
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 1

Merging Web Tables for Relation Extraction
with Knowledge Graphs

Jhomara Luzuriaga, Emir Muñoz, Henry Rosales-Méndez, Aidan Hogan

Abstract—We propose methods for extracting triples from Wikipedia’s HTML tables using a reference knowledge graph. Our methods
use a distant-supervision approach to find existing triples in the knowledge graph for pairs of entities on the same row of a table,
postulating the corresponding relation for pairs of entities from other rows in the corresponding columns, thus extracting novel
candidate triples. Binary classifiers are applied on these candidates to detect correct triples and thus increase the precision of the
output triples. We extend this approach with a preliminary step where we first group and merge similar tables, thereafter applying
extraction on the larger merged tables. More specifically, we propose an observed schema for individual tables, which is used to group
and merge tables. We compare the precision and number of triples extracted with and without table merging, where we show that with
merging, we can extract a larger number of triples at a similar precision. Ultimately, from the tables of English Wikipedia, we extract 5.9
million novel and unique triples for Wikidata at an estimated precision of 0.718.

Index Terms—Web tables, relation extraction, information extraction, knowledge graphs, distant supervision, Wikidata, Wikipedia

F

1 INTRODUCTION

MOST Web content is published as semi-structured
HTML documents intended for human – rather than

machine – consumption. Automated integration of infor-
mation from multiple sources on the Web thus remains
a challenging problem [1]. Addressing these limitations,
various research initiatives have fostered the publication of
structured content (data) on the Web, including the Semantic
Web [2], Linked Data [3], etc. Thousands of graph-structured
knowledge bases (aka. knowledge graphs) have been pub-
lished using related standards [4]. Novel applications using
such knowledge graphs continue to emerge; for example,
the Wikidata [5] knowledge graph is used not only to
structure and curate the data underlying Wikipedia and
related projects, but has also become an important source
for a variety of data-intensive applications, such as Apple’s
Siri [6], the WikiGenomes project [7], etc.

Despite these initiatives, the majority of Web content
remains unstructured or semi-structured [8, 9]. Automati-
cally extracting structured data from unstructured content
(i.e., text) with high precision and recall remains a major
challenge [10]. Hence a variety of research works have
rather targeted extraction from semi-structured elements of
Web documents, particularly Web tables, which offer a rich
source of factual content [11, 12, 13]. These works have ad-
dressed the extraction of various structured elements from
Web tables, including entities, column types, and relations,
with the latter being the most challenging task [10].

Building upon our previous work [14], in this paper we
propose an approach for extracting triples from Web tables.
We evaluate our approach for extracting triples from the
tables of Wikipedia using Wikidata as a reference knowl-
edge graph. Our method is based on distantly-supervised
relation extraction that involves mapping table entities to
the reference knowledge graph, detecting existing triples
between pairs of entities in the same row, and then propos-

Manuscript received January XX, XXXX; revised January XX, XXXX.

ing the corresponding relation between pairs of entities
in the corresponding columns of other rows. This process
produces a set of candidate triples that are then refined
using binary classifiers that, based on selected features,
output triples assigned to a “correct” class denoting claims
that are verifiably true. Though initial results were promis-
ing [14], they revealed a key limitation: Web tables tend to be
small [15, 16], where the tables of Wikipedia have around
10–15 rows each, on average [14], implying that limited
information is available in individual tables for extraction
and classification purposes. Our previous work [14] and
most related approaches (e.g., [12, 17, 18], etc.) apply extrac-
tion with respect to individual tables, thus facing the same
fundamental limitation of processing small tables.

Inspired by recent works [15, 16, 19], we extend our
previous work [14] with a technique for grouping and
merging similar tables prior to applying relation extraction.
The goal is to increase the local information available,
which we hypothesise will allow for the extraction of more
triples at a similar precision assuming a corpus of tables
with many “similar” (small) tables [15, 16]. However, as
Lehmberg and Bizer [16] observe, simply merging tables
with the same headers is not effective for Wikipedia’s tables,
which are highly diverse in nature. We thus propose an
observed schema, which can represent hierarchical headers,
column data-types, among other information. The input
tables are partitioned according to their observed schemata
and refined to avoid conflicting relations. The tables in each
partition are then merged (unioned) and used for extraction.

We evaluate relation extraction from Wikipedia tables
with respect to the Wikidata knowledge graph, comparing
the precision of triples extracted and the number of triples
extracted with and without a priori table merging.

MOTIVATING EXAMPLE: Figure 1 shows HTML tables from
two Wikipedia articles detailing information about awards.
The tables indicate the year (Year) of the awards (Award(s))

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 2

for which the given work (Nominated work) was awarded
or nominated (Result) in a given category (Category). Most
cells offer links that point to another Wikipedia article. These
links can be mapped directly to entities in the Wikidata
knowledge graph (e.g., wk:Breaking Bad ↔ wd:Q1079).1

Unlike the upper table, the first column (Year) of the lower
table links to the specific annual event for the award.

