n is the number of
triple patterns and path patterns, and c > 0 is some
constant to account for the additional “syntactic” blank
nodes that appear in the r-graph.

7.5.4. Incompleteness for SPARQL 1.1
We provide some examples of incompleteness to il-

lustrate the limitations of the canonicalisation process
for the full SPARQL 1.1 language.

We start with filters, which, when combined with
a particular graph pattern, may always be true, may
never be true, may contain redundant elements, etc.;
however, detecting such cases can be highly complex.

Example 7.6. Consider the following example:

SELECT ?o
WHERE {
:Ed ?p ?o .
FILTER(!isIRI(?p))

}

The FILTER here will always return false as the predi-
cate in an RDF graph must always be an IRI. Thus the
query is unsatisfiable and thus ideally would be rewrit-
ten to Q∅; however, we do not consider the semantics
of filter functions (other than boolean combinations).

Note that reasoning about filters is oftentimes far
from trivial. Consider the following example:

SELECT ?o
WHERE {
:Ed ?p ?o .
FILTER(!contains(":",str(?p)))

}

This query is unsatisfiable because predicates must be
IRIs, and IRIs must always contain a colon (to sepa-
rate the scheme from the hierarchical path) [56].

Next we consider issues with property paths.
Example 7.7. Consider the following example:

SELECT ?anc
WHERE {
:Ed :parent*/:parent* ?anc .

}

Clearly this is equivalent to:

SELECT ?anc
WHERE {
:Ed :parent* ?x . ?x :parent* ?anc .

}

But also to:
SELECT ?anc
WHERE {
:Ed :parent* ?anc .

}

Currently we rewrite concatenation, inverse and dis-
junction in paths (not appearing within a recursive ex-
pression) to UCQ features. This means that we cur-
rently capture equivalence between the first and sec-
ond query, but not the first and third.

Other examples are due to inverses, or negated
property sets; consider for example:

SELECT ?anc
WHERE {
:Ed :parent|!(:parent) ?anc .

}

This is equivalent to:

SELECT ?anc
WHERE {
:Ed ?p ?anc .

}

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 39

However, we do not consider the semantic relation be-
tween the expressions !(:parent) and :parent.

Incompleteness can also occur due to negation,
which is complicated by the ambiguities surrounding
NOT EXISTS as discussed in Section 3.10. We have
postponed algebraic rewritings involving negation un-
til this issue is officially resolved.

Incompleteness can also occur while normalising
well-designed query patterns with OPTIONAL.

Example 7.8. Consider the query Q1:

SELECT ?anc
WHERE {
{ :Ed :parent ?anc .
OPTIONAL { :Ed :email ?email } } .
{ :Bob :parent ?anc .
OPTIONAL { :Bob :address ?address } }

}

Since AND is commutative, this is equivalent to Q2:

SELECT ?anc
WHERE {
{ :Bob :parent ?anc .
OPTIONAL { :Bob :address ?address } } .
{ :Ed :parent ?anc .
OPTIONAL { :Ed :email ?email } }

}

If we rewrite each well-designed pattern by pushing
the OPTIONAL operators outside, we obtain the follow-
ing equivalent query for Q1:

SELECT ?anc
WHERE {
{ :Ed :parent ?anc .
:Bob :parent ?anc .
OPTIONAL { :Bob :address ?address } }

OPTIONAL { :Ed :email ?email }
}

and, analogously, for Q2:

SELECT ?anc
WHERE {
{ :Ed :parent ?anc .
:Bob :parent ?anc .
OPTIONAL { :Ed :email ?email } }

OPTIONAL { :Bob :address ?address }
}

However, in the general case it does not hold that
[[Q1 OPT Q2] OPT Q3] ≡ [[Q1 OPT Q3] OPT Q2], and
thus we do not capture these equivalences.

We could list an arbitrary number of ways in which
arbitrary features can give rise to unsatisfiability or re-
dundancy, or where queries using seemingly different
features end up being equivalent. We could likewise
provide an arbitrary number of rewritings and meth-
ods to deal with particular cases. However, any such
method for canonicalising SPARQL 1.1 queries will
be incomplete. Furthermore, many such “corner cases”

would be rare in practice, where dealing with them
might have limited impact. We then see two interesting
directions for future work to address these limitations:

1. Use query logs or other empirical methods to
determine more common cases that this query
canonicalisation framework may miss and imple-
ment targeted methods to deal with such cases.

2. Extend the query fragment for which sound and
complete canonicalisation is possible; an interest-
ing goal, for example, would be to explore EMQs
with full property paths (such queries are similar
to C2RPQs [33], for which containment and re-
lated problems are decidable).

8. Experiments

In these experiments, we wish to address two prin-
cipal questions, as follows:

Q1: How is the performance of the canonicalisation
procedure in terms of runtime? Which aspects of
the procedure take the most time? What kinds of
queries are most expensive?

Q2: How many more additional congruent queries can
the procedure find in real-world logs versus base-
line methods? Which aspects of the procedure are
most important for increasing the number of con-
gruent queries detected?

With respect to the first question, we might expect
poor performance given that the worst-case of the al-
gorithm is super-exponential. However, this is a worst-
case analysis with respect to the size of the query,
where queries in practice are often relatively small and
simple. Hence our hypothesis is that although there ex-
ist queries for which canonicalisation is not computa-
tionally feasible in theory, it should run efficiently (in
fractions of a second) for the majority of real-world
queries in practice (as found in public query logs).

With respect to the second question, most of our
expected use-cases benefit from being able to find
a wider range of congruent, real-world queries, as
found in public query logs; for example, in the case of
caching, finding more congruent queries will translate
into higher cache hit rates. Thus it is of interest to see
how many additional congruent queries our canonical-
isation procedure can find from public query logs when
compared with baseline (syntactic) methods, and in
particular, which parts of the procedure have the most
impact in terms of finding more congruent queries. In

40 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

general, we hypothesise that canonical labelling will
be an important component as variable naming would
likely be a common variation in real-world queries; on
the other hand, we hypothesise that minimisation will
be less impactful in terms of finding more congruent
queries as we expect few real-world queries to contain
the types of redundancy dealt with in Section 6.3.

We thus design a number of experiments over real-
world and synthetic queries in order to address these
questions and evaluate our expectations.

8.1. Implementation: QCan

We have implemented the canonicalisation proce-
dure in a system that we call QCan written in Java.
The system uses Jena ARQ for query parsing and pro-
cessing. Algebraic rewritings are implemented on top
of the query algebra that Jena ARQ provides. Con-
structing the r-graph is likewise implemented on top
of Jena. Minimisation is conducted by using the bla-
bel system [22] to compute the core of RDF graphs
representing BGPs, thereafter implementing contain-
ment checks across BGPs using ASK queries evaluated
in Jena. Finally canonical labelling is implemented us-
ing blabel [22]. All other aspects of the procedure are
implemented directly in QCan, including the steps in-
volving the representation and manipulation of prop-
erty paths as automata. The source code of QCan,
along with a suite of congruence test-cases, are avail-
able online at: http://github.com/RittoShadow/QCan.
The machine used for these experiments has 12 In-
tel®Xeon®1.9GHz processors, and runs on Devuan
GNU/Linux 2.1, with a maximum heap size of 10GB.

8.2. Real-world query logs

In order to test our algorithm in a real-world setting,
we used two query log datasets: the LSQ dataset [7]19,
which itself contains queries from DBpedia, Linked
Geo Data, RKB Explorer/Endpoint and Semantic Web
Dog Food logs; and Wikidata logs [8] (Interval 7; or-
ganic queries)20. With respect to the datasets:

– DBpedia [5] (DBP) is an RDF dataset extracted
principally from Wikipedia, with the main source
of content being info-boxes.

– LinkedGeoData [57] (GEO) is an RDF dataset
that contains spatial data extracted from the
OpenStreetMap [58] project.

19https://aksw.github.io/LSQ/
20https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

Table 24
Distribution of queries using SPARQL features in the query logs; we
mark features new to SPARQL 1.1 with an asterisk

Feature DBP GEO REN REX SWDF WD All

BGP 424,328 842,794 169,425 335,450 112,398 861,383 2,745,778
DISTINCT 192,168 5,477 147,575 210,058 57,195 538,878 1,151,351
AND 58,952 78,575 19,355 34,180 54,702 751,243 997,007
MODS 4,576 412,343 40,957 80,655 60,199 321,239 919,969
OPT 31,211 19,914 9,741 23,587 27,824 343,838 456,115
FILTER 200,001 125,849 8,974 14,938 4,716 92,807 447,285
SERVICE* 0 0 0 0 0 406,990 406,990
UNION 89,766 49,299 1,653 5,550 32,459 57,029 235,756
PATHS* 0 0 96 192 37 268,530 268,855
BIND* 0 0 0 19,641 15,307 71,102 106,050
AGG* 0 0 0 16,444 10,268 42,777 69,489
VALUES* 0 174 0 0 83 55,037 55,294
MINUS* 0 0 0 192 25 5,700 5,917

TOTAL 424,362 842,794 169,617 335,833 112,470 868,993 2,754,069

– The RKB Endpoint (REN) and Explorer (REX)
datasets [59] primarily pertain to cultural and her-
itage data from the British Museum.