Mapping Wikipedia links to Wikidata entities, we
can find pairs of entities on the same row of
the tables with existing relations. Consider the ta-
ble in Figure 1a; in Wikidata we can find the triple
(wd:Q1079, wdt:P1411, wd:Q1357770) indicating that Break-
ing Bad was nominated for Best Guest Starring Role on
Television, or the triple (wd:Q1357770, wdt:P31, wd:Q105447),
indicating that Best Guest Starring Role on Television is an
instance of Saturn Award. We can then propose the Wikidata
property wdt:P1411 as holding from each entity in the Nom-
inated work column to the entity in the Category column of
the same row; we can likewise propose the property wdt:P31
as holding between the Category and Awards columns.

With this process, we may miss triples between the main
entity of the article – often not appearing in the table –
and the entities of the table. For example, in Wikidata we
find the triple (wd:Q1079, wdt:P161, wd:Q726142), indicating
that Breaking Bad has cast member Giancarlo Esposito. As
a pre-processing step, we thus extend each table with an
additional column copying the main entity on each row,
allowing us to detect triples involving the main entity.

Associating properties to pairs of table columns, we
extract triples that do not already exist in Wikidata,
which are proposed as candidate triples. Such triples
may be incorrect. Consider, for example, the triple
(wd:Q132351, wdt:P166, wd:Q697007) in Wikidata indicating
that The Usual Suspects was awarded Best Cast. Within the
candidate set, we will then find proposed triples such as
(wd:Q1079, wdt:P166, wd:Q1357770) indicating that Breaking
Bad was awarded Best Guest Starring Role on Television,
when in reality it was only nominated. To increase precision,
we associate each candidate triple with features extracted
from the table and apply binary classification with the goal
of partitioning correct and incorrect triples; an example of
a key feature is the ratio of rows for which the proposed
relation holds, where the fact that wdt:P166 holds for few
rows indicates that the relation may be incorrect.

Conversely, the table of Figure 1a has much fewer
rows. The only existing triple we will find in Wikidata
is (wd:Q19798734, wdt:P161, wdt:Q27452406), indicating that
Stranger Things has cast member Sadie Sink. Hence we
miss candidate triples for wdt:P1411 (nominated for), wdt:P31
(instance of), etc. Furthermore, features extracted for the
candidate triples of this table will be based on information
from only two rows, making classification more prone to
noise for smaller tables. The main extension we propose
in this work is to partition the table corpus into groups
according to an observed schema (defined later), merging
the tables in each partition before applying the aforemen-
tioned relation extraction process. Our hypothesis is that this

1. In this paper, we use the following prefixes:
wk: http://en.wikipedia.org/wiki/
wd: http://www.wikidata.org/entity/
wdt: http://www.wikidata.org/prop/direct/

(a) wk:Giancarlo Esposito

(b) wk:Sadie Sink

Fig. 1. Two example HTML tables from Wikipedia (cba)

merging process will allow for more triples to be extracted
with similar precision due to (1) triples being proposed
across small tables that are merged together; (2) more robust
statistical features being computed from larger tables. For
example, if we merge the two tables of Figure 1, then the
wdt:P31 relation found on rows of the table of Figure 1a
across the columns Category and Awards can be used to
propose triples from the rows of Figure 1b between the same
columns. Also the features extracted from Figure 1b for the
triples extracted would be based on more rows.

CONTRIBUTIONS AND OUTLINE: We first discuss related
works (§2) and the setting for our approach (§3). Subse-
quently, our main contributions are as follows: we propose
an approach using distant supervision for extracting triples
from Web tables at large scale based on a reference knowl-
edge graph (§4); we propose a notion of observed schema,
by which we can merge the tables in a large corpus prior
to applying relation extraction (§5); we evaluate these pro-
posals for extracting triples from Wikipedia’s tables using
Wikidata as a reference knowledge graph (§6). We finally
summarise the main conclusions of the work, discussing
current limitations and future directions (§7).

With respect to our previous work [14], the most impor-
tant extension is the method for merging tables based on
observed schemata. Other extensions include: the definition
of novel property-based features for classification capturing
information about multiplicities and domain/range type
compatibility; evaluation with additional classification mod-
els and methods; as well as migrating from DBpedia to
Wikidata as a reference knowledge graph.

2 RELATED WORK

As mentioned in the introduction, a number of previous
works have addressed a variety of Information Extraction
tasks over Web tables. We first discuss works that propose
extraction methods for individual tables before discussing
proposals that merge multiple tables.

2.1 Information Extraction from Individual Tables
We discuss works that extract structure from tables, divided
into various sub-tasks that can be considered [10].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 3

(a) wk:Fresh (1994 film) (b) wk:List of career achievements by Peter Sagan

Fig. 2. An example of (a) an attribute–value (aka. infobox) table and (b) a matrix table from Wikipedia (cba)

TABLE EXTRACTION AND NORMALISATION: A straightfor-
ward approach to extract tables from webpages is to simply
use the corresponding HTML tags, such as <table>, <th>
(header), <tr> (row), <td> (data/cell), etc., to identify the
table and extract its structure. However, HTML tables are of-
ten defined with visual aesthetic, rather than machine read-
ability, in mind, meaning that tables may contain spanned
rows or columns (see, e.g., Breaking Bad in Figure 1), may
contain blank columns for spacing, may contain nested or
split tables, may use bold font instead of explicit header
tags, may contain variable-length rows, etc. The goal of table
normalisation is then to extract a matrix from the table [20],
optionally denoting headers. This process may involve du-
plicating spanned content into individual cells, unnesting
tables, detecting non-standard header representations, etc.

TABLE CLASSIFICATION: Various works address the classi-
fication of web tables, which allows for filtering irrelevant
tables, or adapting the extraction process for different types
of tables. A coarse categorisation separates genuine tables
(with factual content) from non-genuine tables (used for
forms, navigation, etc.) [12, 21]. Crestan and Pantel [13] pro-
pose a more detailed classification scheme based on twelve
table types, including listing, attribute-value, matrix, enumer-
ation, etc. Diverse tables are likewise found in Wikipedia,
where Figure 2a gives an example of an attribute–value
(aka. infobox) table, while Figure 2b gives an example of a
complex matrix with both horizontal and vertical headings.
This diversity of tables complicates automated interpreta-
tion. Most works tend to focus on one type of table or
another, with info-box tables (e.g., [22, 23]) and relational
tables (e.g., [17, 18, 24, 25, 26]) – tables with a single vertical
header as the first row(s) of the table along the lines of
Figure 1 – being the most common targets.

ENTITY LINKING: In the table of Figure 1a, while some cells
are linked to Wikipedia articles, others (such as Primetime
Emmy Awards) are not. Given a target knowledge base (e.g.,
Wikipedia, Wikidata, etc.), the goal of Entity Linking is to
propose links for the cells of Web tables where not present.
While Entity Linking has mostly been explored for text [27],
specialised techniques have been proposed for tables, ex-
ploiting the additional structure available in the latter case.
One such approach is TabEL [28], which uses a co-citation
measure for disambiguating (related) entities in the same
table. Other approaches adopt methods based on proba-
bilistic graphical models [29], semantic embeddings [25, 30],

ontology matching [30], neural networks [31], etc.

COLUMN TYPING: Annotating the columns of tables with
types can be used for retrieving tables or in further ex-
traction steps. Types may vary from generic datatypes –
entity, numeric, date, etc. – to classes extracted from a
knowledge-base – person, movie, etc. Wang et al. [32]
propose to use Hearst patterns to extract a taxonomy of
types from text, used to classify entities and thereafter
columns. Other approaches rely on the classes of entities
detected in the columns taken from an existing knowledge
base [17, 18, 24, 25, 26], possibly combined with string
matching between column and class labels [26].

ATTRIBUTE EXTRACTION: Attribute extraction identifies a
subject column (or columns) that identify the primary en-
tities described by the table. The other columns are then
considered to be attributes of the subject entities and can
be matched – for example – to properties in a knowledge
base that denote the given relation. A common heuristic to
detect the subject column is to select the leftmost column
without repeated entities [12, 18, 33]; other approaches find
the textual column in any position with the most unique
entities [34], or use a classifier based on Support Vector
Machines trained on labelled data [18]. Though attribute
extraction is quite a popular approach, in many web tables
there is no clear subject column(s); for example, it is not clear
what the subject column(s) of the tables in Figure 1 would
be. Even with a clear subject, a table may denote relations of
interest not involving that subject; for example, in Figure 1,
there is a relevant part-of relation between the Category and
the Awards columns though neither appear to be subjects.

RELATION EXTRACTION: A more general approach is to
extract (typically binary) relations between any pair of
columns (rather than identifying a subject column). The
result is typically a set of pairs of columns associated with
a property that denotes the relation. Common approaches
involve distant supervision, where the existing triples in
a knowledge base for pairs of entities in the same row
of a table are used to generate candidates; and/or string
matching, which compares column names and property
labels in the knowledge base [17, 18, 24, 35].