– Semantic Web Dog Food (SWDF) [60] was a
dataset that is now part of the Scholarlydata
dataset [61], containing information about schol-
arly publications and conferences.

– Wikidata [6] (WD) is a collaboratively-edited
knowledge graph that complements the projects
of Wikimedia with central, structured content.

All of these datasets have public SPARQL endpoints
that receive queries from users over the Web. These
queries have been published as the Wikidata and LSQ
logs for research purposes. Table 24 contains the distri-
bution of features in each of the query sets in our real-
world setting. In total we consider 2.8 million queries
for our experiments. Despite the fact that BGPs are
equivalent to joins of triple patterns, we only count as
“AND” those joins for features other than triple pat-
terns. We further gather together under “MODS” the so-
lution modifiers ORDER BY, LIMIT, OFFSET and projec-
tion. We observe that BGPs are present in almost all
queries, which is an expected result. Features new to
SPARQL 1.1 are used more rarely in the LSQ logs, but
this is likely because these logs predate the release of
the standard; such features are quite widely used in the
more recent Wikidata logs. The large use of SERVICE
on Wikidata relates to the use of the custom label ser-
vice offered by the endpoint as a syntactic convenience
to help choose language preferences. With respect to
the use of property paths, many are quite simple, usu-
ally used to find objects of a certain class or its tran-
sitive subclasses. Further details of these queries can
be found in analyses by Saleem et al. [7], Malyshev et
al. [8], Bonifati et al. [13], etc.

http://github.com/RittoShadow/QCan
https://aksw.github.io/LSQ/
https://iccl.inf.tu-dresden.de/web/Wikidata_SPARQL_Logs/en

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 41

TOTAL TIME

LABEL

MINIMISE

GRAPH

REWRITE

DBP GEO

TOTAL TIME

LABEL

MINIMISE

GRAPH

REWRITE

REN REX

10−610−3 100 103 106

TOTAL TIME

LABEL

MINIMISE

GRAPH

REWRITE

Time (ms)

SWDF

10−610−3 100 103 106

Time (ms)

WD

Fig. 6. Runtimes for each step of the canonicalisation algorithm

8.2.1. Canonicalisation runtimes
We now present the runtimes for canonicalising the

queries of the aforementioned logs. All queries in all
six logs were successfully canonicalised. The results in
Figure 6 indicate that the fastest queries to canonicalise
take around 0.00025 seconds, median times vary from
0.00084 seconds (REN) up to 0.00206 seconds (WD),
while max times vary from 0.12 seconds (SWDF) up
to 71 seconds (WD). The slowest part of the pro-
cess, on average, tended to be the canonical labelling,
though in the case of REN and REX, the graph con-
struction was slightly slower on average.

Figure 7 shows the runtimes for the canonicalisation
of the queries in the aforementioned logs, limited to
those that contain features introduced in SPARQL 1.1.
Notably the ranges of runtimes of DBP, GEO, REN,
and REX are much more stable, and present much less
variance than the same runtimes for the full datasets.
On the other hand, SWDF and WD present simi-
lar minimum and maximum runtimes than the full
datasets, but the runtimes in the interquartile range are
far more stable than those in the full datasets. This sug-
gests that the addition of queries with features intro-

TOTAL TIME

LABEL

MINIMISE

GRAPH

REWRITE

DBP GEO

TOTAL TIME

LABEL

MINIMISE

GRAPH

REWRITE

REN REX

10−610−3 100 103 106

TOTAL TIME

LABEL

MINIMISE

GRAPH

REWRITE

Time (ms)

SWDF

10−610−3 100 103 106

Time (ms)

WD

Fig. 7. Runtimes for each step of the canonicalisation algorithm
(considering queries with some SPARQL 1.1 feature)

0 20 40 60 80 100

DBP

GEO

REN

REX

SWDF

WD

440

1063

2145

2145

375

3456

Fig. 8. R-graph sizes (number of nodes) for each set of queries; the
value on the right indicates the maximum size

duced in SPARQL 1.1 do not add a significant over-
head to the performance of the algorithm.

Figure 8 shows that the WD set of queries produces
the largest r-graphs, with the largest graph containing
3,456 nodes (WD). This is consistent with the results
in Figure 6 since the total runtimes for WD queries can
be much higher than those of the other query sets.

42 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

MODS

FILTER

OPTIONAL

UNION

AND

DISTINCT

DBP GEO

PATHS

MODS

FILTER

OPTIONAL

UNION

AND

DISTINCT

REN REX

10−3 100 103 106

PATHS

MODS

FILTER

OPTIONAL

UNION

AND

DISTINCT

Time (ms)

SWDF

10−3 100 103 106

Time (ms)

WD

Fig. 9. Runtimes for queries grouped by selected features

The results in Figure 9 show the runtimes for all
query sets grouped by the features they use (at least
once, possibly in conjunction with other features).
We include SPARQL 1.0 features along with property
paths for those logs using such features. These results
indicate that queries containing UNION tend to take a
longer time to process; i.e., it is the most computation-
ally challenging feature to deal with in these queries.
This is an expected result since the rewriting step may
cause an exponential blow-up on the number of ba-
sic graph patterns in a monotone fragment of a query.
Since most real world queries are not in a UCQ form,
but rather contain combinations of joins and unions, it
is likely that any query that contains unions will pro-
duce larger r-graphs than those without any unions. We
also see that OPTIONAL is an expensive feature, par-
ticularly for the GEO dataset. However, looking into
the GEO results in more detail, most of the queries
with OPTIONAL appear to come from a single agent –
an application using the SPARQL endpoint as a back-
end – and also feature numerous disjunctive filters (us-
ing bound(·) over multiple OPTIONAL clauses) that are
rewritten into UNION, which is then the underlying rea-

Table 25
Total number of duplicates found by each method

Query set RAW PARSE LABEL REWRITE FULL

DBP 250,940 251,283 251,315 251,315 251,315
GEO 723,116 736,331 739,695 739,700 739,702
REN 142,032 143,523 144,007 144,007 144,008
REX 299,892 301,419 301,910 301,910 301,911
SWDF 53,061 53,263 53,388 53,388 53,388
WD 683,132 686,453 687,654 687,751 687,760

Table 26
Most duplicates of a single query found by each method

Query set RAW PARSE LABEL REWRITE FULL

DBP 5,464 5,514 5,514 5,514 5,514
GEO 22,582 31,379 40,744 40,744 40,744
REN 3,814 3,814 3,814 3,814 3,814
REX 14,690 14,910 14,910 14,910 14,910
SWDF 2,388 2,633 4,938 4,938 4,938
WD 232,339 232,339 232,339 232,339 232,339

son that the queries are slower. This result – relating
to the requests of a single prolific agent – can thus be
considered something of an outlier.

8.2.2. Duplicates found
We now look at the number of duplicates found,

where we compare the following methods:

RAW The raw query string is used, without any kind
of normalisation.

PARSE The raw query string is parsed using Jena
ARQ into its query algebra, and then serialised
back into concrete SPARQL syntax.

LABEL The raw query string is parsed using Jena
ARQ into its query algebra, the r-graph is con-
structed and canonically labelled, and then seri-
alised back into concrete SPARQL syntax.

REWRITE The raw query string is parsed using Jena
ARQ into its query algebra, the query is rewritten
per the algebraic rules, the r-graph is constructed
and canonically labelled, and then serialised back
into concrete SPARQL syntax.

FULL The raw query string is parsed using Jena ARQ
into its query algebra, the query is rewritten per
the algebraic rules, the r-graph is constructed,
minimised, canonically labelled, and then seri-
alised back into concrete SPARQL syntax.

Tables 25 and 26 denote the total number of du-
plicate (congruent) queries found, and the most dupli-
cates found for a single query. In general, there is a
high number of exact duplicate query strings, possibly
from the same query being sent many times to refresh

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 43

the results. Thereafter, the number of duplicates found
either remains the same or increases in each succes-
sive algorithm. In particular, excluding duplicate query
strings (RAW), the highest increase occurs with PARSE

and thereafter LABEL, with WD being the query set
for which the most additional duplicates are found with
these methods, where the duplicates detected increase
by a few thousand in each step. In the other query sets
this increase is less pronounced. In addition, there is
almost no difference beyond LABEL, meaning that al-
gebraic rewritings and minimisation find very few ad-
ditional congruent queries in these logs.

8.3. Comparison with Existing Systems

In this section, we compare the runtime performance
of our algorithm with existing systems that can per-
form pairwise SPARQL containment checks. We pro-
vide an overview of these tools in Table 27. In our
experiments, we consider SA [46] and JSAG [62] as
they support cyclic queries. The queries used are part
of the test suite designed by Chekol et al. [63] as part
of their experiments. These correspond to two sets
of queries: one of CQs without projection, and one
of UCQs with projection. As discussed in Section 5,
the SA and JSAG systems are not analogous to ours.
We focus on query equivalence and congruence, and
not on containment; conversely, SA and JSAG sup-
port containment. On the other hand, we compute a
canonical form of a query, whereas SA and JSAG fo-
cus on pairwise checks (though JSAG offers index-
ing approaches based on constants in the query and
isomorphic DAGs). Our approach is sound and com-
plete for UCQs under both bag and set semantics; con-
versely, SA only considers set semantics, while JSAG
focuses on detecting sub-graph isomorphisms between
algebraic expressions under bag semantics. In the case
of CQs without projection, checking containment is
tractable (see Table 16), and quite trivial, requiring
checking that one BGP is set-contained in the other.