2.2 Merging Tables

A number of works have recently proposed techniques to
merge web tables for a variety of applications including

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 4

table enrichment, data consolidation, visualisation, and in-
deed, information extraction. We now discuss works repre-
senting three methods for merging tables, namely table joins,
table unions, and hybrid approaches that combine both.

JOINED TABLES: Joining tables refers to a horizontal form
of merging, which, in general, involves computing relational
joins over source tables, thus creating a joined table that
combines the source tables’ columns. A main challenge is to
identify columns in different tables that can be joined, and
will produce non-empty tables. An early work was Google
Fusion Tables [36], which gathers, joins and visualises tables
for data exploration and management. Yakout et al. [37] pro-
posed to use table joins to enrich tables generated by users,
proposing additional sets of columns that may be of interest.
Given a Wikipedia table, Bhagavatula et al. [38] address the
problem of identifying columns in other tables upon which
the current table can be joined. The system proposed by
Lehmberg et al. [34] rather applies left-outer joins, further
consolidating (non-join) columns with compatible data.

UNION TABLES: Other works merge tables by applying a
relational union, thus combining the source tables’ rows.
Such approaches are motivated by observations of tables
with similar headers appearing on a given website due to
copying-and-pasting habits of editors, the use of templates,
etc. (see, e.g., Figure 1). Yoshida et al. [39] apply table clus-
tering based on columns that are particular to a given cluster
(e.g., a Birthday might indicate a cluster about people),
and then produce a union table for each cluster by also
matching and combining columns. Ling et al. [15] propose
to merge Web tables by taking the union of all tables with
the same header, further adding columns that identify the
contextual entities of individual tables. Nargesian et al. [40]
find tables in open data with headers that can be unioned
based on having matching columns with high overlap of
similar values from similar classes. Wang and He [41] aim
to synthesise mapping relations, which are binary relations
with a functional dependency; they also apply unions on
binary relations with many overlapping pairs and avoid
conflicts by not unioning relations that break the functional
dependency (i.e., giving two states for a single city). Can-
naviccio et al. [19] compute union tables from Wikipedia
but extract and merge binary relations; e.g., rather than
unioning the tables in Figure 1, they may extract and union
the column pair [Award(s), Category].

HYBRID MERGES: One could also consider combining joins
and unions. Lehmberg and Bizer [16] first compute union
tables from a large corpus of web tables. Thereafter, they
apply outer joins on the union tables and apply schema-
matching techniques to consolidate compatible columns
identified based on column names and the overlap in values
appearing in the columns. They further propose to use
the same entities in different tables with the same values
in different columns to identify compatible columns. The
authors show that these techniques improve results for table
typing, column typing and attribute extraction.

2.3 Novelty

Our goal is to apply relation extraction over the tables of
Wikipedia in order to extract novel triples for a knowledge

graph (namely Wikidata). We extend upon our previous
work [14], which provides a novel technique for extracting
triples from any pair of table columns, with finer-grained
triple-wise feature extraction and classification (as opposed
to labelling pairs of columns in the table with a relation). The
method further considers triples involving the protagonist
of the table: the entity of the article containing the table. We
extend upon our previous work by exploring new features
and new methods for unioning tables prior to extraction.

The approach of computing union tables has been stud-
ied previously [15, 16, 19, 40, 41]. Ling et al. [15] does not
consider relation extraction, rather focusing on extracting
contextual columns from the surrounding text. Nargesian
et al. [40] and Wang and He [41] rely on overlapping
rows to merge tables, which is too restrictive for Wikipedia
tables, which tend to be small and focussed on a particular
entity (see Figure 1 for two typical tables that we wish
to merge with no overlap), where we thus rather rely
on matching headers. Wang and He [41] further assume
functional dependencies for conflict resolution that do not
apply in the general case, though we will use a similar
feature (amongst many others) for classifying correct triples.
Wang and He [41] and Cannaviccio et al. [19] only apply
unions on pairs of columns, not full tables; we merge full
tables as all columns are useful to decide when to merge
or not, where, for example, merging pairs of columns like
[Year, Category] from Figure 1 extracted from all tables of
Wikipedia would merge information from unrelated tables.
Lehmberg and Bizer [16] apply both the union table ap-
proach of Ling et al. [15] and further methods for stitching
tables, but focus on predefined schema matching tasks, such
as attribute extraction; while their approach is well-suited
to tables generated from databases, the authors explicitly
mention that it does not work well for Wikipedia’s diverse
tables (which are filtered from their corpus).

Ultimately our method extracts 5.9 million novel triples
using the Wikidata vocabulary (its native entity and prop-
erty identifiers) from Wikipedia tables at a precision of 0.718.
The aforementioned works do not present similar results.

3 SETTING

We assume as input a knowledge graph, defined to be a
directed-edge labelled graph G := (V,E, P), where V is
a set of vertices, P a set of edge labels (aka. properties), and E
a set of edges (aka. triples) such that E ⊆ V ×P ×V . A triple
(s, p, o) ∈ E denotes a labelled edge s

p−→ o in the graph,
where we call s a subject, p a predicate, and o an object.
The vertices s and o denote entities while a triple denotes a
binary relation p(s, o) with the predicate p between them.

We further assume as input a set of tables. We define
a table T to be an m × n matrix, where T (i, j) denotes the
value in the ith column of the jth row of the table (1 ≤ i ≤ m,
1 ≤ j ≤ n). We assume that the first h rows (1 ≤ h <
n) of the table T form a header, where the rest of the table
forms the body. For convenience, we denote the header of
the table T by HT : the m × h matrix formed from the first
h rows of T (such that HT (i, j) = T (i, j) for 1 ≤ i ≤ m,
1 ≤ j ≤ h). We denote the body of the table T by BT : the
m × (n − h) matrix formed from the other rows of T (such

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 5

that BT (i, j) = T (i, j + h) for 1 ≤ i ≤ m, 1 ≤ j ≤ (n− h)).
We assume the body of the table to be non-empty (h < n).

Web tables can be parsed into this normalised represen-
tation using HTML tags. We assume that standard tech-
niques for table normalisation have been applied [14, 20] in
order to (1) duplicate the value of spanning cells into each
cell that they span; (2) un-nest tables; (3) consider vertical
headers beyond the horizontal header as data cells;2 (4) add
a blank header row if no header is provided. The result is a
table of the form T . If parsing and normalisation fails (e.g.,
due to syntax errors), the table is simply dropped.

We consider all tables of the class wikitable as input to
our approach; we thus exclude info-boxes (see Figure 2a)
for which dedicated approaches exist [22, 42]. Though our
approach works best for relational tables with (only) hori-
zontal headers, triples can be extracted from any table with
binary relations present in the rows; for example, from the
first two columns of the matrix of Figure 2b, we may ex-
tract triples such as (wd:Q506424, wdt:P527, wd:Q13603535),
indicating that UCI Road World Championships has part UCI
Road World Championships — Men’s road race.

Sometimes relations will extend from elements inside
tables to elements outside the table in the same web doc-
ument. Tables may thus be extended with columns to rep-
resent such elements [15]. In our case, we add a column
representing the protagonist of the table: the principal entity
that the web-page containing the table describes. Specifi-
cally, we add a column to each table T with a fixed and
unique header value (*Protagonist*, leaving subsequent
header rows blank), repeating the name of the protagonist
in each row of the column’s body.3 Given that the result is
again a table as before, we will henceforth implicitly assume
that the protagonist column has been added to the tables.

Finally, we consider that the content of the cells in the
tables can be linked to vertices in the knowledge graph.
More specifically, let T denote the set of all tables. Given a
table T and a knowledge graph G = (V,E, P), we define a
table link-set as a mapping λ : T→ T such that HT = Hλ(T)

and for all 1 ≤ i ≤ m, 1 ≤ j ≤ (n − h), Bλ(T)(i, j) := Vi,j
where Vi,j is an ordered (possibly empty) list of vertices
from V that are mentioned in the content of the cellBT (i, j).
This definition allows for multiple vertices of the knowledge
graph to be linked from a single cell; see the Category value
of the last row in Table 1a for a real-world example. We call
λ(T) the linked table of T . Given that we will work with
Wikipedia tables and the Wikidata knowledge graph, which
are interlinked, we can simply compute λ(T) based on the
links to Wikipedia articles embedded in cells (otherwise
Entity Linking could be applied [25, 28, 29, 30, 31]).
Example 1. In Figure 3, we show the normalised and linked

versions of the table from Figure 1b. In the normalised

2. For example, in Figure 2b, we consider HT to be the first row of
the table, while other vertical header cells such as Olympic Games and
Time trial will form part of BT .

3. Wikipedia contains list articles that do not directly refer to a “real-
world” protagonist. These cases could be detected based on filtering
article URLs containing List of; alternatively, Wikidata provides en-
tities corresponding to such articles, typed accordingly, that could be
used to avoid false positives (e.g., books whose title start with “List of
...”). However, these Wikidata entities for list articles have relations in
the knowledge graph, and such cases are not common overall. Hence
we choose to include such articles/entities as protagonists.

version, we highlight the duplication of the Stranger
Things value into the cells that the original cell spanned,
and also the addition of the protagonist column. In the
linked version, we highlight that cells may have zero or
more links to vertices of the knowledge graph, and that
links are ordered in terms of appearance.