Figure 10 shows the runtimes for our comparison
of both containment checkers and our method (QCan).
Note that there are no values for SA with UCQs be-
cause the UCQ set uses projection and SA does not
support queries with projection. The results indicate
that most queries for SA and JSAG take between one
and ten milliseconds, whereas most queries under our
method take between ten and one hundred millisec-
onds. In terms of the slowest queries, our method is
faster than JSAG but slower than SA.

Table 27
UCQ features supported by SPARQL Algebra (SA), Alternating
Free two-way µ-calculus (AFMU), Tree Solver (TS) and Jena-
SPARQL-API Graph-isomorphism (JSAG); note that ABGP denotes
Acyclic Basic Graph Patterns

Method ABGP BGP Projection Union

SA ✓ ✓

AFMU ✓ ✓ ✓

TS ✓ ✓ ✓

JSAG ✓ ✓ ✓ ✓

QCan ✓ ✓ ✓ ✓

SA-C
Q

SA-U
CQ

JS
AG-C

Q

JS
AG-U

CQ

QCan
-C

Q

QCan
-U

CQ

100

101

102

Ti
m

e
(m

s)

Fig. 10. Runtimes for JSAG, SA and QCan

In general, the conclusion is that our method is
slower for testing equivalence than existing contain-
ment checkers, but this is perhaps not surprising as our
approach addresses the more difficult problem of first
computing a canonical form for both input queries, and
further considers congruence rather than the more triv-
ial case of equivalence where variable names are fixed.
Furthermore, once these canonical forms are com-
puted, equivalence classes of congruent queries can
be found in constant time using simple data structures
(e.g., (ideal) hashing of the canonical query strings).
If we estimate that our system is 10 times slower to
canonicalise two queries than these systems can per-
form a pairwise check (per Figure 10), QCan will be-
gin to outperform these systems for partitioning a set
of 11 or more queries by equivalence (or congruence);
in the case of 11 queries, these systems must perform(
11
2

)
= 55 pairwise checks (in the worst case), while

QCan will canonicalise 11 queries and partition them

44 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

1 2 3 4 5 6 7 8 9

100

103

106

109

Ti
m

e
(m

s)

UCQ REWRITING

1 2 3 4 5 6 7 8 9

100

103

106

109

GRAPH CONSTRUCTION

1 2 3 4 5 6 7 8 9

100

103

106

109

Triple patterns per union

Ti
m

e
(m

s)

MINIMISATION

1 2 3 4 5 6 7 8 9

100

103

106

109

Triple patterns per union

CANONICAL LABELING

1 JOIN 2 JOINS 3 JOINS 4 JOINS

Fig. 11. Times for UCQ stress tests

in constant time (in the best and the worst case). The
time savings thereafter grow quadratically.

8.4. Stress test

With the exception of some outliers, most queries
that we have evaluated thus far have been canoni-
calised in fractions of a second. On the other hand,
we know that our algorithms are super-exponential in
the worst case. Such cases may occur when we have
monotone queries that are in conjunctive normal form
(i.e., consisting of joins of unions), in which case our
UCQ normal form can be exponential in size, upon
which we perform further potentially exponential pro-
cesses. In order to stress-test our method and explore
such worst cases, we run the following experiment.

For this experiment, we generate queries of the form
AND(U1, . . . ,Um) where each union pattern is of the
form Ui = UNION(t1, . . . , tk), and each triple pattern
is of the form t j = (s j, :p j, o j), where s j and o j are
variables randomly selected from a predetermined set
of m+k variables, and :p j is an IRI randomly selected
from a predetermined set of m IRIs. The UCQ normal
form for this query will consist of a union of km BGPs,
each containing m triple patterns. Finally, we project a
random subset of the set of variables that appear in the
query, making sure to project at least one variable.

Figure 11 shows the times for each step of the
canonicalisation procedure on the synthetic UCQs. On
the x-axis we increase k (the base of the exponent),
while across the different series we increase m (the ex-
ponent). The y-axis is shown in log scale. We see that
for the UCQ rewriting, graph construction and min-
imisation steps, the higher series (representing an in-
creasing exponent) diverge further and further as the
x-axis increases (representing an increasing base). On
the other hand, the differences in times for canoni-
cal labelling are less pronounced since the minimisa-
tion process reduces the r-graphs significantly due to
the regular construction of the queries. The slowest
queries tested (k = 9, m = 4) take around 4.1 hours to
canonicalise considering all steps. Increasing k and/or
m further would quickly lead to unmanageable run-
times and, eventually, out-of-memory exceptions.

These results illustrate the poor worst-case be-
haviour of our canonicalisation procedure, particularly
when considering queries with joins of many unions.
However, as shown by the results presented in Sec-
tion 8.2, virtually no queries in our real-world setting
caused this worst-case behaviour.

9. Conclusion

In this paper, we have presented a formal seman-
tics of SPARQL 1.1 and a canonicalisation procedure
that produces a deterministic query string modulo con-
gruence (equivalence modulo variable naming). This
procedure involves the application of algebraic rewrit-
ings of the query, the representation of the query as
a graph, the minimisation of the query in order to re-
move redundancy, and finally the canonical labelling
of the graph in order to produce canonical variable
names based on the structure of the graph. We have
proven this procedure to be sound and complete with
respect to “extended monotone queries” under bag and
set semantics, i.e., queries that can be rewritten to the
features involving BGPs, joins, unions, projection, and
distinct. We have further extended this procedure to
provide sound and incomplete canonicalisation of the
queries under the full SPARQL 1.1 language.

Despite the super-exponential worst-case complex-
ity of our procedure, the experimental results indicate
that our method is efficient for most queries, running
in a fraction of a second – in the median case – over
millions of queries from real-world logs; the slowest
query to canonicalise took just over a minute. Such
results are achieved because most real-world queries

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 45

tend to be relatively small and simple. In this analy-
sis, we determined that the canonical labelling is the
step that takes the longest time on average. We fur-
ther found that the UNION feature is the most costly to
canonicalise in general, with OPTIONAL also proving
costly in some cases. Comparing the performance of
our method for finding equivalent queries versus ex-
isting containment checkers, we find that our method
is indeed slower, but produces a canonical form that
thereafter allows for constant-time detection of con-
gruent queries in large sets of queries. Running stress-
tests over queries featuring joins of unions of increas-
ing size, we have confirmed that our procedure quickly
becomes inefficient, taking hours to canonicalise four
joins of unions with nine triple patterns each.

We have further confirmed that our procedure allows
for detecting additional congruent queries over real-
world logs versus baseline methods. We first observed
that the vast majority of congruent queries are actually
syntactically identical in terms of raw query strings,
likely due to clients reissuing precisely the same query
in order to intermittently refresh results. Of our canon-
ical procedures, canonical labelling is the most impor-
tant for finding additional congruent queries. On the
other hand, minimisation and algebraic rewritings –
though necessary to ensure completeness for mono-
tone queries – lead to finding only a very small fraction
of additional congruent queries. This would tend to
suggest that in a practical caching system, where com-
pleteness can be traded for efficiency, it may be suf-
ficient to apply canonical labelling without algebraic
rewritings and minimisation. However, minimisation
may be useful in cases where completeness is an im-
portant criterion. Also, in certain setting, queries with
redundancy may be automatically generated; an inter-
esting use-case along these lines is that of ontology-
based data access (OBDA) [64], where rewritings may
produce queries (typically UCQs) with redundancies
that are inefficient to evaluate over large graphs.

With respect to future directions, a natural contin-
uation of this work is to explore larger fragments of
SPARQL 1.1 for which sound and complete canoni-
calisation can be performed. In particular, we have al-
ready begun to investigate such procedures for a frag-
ment akin to UC2RPQs. At first glance, this should
be analogous to the minimisation and canonicalisa-
tion of basic graph patterns and unions, where property
paths are represented as automata and we can check for
containment of automata to find redundant path pat-
terns. However, we have already found that this re-

quires entailment of paths with inverses, which is not
as straightforward as checking for containment [33].

SPARQL 1.2 is on the horizon. We believe that the
formal semantics of SPARQL 1.1 defined herein may
serve as a useful reference for the standardisation ef-
fort. If the semantics of FILTER (NOT) EXISTS is clari-
fied as part of SPARQL 1.2, it would also be of interest
to (partially) capture equivalences between the nega-
tion features of SPARQL. With respect to new features,
our canonicalisation procedure should be extensible to
SPARQL 1.2 following similar processes, though such
canonicalisation cannot be complete.