4 RELATION EXTRACTION

Given a knowledge graph G = (V,E, P), an m × n input
table T with k header rows, and its linked version λ(T),
we now describe the process of extracting triples from T
with respect to G. The result of this process is a novel set of
triples E′ in the signature of G; in other words, we output
E′ ⊆ V ×P×V such thatE′∩E = ∅. We begin by extracting
an initial set of candidate triples using a distant supervision
approach. We then associate each candidate triple with a set
of features and train a binary classifier over those features to
predict if a given candidate triple is correct or not. We now
discuss each of these steps in turn.

4.1 Extracting Candidate Triples

We identify candidate triples by finding existing triples from
the knowledge graph holding between pairs of entities in
different columns of the same row, and propose novel triples
with the same property for other pairs of vertices in different
rows. More precisely, for each triple (s, p, o) ∈ E such that
there exist two column indexes i and i′ (1 ≤ i ≤ m, 1 ≤
i′ ≤ m, i 6= i′) and a row index j (1 ≤ j ≤ (n − h)) such
that s ∈ Bλ(T)(i, j) and o ∈ Bλ(T)(i

′, j), we propose the
triples {(s′, p, o′) | s′ ∈ Bλ(T)(i, j

′), o′ ∈ Bλ(T)(i
′, j′)} \ E

(1 ≤ j′ ≤ (n− h), j 6= j′) as candidate triples.

Example 2. With reference to the normalised and linked
tables T and λ(T) shown in Figure 3, given that the
triple (wd:Q2530270, wdt:P31, wd:Q268200) exists in the
Wikidata knowledge graph – stating that Outstanding
Performance by an Ensemble in a Drama Series is an
instance of Screen Actor Guild Award – and given that
both entities appear in different columns of the first row
of the table body – we will propose the corresponding
triples for the second row as candidate triples, namely:

• (wd:Q4220900, wdt:P31, wd:Q110145),
• (wd:Q26704332, wdt:P31, wd:Q110145),
• (wd:Q26308335, wdt:P31, wd:Q110145), etc.

denoting that Best On-Screen Team, G. Matarazoo and
F. Wolfhard are instance of MTV Movie & TV Award,
respectively. Of these, only the first triple is correct.

4.2 Feature Extraction

As seen in the previous example, many of the candidate
triples may be incorrect. Hence we extract features for indi-
vidual triples that will serve as signals for classifying these
triples as correct or incorrect, with the goal of boosting the
precision of the extracted triples. The features we consider
have different levels of granularity, as follows:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 6

Year Award Category Nominated work Result *Protagonist*

2018 Screen Actors Guild Awards Outstanding Performance by an Ensemble in a Drama Series Stranger Things Nominated Sadie Sink

2018 MTV Movie & TV Awards Best On-Screen Team (with G. Matarazoo, F. Wolfhard ...) Stranger Things Nominated Sadie Sink

(a) Normalised table with hyperlinks underlined

Year Award Category Nominated work Result *Protagonist*

[wd:Q37998098] [wd:Q268200] [wd:Q2530270] [wd:Q19798734] [wd:Q27452406]

[wd:Q43379479] [wd:Q110145] [wd:Q4220900, wd:Q26704332, Q26308335, . . .] [wd:Q19798734] [wd:Q27452406]

(b) Linked table

Fig. 3. Normalised and linked versions of the table shown in Figure 1b

• TABLE-LEVEL: (1) ordinal of table in the article,4 (2)
number of rows, (3) number of columns, (4) ratio (2)

(3) ,
(5) number of candidate triples extracted;

• COLUMN-LEVEL: (6|7) ordinal of subject|object col-
umn, (8|9) number of entities in subject|object col-
umn, (10) ratio (8)

(9) , (11|12) number of unique entities

in subject|object column, (13) ratio (11)
(12) , (14) number

of potential triples for a single property, (15) number
of unique potential triples for a single property, (16)
is the subject or object column the protagonist;

• PROPERTY-LEVEL: (17) number of triples in the
knowledge graph with the property, (18|19) number
of unique subjects|objects in the knowledge graph
for the property, (20+) ratio (19)

(17) , (21+|22+) max-
imum number of subjects|objects with the same
object|subject for the given property, (23+|24+) com-
patibility with domain|range;

• CELL-LEVEL: (25|26) number of entities in the
subject|object cell, (27) ratio (25)

(26) , (28|29) total string
length of subject|object cell, (30|31) presence of for-
matting tags in subject|object cell, (32+|33+) num-
ber of links in the subject|object cell (includes links
not resolved to entities); (34+|35+) string length of
subject|object cell without links, (36+|37+) is the
subject|object cell part of a colspan or rowspan;

• PROPERTY/COLUMN-LEVEL: (38|39) string similarity
for property and subject|object header, (40) maxi-
mum of (38) and (39), (41) number of rows for
which the corresponding relation holds in knowl-
edge graph, (42) ratio (41)

(2) , (43) number of triples
for which the corresponding relation holds in the
knowledge graph, (44) ratio (43)

(14) , (45) number of
unique triples for which the corresponding relation
holds in the knowledge graph, (46) ratio (45)

(15) ;
• TRIPLE-LEVEL: (47+|48+) for the given triple (s, p, o),

the number of values for x such that (s, p, x)|(x, p, o)
already appears in the knowledge graph.

Cell-level and triple-level features allow for labelling
individual triples from each row as correct or incorrect. For
example, a cell may have additional text that invalidates
or questions the validity of the particular value of a triple
(e.g., “disputed”, “later rescinded”, “citation needed”) on a
particular row; or a cell may contain multiple links, where
a relation may sometimes only hold for one such link

4. By ordinal, we refer to the position of an element in a list; e.g., if it
is the second table in an article, the ordinal is 2.

(see Figure 1b). Having fine-grained features allows us to
identify correct triples on a row-by-row or triple-by-triple
basis, unlike related approaches that rather aim at labelling
pairs of columns with a given property, which are then
interpreted uniformly for all rows [12, 17, 18, 24, 33, 34, 35].

Features marked “·+” are new to this work (we refer
to our previous work for more discussion on the original
features [14]). These new features were identified based on
a study of the false positives generated using the original
features only. This study identified two common issues.

The first issue related to triples classified as
correct even though they are incompatible with the
domain/range of the property. Referring to Figure 3, a
triple (wd:Q19798734,wdt:P1441,wd:26704332) – Stranger
Things nominated for Gaten Matarzoo – has an object
(wd:26704332/Gaten Matarzoo) whose class (wd:Q5/Human)
is incompatible with the range of the property
(wdt:P1441/nominated for). We add features (23+) and
(24+) to identify such cases: given a triple (s, p, o), we say
that it is incompatible with the domain of p if and only if
there does not exist a triple (x, p, y) in the knowledge graph
such that x shares at least one class with s; conversely, we
define it to be incompatible with the range of p if and only
if there does not exist a triple (v, p, w) in the knowledge
graph such that w shares at least one class with o.5

The second issue related to triples classified as correct
even though the property has a low multiplicity and a value
already exists in the knowledge graph; for example, we
may find a triple (wd:Q16, wdt:P36, wd:Q172) – Canada has
the capital Toronto – which would seem unlikely given that
capital tends to be a (nearly) functional property (i.e., that
countries tend to have one capital), and Canada already has
a known capital in the knowledge graph. Features (21+)
and (22+) are used to capture statistics of a property’s
multiplicity in both directions, while (47+) and (48+) are
used to indicate if the property already has a corresponding
value in the knowledge graph, again in both directions.

4.3 Binary Classification

We apply binary classifiers to predict whether each candi-
date triple is correct or incorrect. We consider six classifica-
tion models (two of which are new to this work, marked
“·+”): Bagging Decision Trees (BDT), Extreme Gradient
Boost (XGB)+, K-Nearest Neighbours (KNN)+, Logistic Re-
gression (LR), Naive Bayes (NB) and Random Forests (RF).

5. One could alternatively consider using explicit domain/range
axioms or constraints if available for the knowledge graph.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 7

Fig. 4. Example of a table with a hierarchical header (with first data row
only) from Wikipedia (cba – wk:100 metres)

5 MERGING TABLES

We now discuss how tables are merged prior to extrac-
tion. The desiderata we identify for such a merge are as
follows. (R1) BINARY RELATION COLLATION: our use-case
for merging is to improve the extraction of triples, and
in particular, to create larger tables that collate more rows
for binary relations. (R2) CAUTIOUS MERGING: merging
unrelated tables (false positives) will generate noise in the
extracted triples compared with the baseline of applying
relation extraction to individual tables; not merging related
tables will tend towards the baseline output. Hence we pre-
fer cautious merging that prioritises avoiding false positives
over false negatives. (R3) SCALABILITY. Given that we work
with millions of tables, we require a merging method with
O(t) or O(t log t) runtime for t the number of input tables.

Given (R1), we apply relational unions (rather than
joins) over compatible tables. Given (R2), we propose an
observed schema that normalises and enriches the informa-
tion available in the table header and split merged tables
having incompatible properties. With respect to (R3), we can
group the tables to be merged according to having the same
observed schema (which can be hashed or sorted). We now
describe this process in more detail.