Finally, we are currently exploring use-cases for
our canonicalisation procedure in the context of two
ongoing projects: one relating to caching, and one
relating to query answering. Regarding caching, we
have seen that most congruences in real-world query
logs are exact (syntactic) duplicates; however, rather
than considering congruencies between full queries, a
more promising approach for caching is to mine com-
mon sub-queries, where canonicalisation can be used
for such purposes. In the context of question answer-
ing, we can also use canonicalisation in order to nor-
malise training data for sequence-to-sequence models
that translate natural language to SPARQL queries. An
important future line of research is then to explore and
evaluate the benefits of SPARQL canonicalisation in
the context of these and further use-cases.

Online material We provide code and other mate-
rial online at: http://github.com/RittoShadow/QCan. A
demo is available at: http://qcan.dcc.uchile.cl.

Acknowledgements This work was supported by
Fondecyt Grant No. 1181896 and by ANID – Millen-
nium Science Initiative Program – Code ICN17_002.
We would also like to thank the reviewers of the con-
ference and journal versions of this paper for useful
comments that helped to improve this work.

References

[1] G. Schreiber and Y. Raimond, RDF 1.1 Primer, 2014, http://
www.w3.org/TR/rdf11-primer/.

[2] S. Harris, A. Seaborne and E. Prud’hommeaux, SPARQL
1.1 Query Language, 2013, http://www.w3.org/TR/
sparql11-query/.

[3] T. Heath and C. Bizer, Linked Data: Evolving the Web into a
Global Data Space, Vol. 1, Morgan & Claypool, 2011, pp. 1–
136. ISBN 9781608454310.

[4] C.B. Aranda, A. Hogan, J. Umbrich and P. Vandenbussche,
SPARQL Web-Querying Infrastructure: Ready for Action?, in:
International Semantic Web Conference (ISWC), Vol. 8219,

http://github.com/RittoShadow/QCan
http://qcan.dcc.uchile.cl
http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

46 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

Springer, 2013, pp. 277–293. doi:10.1007/978-3-642-41338-
4_18.

[5] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer
and C. Bizer, DBpedia - A large-scale, multilingual knowledge
base extracted from Wikipedia, Semantic Web 6(2) (2015),
167–195.

[6] D. Vrandecic and M. Krötzsch, Wikidata: a free collaborative
knowledgebase, Commun. ACM 57(10) (2014), 78–85.

[7] M. Saleem, M.I. Ali, A. Hogan, Q. Mehmood and
A.N. Ngomo, LSQ: The Linked SPARQL Queries Dataset, in:
International Semantic Web Conference (ISWC), Vol. 9367,
Springer, 2015, pp. 261–269. doi:10.1007/978-3-319-25010-
6_15.

[8] S. Malyshev, M. Krötzsch, L. González, J. Gonsior and
A. Bielefeldt, Getting the Most Out of Wikidata: Semantic
Technology Usage in Wikipedia’s Knowledge Graph, in: The
Semantic Web - ISWC 2018 - 17th International Semantic Web
Conference, Monterey, CA, USA, October 8-12, 2018, Pro-
ceedings, Part II, 2018, pp. 376–394. doi:10.1007/978-3-030-
00668-6_23.

[9] J. Pérez, M. Arenas and C. Gutierrez, Semantics and com-
plexity of SPARQL, ACM Trans. Database Syst. 34(3) (2009).
doi:10.1145/1567274.1567278.

[10] G.T. Williams and J. Weaver, Enabling Fine-Grained HTTP
Caching of SPARQL Query Results, in: The Semantic Web
- ISWC 2011 - 10th International Semantic Web Conference,
Bonn, Germany, October 23-27, 2011, Proceedings, Part I,
L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Ka-
gal, N.F. Noy and E. Blomqvist, eds, 2011, pp. 762–777.
doi:10.1007/978-3-642-25073-6_48.

[11] N. Papailiou, D. Tsoumakos, P. Karras and N. Koziris, Graph-
Aware, Workload-Adaptive SPARQL Query Caching, in: ACM
SIGMOD International Conference on Management of Data,
T.K. Sellis, S.B. Davidson and Z.G. Ives, eds, ACM, 2015,
pp. 1777–1792. doi:10.1145/2723372.2723714.

[12] R. Castillo and U. Leser, Selecting Materialized Views for
RDF Data, in: International Conference on Web Engineer-
ing (ICWE), Workshops, F. Daniel and F.M. Facca, eds, Lec-
ture Notes in Computer Science, Vol. 6385, Springer, 2010,
pp. 126–137. doi:10.1007/978-3-642-16985-4_12.

[13] A. Bonifati, W. Martens and T. Timm, An analytical study of
large SPARQL query logs, VLDB J. 29(2–3) (2020), 655–679.
doi:10.1007/s00778-019-00558-9.

[14] X. Zhang, M. Wang, M. Saleem, A.N. Ngomo, G. Qi and
H. Wang, Revealing Secrets in SPARQL Session Level,
in: International Semantic Web Conference (ISWC), LNCS,
Vol. 12506, Springer, 2020, pp. 672–690. doi:10.1007/978-3-
030-62419-4_38.

[15] E. Kharlamov, D. Hovland, M.G. Skjæveland, D. Bilidas,
E. Jiménez-Ruiz, G. Xiao, A. Soylu, D. Lanti, M. Rezk,
D. Zheleznyakov, M. Giese, H. Lie, Y.E. Ioannidis, Y. Ko-
tidis, M. Koubarakis and A. Waaler, Ontology Based
Data Access in Statoil, J. Web Semant. 44 (2017), 3–36.
doi:10.1016/j.websem.2017.05.005.

[16] N. Chakraborty, D. Lukovnikov, G. Maheshwari, P. Trivedi,
J. Lehmann and A. Fischer, Introduction to Neural Network
based Approaches for Question Answering over Knowledge
Graphs, CoRR abs/1907.09361 (2019). http://arxiv.org/abs/
1907.09361.

[17] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter
and D. Vrgoč, Foundations of Modern Query Languages for
Graph Databases, ACM Computing Surveys 50(5) (2017).
doi:10.1145/3104031.

[18] R. Pichler and S. Skritek, Containment and equiv-
alence of well-designed SPARQL, in: Principles of
Database Systems (PODS), ACM, 2014, pp. 39–50.
doi:10.1145/2594538.2594542.

[19] J. Salas and A. Hogan, Canonicalisation of Monotone
SPARQL Queries, in: International Semantic Web Conference
(ISWC), D. Vrandecic, K. Bontcheva, M.C. Suárez-Figueroa,
V. Presutti, I. Celino, M. Sabou, L. Kaffee and E. Simperl,
eds, Lecture Notes in Computer Science, Vol. 11136, Springer,
2018, pp. 600–616. doi:10.1007/978-3-030-00671-6_35.

[20] J. Salas and A. Hogan, Canonicalisation of Monotone
SPARQL Queries, http://aidanhogan.com/qcan/extended.pdf.

[21] C. Gutierrez, C.A. Hurtado, A.O. Mendelzon and J. Pérez,
Foundations of Semantic Web databases, J. Comput. Syst. Sci.
77(3) (2011), 520–541. doi:10.1016/j.jcss.2010.04.009.

[22] A. Hogan, Canonical Forms for Isomorphic and Equiv-
alent RDF Graphs: Algorithms for Leaning and La-
belling Blank Nodes, ACM TOW 11(4) (2017), 22:1–22:62.
doi:10.1145/3068333.

[23] P. Hayes and P.F. Patel-Schneider, RDF 1.1 Semantics, 2014,
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.

[24] R. Cyganiak, D. Wood and M. Lanthaler, RDF 1.1 Con-
cepts and Abstract Syntax, 2014, http://www.w3.org/TR/
rdf11-concepts/.

[25] A. Polleres and J.P. Wallner, On the relation be-
tween SPARQL1.1 and Answer Set Programming, J.
Appl. Non Class. Logics 23(1–2) (2013), 159–212.
doi:10.1080/11663081.2013.798992.

[26] M. Kaminski, E.V. Kostylev and B.C. Grau, Query
Nesting, Assignment, and Aggregation in SPARQL 1.1,
ACM Trans. Database Syst. 42(3) (2017), 17:1–17:46.
doi:10.1145/3083898.

[27] J. Pérez, M. Arenas and C. Gutiérrez, Semantics and Com-
plexity of SPARQL, in: International Semantic Web Confer-
ence (ISWC), LNCS, Vol. 4273, Springer, 2006, pp. 30–43.
doi:10.1007/11926078_3.

[28] A. Polleres, From SPARQL to rules (and back),
in: International Conference on World Wide Web
(WWW), C.L. Williamson, M.E. Zurko, P.F. Patel-
Schneider and P.J. Shenoy, eds, 2007, pp. 787–796.
doi:10.1145/1242572.1242679.

[29] F. Alkhateeb, J.-F. Baget and J. Euzenat, Extend-
ing SPARQL with regular expression patterns (for
querying RDF), Web Semantics 7(2) (2009), 57–73.
doi:10.1016/j.websem.2009.02.002.

[30] M. Arenas and J. Pérez, Federation and Navigation in SPARQL
1.1, in: Reasoning Web Summer School, LNCS, Vol. 7487,
Springer, 2012, pp. 78–111. doi:10.1007/978-3-642-33158-
9_3.

[31] E. Prud’hommeaux and C. Buil-Aranda, SPARQL
1.1 Federated Query, 2013, https://www.w3.org/TR/
sparql11-federated-query/.

[32] R. Cyganiak, A relational algebra for SPARQL, 2005,
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/
2005/HPL-2005-170.pdf.

http://arxiv.org/abs/1907.09361
http://arxiv.org/abs/1907.09361
http://aidanhogan.com/qcan/extended.pdf
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/sparql11-federated-query/
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-170.pdf
http://shiftleft.com/mirrors/www.hpl.hp.com/techreports/2005/HPL-2005-170.pdf

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 47

[33] E.V. Kostylev, J.L. Reutter, M. Romero and D. Vrgoc,
SPARQL with Property Paths, in: International Seman-
tic Web Conference (ISWC), Lecture Notes in Computer
Science (LNCS), Vol. 9366, Springer, 2015, pp. 3–18.
doi:10.1007/978-3-319-25007-6_1.

[34] P.F. Patel-Schneider and D. Martin, EXISTStential Aspects of
SPARQL, in: ISWC 2016 Posters & Demonstrations Track,
CEUR Workshop Proceedings, Vol. 1690, CEUR-WS.org,
2016.

[35] D. Hernández, C. Gutiérrez and R. Angles, The Problem
of Correlation and Substitution in SPARQL - Extended Ver-
sion, CoRR abs/1801.04387 (2018). http://arxiv.org/abs/1801.
04387.

[36] A. Seaborne and P.F. Patel-Schneider, SPARQL EX-
ISTS report, 2019, https://w3c.github.io/sparql-exists/docs/
sparql-exists.html.

[37] M. Schmidt, M. Meier and G. Lausen, Foundations of
SPARQL query optimization, in: International Conference on
Database Theory (ICDT), L. Segoufin, ed., ACM, 2010, pp. 4–
33. doi:10.1145/1804669.1804675.

[38] Y. Sagiv and M. Yannakakis, Equivalences Among Relational
Expressions with the Union and Difference Operators, J. ACM
27(4) (1980), 633–655. doi:10.1145/322217.322221.

[39] M. Arenas and M. Ugarte, Designing a Query Lan-
guage for RDF: Marrying Open and Closed Worlds,
ACM Trans. Database Syst. 42(4) (2017), 21:1–21:46.
doi:10.1145/3129247.

[40] S. Chaudhuri and M.Y. Vardi, Optimization of Real Con-
junctive Queries, in: Principles of Database Systems (PODS),
ACM Press, 1993, pp. 59–70. doi:10.1145/153850.153856.

[41] F.N. Afrati, M. Damigos and M. Gergatsoulis, Query con-
tainment under bag and bag-set semantics, Inf. Process. Lett.
110(10) (2010), 360–369. doi:10.1016/j.ipl.2010.02.017.

[42] A.K. Chandra and P.M. Merlin, Optimal Implementation
of Conjunctive Queries in Relational Data Bases, in: Sym-
posium on Theory of Computing (STOC), J.E. Hopcroft,
E.P. Friedman and M.A. Harrison, eds, ACM, 1977, pp. 77–90.
doi:10.1145/800105.803397.

[43] B. Trakhtenbrot, The impossibility of an algorithm for the de-
cidability problem on finite classes, in: Proceedings of the
USSR Academy of Sciences, Vol. 70, 1950, pp. 569–572.

[44] Y.E. Ioannidis and R. Ramakrishnan, Containment of Conjunc-
tive Queries: Beyond Relations as Sets, ACM Trans. Database
Syst. 20(3) (1995), 288–324. doi:10.1145/211414.211419.

[45] S. Cohen, W. Nutt and A. Serebrenik, Rewriting Aggregate
Queries Using Views, in: SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems (PODS), ACM Press,
1999, pp. 155–166. doi:10.1145/303976.303992.

[46] A. Letelier, J. Pérez, R. Pichler and S. Skritek, Static
analysis and optimization of semantic web queries,
ACM Trans. Database Syst. 38(4) (2013), 25:1–25:45.
doi:10.1145/2500130.

[47] M.W. Chekol, J. Euzenat, P. Genevès and N. Layaïda, Evaluat-
ing and Benchmarking SPARQL Query Containment Solvers,
in: International Semantic Web Conference (ISWC), H. Alani,
L. Kagal, A. Fokoue, P. Groth, C. Biemann, J.X. Parreira,
L. Aroyo, N.F. Noy, C. Welty and K. Janowicz, eds, Lec-
ture Notes in Computer Science, Vol. 8219, Springer, 2013,
pp. 408–423. doi:10.1007/978-3-642-41338-4_26.

[48] T.A. Junttila and P. Kaski, Engineering an Efficient Canonical
Labeling Tool for Large and Sparse Graphs, in: Workshop on
Algorithm Engineering and Experiments (ALENEX), SIAM,
2007. doi:10.1137/1.9781611972870.13.

[49] C. Stadler, M. Saleem, A.N. Ngomo and J. Lehmann, Effi-
ciently Pinpointing SPARQL Query Containments, in: Inter-
national Conference on Web Engineering (ICWE), T. Mikko-
nen, R. Klamma and J. Hernández, eds, Lecture Notes in
Computer Science, Vol. 10845, Springer, 2018, pp. 210–224.
doi:10.1007/978-3-319-91662-0_16.

[50] S. Chu, C. Wang, K. Weitz and A. Cheung, Cosette: An Au-
tomated Prover for SQL, in: Conference on Innovative Data
Systems Research (CIDR), www.cidrdb.org, 2017.

[51] S. Chu, B. Murphy, J. Roesch, A. Cheung and D. Suciu, Ax-
iomatic Foundations and Algorithms for Deciding Semantic
Equivalences of SQL Queries, Proc. VLDB Endow. 11(11)
(2018), 1482–1495. doi:10.14778/3236187.3236200.

[52] Q. Zhou, J. Arulraj, S.B. Navathe, W. Harris and D. Xu, Au-
tomated Verification of Query Equivalence Using Satisfiability
Modulo Theories, Proc. VLDB Endow. 12(11) (2019), 1276–
1288. doi:10.14778/3342263.3342267.

[53] K. Thompson, Regular Expression Search Algo-
rithm, Commun. ACM 11(6) (1968), 419–422.
doi:10.1145/363347.363387.

[54] J. Hopcroft, An n log n algorithm for minimizing states in a fi-
nite automaton, in: Theory of machines and computations, El-
sevier, 1971, pp. 189–196.

[55] J.A. Brzozowski and E.J. McCluskey, Signal flow graph
techniques for sequential circuit state diagrams, IEEE
Transactions on Electronic Computers (1963), 67–76.
doi:10.1109/PGEC.1963.263416.

[56] M. Dürst and M. Suignard, Internationalized Resource Iden-
tifiers (IRIs), Vol. 3987, 2005, pp. 1–46, https://tools.ietf.org/
html/rfc3987. doi:10.17487/RFC3987.

[57] C. Stadler, J. Lehmann, K. Höffner and S. Auer, LinkedGeo-
Data: A core for a web of spatial open data, Semantic Web 3(4)
(2012), 333–354. doi:10.3233/SW-2011-0052.

[58] M.M. Haklay and P. Weber, OpenStreetMap: User-Generated
Street Maps, IEEE Pervasive Comput. 7(4) (2008), 12–18.
doi:10.1109/MPRV.2008.80.

[59] H. Glaser, I. Millard and A. Jaffri, RKBExplorer.com: A
Knowledge Driven Infrastructure for Linked Data Providers,
in: European Semantic Web Conference (ESWC), Lecture
Notes in Computer Science, Vol. 5021, Springer, 2008,
pp. 797–801. doi:10.1007/978-3-540-68234-9_61.

[60] K. Möller, T. Heath, S. Handschuh and J. Domingue, Recipes
for Semantic Web Dog Food - The ESWC and ISWC Metadata
Projects, in: International Semantic Web Conference (ISWC),
Lecture Notes in Computer Science, Vol. 4825, Springer, 2007,
pp. 802–815. doi:10.1007/978-3-540-76298-0_58.

[61] A.G. Nuzzolese, A.L. Gentile, V. Presutti and A. Gangemi,
Conference Linked Data: The ScholarlyData Project, in:
International Semantic Web Conference (ISWC), Lecture
Notes in Computer Science, Vol. 9982, 2016, pp. 150–158.
doi:10.1007/978-3-319-46547-0_16.

[62] C. Stadler, M. Saleem, A.N. Ngomo and J. Lehmann, Effi-
ciently Pinpointing SPARQL Query Containments, in: Interna-
tional Conference Web Engineering (ICWE), Lecture Notes in
Computer Science, Vol. 10845, Springer, 2018, pp. 210–224.
doi:10.1007/978-3-319-91662-0_16.

http://arxiv.org/abs/1801.04387
http://arxiv.org/abs/1801.04387
https://w3c.github.io/sparql-exists/docs/sparql-exists.html
https://w3c.github.io/sparql-exists/docs/sparql-exists.html
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987

48 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

[63] M.W. Chekol, J. Euzenat, P. Genevès and N. Layaïda, SPARQL
Query Containment Under SHI Axioms, in: AAAI Conference
on Artificial Intelligence, AAAI Press, 2012.

[64] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi,
R. Rosati and M. Zakharyaschev, Ontology-Based Data Ac-
cess: A Survey, in: International Joint Conference on Ar-
tificial Intelligence (IJCAI), ijcai.org, 2018, pp. 5511–5519.
doi:10.24963/ijcai.2018/777.

Appendix A. Proofs

A.1. Proofs for Section 6

Herein we provide the proofs for the lemmas and
theorems enumerated in the body of the paper.

A.1.1. Proof for Lemma 6.1
First assume that Q does not contain a literal sub-

ject. Define G to be the result of replacing all vari-
ables in Q with an IRI, say :x. Observe that G is a
valid RDF graph. Define D to be the dataset with the
default graph G. Let µ denote the solution such that
dom(µ) = vars(Q) and µ(v) = :x for all v ∈ dom(µ).
Observe that µ ∈ Q(D). Hence there exists a dataset D
such that Q(D) is non-empty: Q is satisfiable.

Next assume that Q contains a literal subject. Take
any blank node mapping α and solution mapping µ.
Observe that µ(α(Q)) will still contain a literal subject,
and hence for any RDF graph G, blank node mapping
α and solution mapping µ, it holds that µ(α(Q)) ⊈
G as G cannot contain a triple with a literal subject.
Hence Q cannot have any solution over any dataset, Q
is unsatisfiable, and the result holds.

A.1.2. Proof for Lemma 6.2
Recall: UNION(Q1, . . . ,Qn)(D) =

⋃n
i=1 Qi(D)

(with union being bag or set union depending on the
semantics). The result is (always) empty if and only if
all Qi(D) are (always) empty. Removing any Qk such
that Qk(D) is (always) empty will not affect the results
of the query. Thus the result holds.

A.1.3. Proof for Lemma 6.3
Take any Qi (1 ⩽ i ⩽ n). Given any dataset

D, for any solution µ ∈ Qi(D), there must exist a
corresponding solution λi(µ) ∈ λi(Qi)(D) with the
same multiplicity, where dom(λi(µ)) = λi(dom(µ)),
and λi(µ)(λi(v)) = µ(v), i.e., a solution that is the
same but with variables renamed per λi. Furthermore,
SELECTV(Qi)(D) = SELECTV(λi(Qi))(D) as by defi-
nition λi does not rewrite variables in V . We now have:

SELECTV(UNION(Q1, . . . ,Qn)) ≡

UNION(SELECTV(Q1), . . . , SELECTV(Qn)) ≡

UNION(SELECTV(λ1(Q1)), . . . , SELECTV(λn(Qn))) ≡

SELECTV(UNION(λ1(Q1), . . . , λn(Qn)))

which concludes the proof.

A.1.4. Proof for Lemma 6.4
Let V = pvars(Q) denote the possible variables

of Q; then, for any dataset D, if µ ∈ Q(D) then
dom(µ) ⊆ V . For each solution µ ∈ Q(D), the projec-
tion SELECTV′(Q)(D) produces a solution µ′ such that
dom(µ′) ⊆ V ′ ∩ dom(µ) and µ ∼ µ′, while the pro-
jection SELECTV′∪V′′(Q) produces a solution µ′′ such
that dom(µ′′) = (V ′ ∪ V ′′) ∩ dom(µ) and µ ∼ µ′′. But
since dom(µ) ⊆ V and V ∩ V ′′ = ∅, this means that
dom(µ) ∩ V ′′ = ∅. Hence dom(µ′′) = (V ′ ∪ V ′′) ∩
dom(µ) = V ′∩dom(µ) = dom(µ′). Further given that
µ ∼ µ′, µ ∼ µ′′, dom(µ′) = dom(µ′′) ⊆ dom(µ),
we can conclude that µ′ = µ′′. We have thus shown a
one-to-one mapping from solutions of the form µ′ to
µ′′ such that µ′ = µ′′, and thus the result holds.

A.1.5. Proof for Lemma 6.5
First we prove that if vars(Q) = V and bnodes(Q) =

∅, then DISTINCT(SELECTV(Q)) ≡ SELECTV(Q). It
suffices to show that SELECTvars(Q)(Q) cannot produce
duplicate results, which we will now prove by contra-
diction. Assume a dataset D such that there exists a
solution µ where SELECTvars(Q)(Q)(D)(µ) > 1; i.e.,
the solution appears more than once. Since all vari-
ables are projected, SELECTvars(Q)(Q) ≡ Q. For µ to
be duplicated, there must then exist multiple blank
node mappings α such that dom(α) = bnodes(Q) and
µ(α(Q)) ⊆ D (see Table 8), but since bnodes(Q) = ∅,
there is only the single empty mapping α, and hence
we have a contradiction. The case vars(Q) ⊊ V fol-
lows from this result and Lemma 6.4.

Next we prove that if vars(Q) ⊈ V or bnodes(Q) ̸=
∅, and Q is satisfiable, then DISTINCT(SELECTV(Q)) ̸≡
SELECTV(Q). It suffices to show that there exists a
dataset D for which SELECTV(Q) can produce dupli-
cates if V ̸= vars(Q) or bnodes(Q) ̸= ∅. Let µ denote
a solution mapping such that dom(µ) = V and for all
v ∈ dom(µ), µ(v) = :x. Let µ′ and µ′′ denote two
solution mappings such that dom(µ′) = dom(µ′′) =
vars(Q)\V and for all v ∈ vars(Q)\V , µ′(v) = :y and
µ′′(v) = :z. Let α′ and α′′ denote two blank node map-
pings such that dom(α′) = dom(α′′) = bnodes(Q)
and for all b ∈ bnodes(Q), α′(b) = :y and α′′(b) =
:z. Consider a dataset D whose default graph is de-
fined as µ(µ′(α′(Q))) ∪ µ(µ′′(α′′(Q))); this is a valid

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 49

RDF graph as Q is satisfiable and thus does not contain
literal subjects. We see that SELECTV(Q)(D)(µ) ⩾ 2,
where the mapping to :y and the mapping to :z (be
they blank node mappings or solution mappings) are
counted in the multiplicity of µ. Thus there exists a
dataset D for which SELECTV(Q) can produce dupli-
cate solutions, which concludes the proof.

A.1.6. Proof for Lemma 6.6
As before, we first prove that if blank nodes are not

present (bnodes(Q) = ∅), all variables are projected
(vars(Q) ⊆ V) and no BGP has the same set of vari-
ables (vars(Qi) ̸= vars(Q j) for all 1 ⩽ i < j ⩽ n), then
SELECTV(UNION(Q1, . . . ,Qn)) cannot produce dupli-
cate results. We know from Lemma 6.5 that if blank
nodes are not present and all variables are projected,
then no individual BGP in Q1, . . . ,Qn can produce du-
plicate results. Hence we are left to check for dupli-
cates produced by unions of BGPs. We will assume
for the purposes of contradiction that there exists a
dataset D and a solution µ such that µ ∈ Qi(D) and
µ ∈ Q j(D) where 1 ⩽ i < j ⩽ n. However, µ ∈ Qi(D)
implies that dom(µ) = vars(Qi), while dom(µ) =
vars(Q j) implies that dom(µ) = vars(Q j). Given the
assumption that vars(Qi) ̸= vars(Q j), it follows that
dom(µ) ̸= dom(µ): a contradiction. It then holds as
a consequence that if vars(Q) = V , bnodes(Q) = ∅
and vars(Qi) ̸= vars(Q j) for all 1 ⩽ i < j ⩽
n, then DISTINCT(SELECTV(UNION(Q1, . . . ,Qn))) ≡
SELECTV(UNION(Q1, . . . ,Qn)). The special case of
vars(Q) ⊊ V follows from this result and Lemma 6.4.

In the other direction, we are left to show that if
vars(Q) ⊈ V , or bnodes(Q) ̸= ∅, or there exist 1 ⩽ i <
j ⩽ n such that vars(Qi) = vars(Q j), then it follows
that DISTINCT(SELECTV(UNION(Q1, . . . ,Qn))) ̸≡
SELECTV(UNION(Q1, . . . ,Qn)). First, if vars(Q) ⊈ V
or bnodes(Q) ̸= ∅, then Lemma 6.5 tells us that an
individual basic graph pattern with a blank node or
non-projected variable can produce duplicates. Hence
we assume that vars(Q) ⊆ V and bnodes(Q) = ∅,
and show that if there exists 1 ⩽ i < j ⩽ n such
that vars(Qi) = vars(Q j), then duplicates can always
arise for the query SELECTV(UNION(Q1, . . . ,Qn)). Let
µ be a solution such that dom(µ) = vars(Qi) =
vars(Q j) and µ(v) = :x for all v ∈ dom(µ). Con-
sider a dataset D whose default graph is defined as
µ(Qi) ∪ µ(Q j); again this is an RDF graph as Qi and
Q j are assumed to be satisfiable. Now µ ∈ Qi(D)
and µ ∈ Q j(D), and since all variables are pro-
jected, we conclude that µ will be duplicated in
SELECTV(UNION(Q1, . . . ,Qn))(D). The result holds.

A.1.7. Proof for Lemma 6.7
This follows from the fact that each step preserves

the congruence of Q, as follows:

1. property path elimination: by definition, Table 9;
2. union normalisation: proven by Pérez et al [9];
3. unsatisfiability normalisation: Lemmas 6.1, 6.2;
4. variable normalisation: Lemmas 6.3, 6.4;
5. set vs. bag normalisation: Lemmas 6.5, 6.6.

Since congruence is an equivalence relation, it is tran-
sitive, and thus the composition of multiple steps
where each preserves congruence also preserves con-
gruence. The result thus holds.

A.1.8. Proof for Lemma 6.8
By definition, we have that R−(R(Q)) ≃ Q, where

R−(·) relies on a one-to-one mapping of blank nodes
to variables (namely ξ). Since L(·) performs a one-
to-one mapping of blank nodes to blank nodes in
R(Q), thus producing an isomorphic graph to R(G),
we can conclude that R−(L(R(Q))) produces a query
that is isomorphic to R−(R(Q)). Hence we have that
R−(L(R(Q))) ≃ R−(R(Q)) ≃ Q. Further given
that isomorphism implies congruence, we have that
R−(L(R(Q))) ∼= R−(R(Q)) ∼= Q. The result then holds
per the transitivity of congruence.

A.1.9. Proof for Lemma 6.9
We consider two cases.
SET SEMANTICS: Minimising CQs by comput-

ing their cores is a classical technique based on
the idea that two CQs are equivalent if and only
if they are homomorphically equivalent (with corre-
sponding projected variables [42]). Likewise the min-
imisation of UCQs is covered by Sagiv and Yan-
nakakis [38], who (unlike in the relational algebra
but analogous to SPARQL) allow UCQs with exis-
tential variables; however, their framework assumes
that each CQ covers all projected variables. Hence
the only gap that remains is the minimisation of
SPARQL UCQs where BGPs may not contain all pro-
jected variables. This result is quite direct since for
a set of variables V , two BGPs Q1 and Q2 such that
vars(Q1) ∩ V ̸= vars(Q2) ∩ V , and any dataset D, it
holds that SELECTV(Q1)(D) ∩ SELECTV(Q2)(D) = ∅
since for any solution µ1 ∈ SELECTV(Q1)(D) it holds
that dom(µ1) = vars(Q1) ∩ V , while for any solu-
tion µ2 ∈ SELECTV(Q2)(D) it holds that dom(µ2) =
vars(Q2) ∩ V , and vars(Q1) ∩ V ̸= vars(Q2) ∩ V .
Hence, checking containment within partitions of
BPGs formed by the projected variables they contain

50 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

does not miss containments. The result for set seman-
tics then follows from Sagiv and Yannakakis [38].

BAG SEMANTICS: UCQs are not minimised; thus
the result follows directly from R−(R(Q)) ∼= Q.

A.1.10. Proof for Theorem 6.1
The result holds as a direct corollary of Lem-

mas 6.7, 6.8, 6.9, and the transitivity of congruence,
which is an equivalence relation.

A.1.11. Proof for Lemma 6.10
If Q1 and Q2 are unsatisfiable, then per Lem-

mas 6.1, 6.2, U(Q1) = Q∅ and U(Q2) = Q∅, recall-
ing that Q∅ denotes the canonical unsatisfiable query.
Thus U(Q1) = U(Q2) and the result holds per premise
2 of Remark 6.1 since equality implies isomorphism.

A.1.12. Proof for Lemma 6.11
Since Q′

1 and Q′
2 are satisfiable, and evaluated un-

der set semantics, we know from the result of Chan-
dra and Merlin [42] that Q′

1 ≡ Q′
2 if and only if both

are homomorphically equivalent with respect to ho-
momorphisms that are the identity on projected vari-
ables. Now M(R(U(Q′

1))) computes the core of each
BGP, which is known to be unique modulo isomor-
phism [21]. Thus if Q′

1 ≡ Q′
2 and both are satis-

fiable, we have that M(R(U(Q′
1))) ≃ M(R(U(Q′

1))).
On the other hand, if Q′

1
∼= Q′

2, we know that there
exists a variable renaming such that ρ(Q′

1) ≡ Q′
2;

combining this with the fact that M(R(U(Q′
1))) ≃

M(R(U(ρ(Q′
1)))), and the fact that congruence is an

equivalence relation, we know that Q′
1
∼= Q′

2 implies
M(R(U(Q′

1))) ≃ M(R(U(Q′
2))). The result then holds

from premise 4 of Remark 6.1.

A.1.13. Proof for Lemma 6.12
Given a satisfiable BGP Q, and SELECTV(Q) such

that V \ vars(Q) ̸= ∅, then U(SELECTV(Q)) will
remove the unbound variables (V \ vars(Q)) from
V per Lemma 6.4, and thus U(SELECTV(Q)) =
U(SELECTV∩vars(Q)(Q)). As part of U(Q), during union
normalisation, blank nodes are rewritten to variables.
This leaves us with cases where V ⊆ vars(Q) and Q
does not contain blank nodes.

If V1 = vars(Q1), then Q′
1 cannot return duplicates

(Lemma 6.5), and since Q′
1
∼= Q′

2, then Q′
2 cannot re-

turn duplicates, and thus V2 = vars(Q2). Thus U(Q′
1)

and U(Q′
2) will add distinct in both cases, and the re-

sult follows from Lemma 6.11.
This leaves us with the case that V1 ⊆ vars(Q1). In

this case, Q′
1 will return duplicates for certain datasets

(Lemma 6.5), and must be evaluated under bag seman-
tics. Given that Q′

1
∼= Q′

2, this likewise means that Q′
2

returns duplicates. Under bag semantics, and assum-
ing that Q′

1 and Q′
2 are satisfiable, then Theorem 5.2 of

Chaudhuri and Vardi [40] tells us that Q′
1 ≡ Q′

2 if and
only if Q′

1 ≃ Q′
2 with an isomorphism that is the iden-

tity on projected variables. Noting that Q′
1
∼= Q′

2 im-
plies that there exists a variable renaming ρ such that
ρ(Q′

1) ≡ Q′
2, it follows that there exists ρ such that

ρ(Q′
1) ≃ Q′

2, or put more simply, that Q′
1 ≃ Q′

2 (with-
out the restriction on projected variables). The result
then follows from premise 1 of Remark 6.1.

A.1.14. Proof for Lemma 6.13
We show that given a satisfiable UCQ Q evalu-

ated under set semantics, the minimisation function
M(R(U(Q))) will produce an r-graph corresponding
to a minimal UCQ that is unique, modulo isomor-
phism, for the set of UCQs congruent to Q. The min-
imisation of CQs (i.e., unary UCQs) is covered by
Lemma 6.11. The minimisation of (non-unary) UCQs
is based on Corollary 4 of Sagiv and Yannakakis [38],
where we minimise the UCQ while maintaining this
equivalence relation, more specifically, such that each
BGP in the input UCQ will be contained in some BGP
of the output UCQ (with a containment homomor-
phism that is the identity on projected variables). Note
that this minimisation includes the removal of all un-
satisfiable BGPs (per Lemma 6.2; if all are removed,
then Lemma 6.10 applies as the UCQ is unsatisfiable).
There are, however, two non-deterministic elements to
consider in this minimisation:

– The containment only considers projected vari-
ables as fixed. Hence the naming of other vari-
ables (and blank nodes) in BGPs does not mat-
ter. However, this issue is resolved prior to min-
imisation by U(·), which maps blank nodes to
fresh (non-projected) variables, and then renames
non-projected variables in each BGP to fresh vari-
ables, per Lemma 6.3, such that the naming of
variables is deterministic modulo isomorphism.

– We non-deterministically choose one BGP from
each quotient set of equivalent BGPs with the
same projected variables. However, since BGPs
were previously minimised, all equivalent BGPs
are isomorphic, and hence the choice is determin-
istic modulo isomorphism.

Thus, given a satisfiable UCQ Q evaluated under set
semantics, M(R(U(Q))) will produce an r-graph cor-
responding to a minimal UCQ that is unique, mod-
ulo isomorphism, for the set of UCQs congruent to
Q. Returning to the claim, we note that Q1 and Q2

J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1 51

are satisfiable UCQs evaluated under set semantics
(with distinct), that Q1

∼= Q2, and thus we have that
M(R(U(Q1))) ≃ M(R(U(Q2))): the result holds per
premise 4 of Remark 6.1.

A.1.15. Proof for Lemma 6.14
Under bag semantics, U(·) removes all unsatisfiable

operands from the UCQ and M(·) acts as the identity
(no minimisation is applied). Per the results for CQs,
any minimisation of BGPs (aside from the implicit re-
moval of duplicate triple patterns) will reduce the mul-
tiplicity of results on some datasets. Likewise remov-
ing satisfiable BGPs will reduce the multiplicities for
any dataset where the removed BGP generates solu-
tions. This leaves one source of non-determinism (the
same as in the case for set semantics) per Lemma 6.3:
that non-projected variables across BGPs may have the
same label whereas the query is equivalent if they have
distinct labels. As before for set semantics, U(·), maps
blank nodes to fresh (non-projected) variables in the
case of bag semantics. This implies that if Q1

∼= Q2

then – letting Q′
1 and Q′

2 denote the result of removing
unsatisfiable BGPs from Q1 and Q2 and distinguishing
variables per Lemma 6.3 – Q′

1 ≃ Q′
2.

There are then two cases to consider:

1. Either Q1 or Q2 cannot return duplicates, per the
conditions of Lemma 6.6, but given that Q1

∼=
Q2, then this implies that both Q1 and Q2 cannot
return duplicates, which means that both satisfy
the conditions of Lemma 6.6, and thus both will
have distinct invoked by U(·).

2. Both Q1 and Q2 may return duplicates, i.e., they
do not satisfy the conditions of Lemma 6.6, and
in neither case will distinct be invoked by U(·).

Thus it holds that U(Q1) ≃ U(Q2), satisfying
premise 2 of Remark 6.1, and the result follows.

A.1.16. Proof for Lemma 6.15
Since Q′ cannot return duplicates and Q ∼= Q′, it

holds that Q cannot return duplicates, and hence Q
must satisfy the conditions of Lemma 6.5. Thus U(Q)
will add distinct, and we have that U(Q) ≃ U(Q′). The
result then follows per premise 2 of Remark 6.1.

A.1.17. Proof for Theorem 6.2
First we remark that for any EMQ Q, the first steps

of U(Q) – property path and union normalisation –
yield a UCQ. We denote by Q′

1 and Q′
2 the UCQs de-

rived from Q1 and Q2. We now consider the cases:

1. If Q′
1 or Q′

2 are unsatisfiable, then both are unsat-
isfiable, and the result holds from Lemma 6.10.

2. Otherwise (Q′
1 and Q′

2 are satisfiable):

(a) If Q′
1 and Q′

2 both use distinct, the result holds
from Lemma 6.13.

(b) If neither Q′
1 nor Q′

2 use distinct, the result
holds from Lemma 6.14.

(c) If Q′
1 uses distinct, and Q′

2 does not, then
Q′

1
∼= Q′

2 implies that Q′
2 cannot produce du-

plicates (since Q′
1 cannot). From this it follows

that Q′
1
∼= Q′

2
∼= DISTINCT(Q′

2). Now given
that Q′

1
∼= DISTINCT(Q′

2), it follows from
Lemma 6.13 that R−(L(M(R(U(Q′

1))))) =
R−(L(M(R(U(DISTINCT(Q′

2)))))) (noting that
Q′

1 and DISTINCT(Q′
2) use distinct). Further

given that Q′
2

∼= DISTINCT(Q′
2), it follows

from Lemma 6.15 that R−(L(M(R(U(Q′
2))))) =

R−(L(M(R(U(DISTINCT(Q′
2)))))). We have

R−(L(M(R(U(Q′
1))))) = R−(L(M(R(U(Q′

2))))).
(d) Otherwise, if Q′

1 does not use distinct, and Q′
2

uses distinct, the result follows from the previ-
ous case and the symmetry of congruence.

This concludes the proof.

A.1.18. Proof for Theorem 6.3
Let Q′

1 denote R−(L(M(R(U(Q1))))), and Q′
2 de-

note R−(L(M(R(U(Q2))))).
Q′

1 = Q′
2 implies Q1

∼= Q2: follows from Theo-
rem 6.1 (soundness), which tells us that Q1

∼= Q′
1 and

Q′
2
∼= Q2, from which we have that Q1

∼= Q′
1 = Q′

2
∼=

Q2, and thus that Q1
∼= Q2 by transitivity.

Q1
∼= Q2 implies Q′

1 = Q′
2: is given in Theorem 6.2

(completeness).

A.2. Proofs for Section 7

A.2.1. Proof for Theorem 7.1
The result holds from observing that given an EMQ

Q, each step of the process returns precisely the same
result as in the case of monotone canonicalisation.
In particular, A(Q) applies filter normalisation and
local variable normalisation in addition to U(·), but
neither filters nor local variables appear in EMQs.
Extensions to other functions do not affect EMQs
in any way. Hence given an EMQ Q, it holds that
R−(L(M(R(A(Q))))) = R−(L(M(R(U(Q))))). The re-
sult then follows from Theorem 6.3.

A.2.2. Proof for Theorem 7.2
We show that each step preserves congruence.
In A(Q) we apply filter normalisation, local variable

normalisation, and UCQ normalisation. Each step pre-
serves query equivalence, and thus congruence.

52 J. Salas and A. Hogan / Semantics and Canonicalisation of SPARQL 1.1

Next we compute the r-graph, and apply minimisa-
tion. However, if the query is not in UCQ normal form,
we only apply minimisation on BGPs and UBGPs con-
tained in the query, considering any variables external
to the (U)BGP as being “projected”, and thus fixed.
More formally, taking a UBGP Q′ inside a larger query
Q, and letting V ′ denote the variables of Q used both
inside and outside Q, observe that we can replace Q′

with SELECTV′(Q′) inside Q without changing the se-
mantics of Q as variables of vars(Q′) not in V ′ are not
used elsewhere in Q, and since Q is a query, it must
contain a SELECT, ASK, CONSTRUCT or DESCRIBE
clause, whose results will not change if a variable not
mentioned in the clause is projected away. Now since

SELECTV′(Q′) is a UCQ, the minimisation process
preserves congruence per Theorem 7.2.

Regarding the r-graph, by definition R−(R(Q)) =
Q, with the exception of property paths, but in the lat-
ter case it is clear that R−(R(Q)) ∼= Q since the r-graph
representation of RPQs relies on well-known automata
techniques – Thompson’s construction, subset expan-
sion, Hopcroft’s algorithm and state elimination – that
will produce an equivalent RPQ (similar automata-
based techniques were also used by Kostylev et al. [33]
for their analysis of the containment of property paths).
Thus R−(L(M(R(A(Q))))) ∼= R−(M(R(A(Q)))) ∼=
R−(R(A(Q))) ∼= R−(R(Q)) ∼= Q, and the result holds
per the transitivity of the ∼= relation.

	Introduction
	RDF Data Model
	Terms and Triples
	Graph
	Simple Entailment and Equivalence
	Isomorphism
	Leanness and core
	Merge

	SPARQL 1.1 Semantics
	Query Syntax
	Datasets
	Services
	Query Evaluation
	Solution mappings
	Set vs. bag vs. sequence semantics

	Query Patterns: Set Semantics
	Set algebra
	Navigational graph patterns
	Service federation
	Set evaluation

	Query Patterns: Bag Semantics
	Bag algebra
	Bag evaluation

	Group-by Patterns: Aggregation
	Aggregation algebra
	Aggregation evaluation

	Sequence Patterns and Semantics
	Sequence algebra
	Sequence evaluation

	Safe and possible variables
	Issues with (NOT) EXISTS
	Queries
	Dataset modifier
	Non-determinism
	Relationships between the semantics
	Query containment and equivalence
	Query isomorphism and congruence
	Query classes
	Complexity

	Problem
	Related Works
	Canonicalisation of Monotone Queries
	UCQ normalisation
	Property path elimination
	Union normalisation
	Unsatisfiability normalisation
	Variable normalisation
	Set vs. bag normalisation
	Summary

	Graph Representation
	Minimisation
	BGP minimisation
	Union minimisation
	Summary

	Canonical Labelling
	Inverse mapping
	Soundness and completeness
	Soundness
	Completeness
	Complexity

	Canonicalisation of SPARQL 1.1 Queries
	Algebraic rewritings
	Filter normalisation
	Local variable normalisation
	UCQ normalisation
	Well-designed pattern normalisation
	Summary

	Graph Representation
	Expressions
	Property Paths

	Minimisation and Canonicalisation
	Inverse Mapping
	Soundness, completeness and incompleteness
	Soundness and completeness for EMQs
	Soundness for SPARQL 1.1
	Complexity
	Incompleteness for SPARQL 1.1

	Experiments
	Implementation: QCan
	Real-world query logs
	Canonicalisation runtimes
	Duplicates found

	Comparison with Existing Systems
	Stress test

	Conclusion
	References
	Appendix A. Proofs
	Proofs for Section 6
	Proof for Lemma 6.1
	Proof for Lemma 6.2
	Proof for Lemma 6.3
	Proof for Lemma 6.4
	Proof for Lemma 6.5
	Proof for Lemma 6.6
	Proof for Lemma 6.7
	Proof for Lemma 6.8
	Proof for Lemma 6.9
	Proof for Theorem 6.1
	Proof for Lemma 6.10
	Proof for Lemma 6.11
	Proof for Lemma 6.12
	Proof for Lemma 6.13
	Proof for Lemma 6.14
	Proof for Lemma 6.15
	Proof for Theorem 6.2
	Proof for Theorem 6.3

	Proofs for Section 7
	Proof for Theorem 7.1
	Proof for Theorem 7.2