5.1 Merging Tables under Observed Schemata

A natural method to merge the related input tables T
would be to first partition T according to the table headers:
T /∼H := {{T ′ | HT = HT ′} | T ∈ T }, and then apply
a relational union over the tables in each part T ′ ∈ T /∼H
to merge them into a single large table under the respective
header. However, this would not merge tables with minor
variations in header names (see Award vs. Awards in Fig-
ure 1), nor would it merge tables with compatible columns
in a different order. Hence Ling et al. [15] propose to relax
column order and also to match column names with the
same meaning when performing a union of tables.

However, we found numerous cases in Wikipedia for
which the method proposed by Ling et al. [15] is not well-
defined. First, some tables have multiple columns with the
same name, often resulting from cell spans; for example, in
Figure 2b, normalising the Event column span gives two
columns of the same name. Another common case was the
use of hierarchical headers, where it is not immediately
clear how they should be handled; Figure 4 provides an
example. We also found false matches on generic column
names carrying incompatible types of data; for example, a
column named From may contain dates, strings (e.g. place
names), numbers, etc., depending on the table.

To address such issues, we propose the notion of an
observed schema, which is a set of column signatures computed
for each column of an input table. In the following, we

assume a normalisation function ν(·) for cell values, which
we instantiate by applying lower-case and word stemming.
By #S, we denote the cardinality of the set S.
Definition 1. Given an m × n input table T with h header

rows, the column signature for the ith column of T (1 ≤
i ≤ m) is a tuple σi = (li, di, oi), containing a label li :=
(ν(HT (i, 1)), . . . , ν(HT (i, h))) encoding the normalised
content of the h cells of the ith column of the header;
a datatype di ∈ {NUM, DATE, STR, EMPTY} denoting the
observed type of values in the ith column of the body;
and an ordinal oi := #{i′ | 1 ≤ i′ ≤ i, (li, di) = (li′ , di′)}
indicating the order of the ith column with respect to
other columns with identical keys and datatypes.

Definition 2. Given anm×n input table T , its observed schema
is defined as Σ(T) := {σ1, . . . , σm}, where σi denotes
the column signature of the ith column (1 ≤ i ≤ m) of T .

Example 3. In Table 1, we provide examples of the observed
schemata for four of the tables shown previously. Please
note that the sets are unordered. In practice, a *protag-
onist* column would also be present, with the same
column signature in each input table.

We then partition the input tables T per their observed
schemata: T /∼Σ := {{T ′ | Σ(T) = Σ(T ′)} | T ∈ T }.
To compute this partition in practice, a canonical form of
each observed schema is computed by ordering the column
signatures it contains lexicographically; this serves as a
partitioning key, where partitioning can then be trivially
conducted in O(t) using (ideal) hashing on the keys, or
O(t log t) using sorting on the keys (where t = #T). The
tables in each part can then be unioned straightforwardly.

5.2 Refining Merged Tables
Initial results revealed that merging tables under observed
schemata sometimes led to unrelated tables (often with
generic column names) being merged; for example, con-
sidering tables with column labels {name, country}, if the
name column lists movies or other works of art, wdt:P495
(country of origin) is the most appropriate property; if it lists
cities or rivers, wdt:P17 (country) is the most appropriate
choice; if it lists people, then wdt:P27 (country of citizen-
ship) or wdt:P1532 (country for sport) might be appropriate
choices. Merging all such tables into one may lead to many
erroneous triples such as (wd:Q676203, wdt:P1532, wd:Q419)
– Machu Picchu has country for sport Peru – being proposed.

After partitioning but prior to merging, we use triples
from the knowledge graph appearing in the tables to de-
tect conflicts and resolve such cases. In particular, given
a table T with n rows in its body BT , let Λi,j(T) :=⋃

1≤k≤n(Bλ(T)(i, k) × Bλ(T)(j, k)) denote the pairs from
columns i and j on each row of Bλ(T). Given a knowledge
graph G = (V,E, P), let so(G, p) := {(s, o) | (s, p, o) ∈ E}
denote the pairs of vertices related by an edge labelled
with the property p in G. For each pair of column indexes
(i, j) of each table T ∈ T ′ (i 6= j), we compute the set of
properties Pmax

i,j (T) := arg maxp∈P #(so(G, p) ∩ Λi,j(T));
in the special case that #(so(G, p) ∩ Λi,j(T)) = 0 for all
p ∈ P , we define Pmax

i,j (T) := {}. Intuitively Pmax
i,j (T) gives

us the set of properties tied for having the most triples in the
knowledge graph whose subjects and objects can be found

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 8

TABLE 1
Observed schemata for example input tables

INPUT TABLE(S) OBSERVED SCHEMA

Tables 1a and 1b {((year), DATE, 1), ((award), STR, 1), ((category), STR, 1), ((nominat work), STR, 1), ((result), STR, 1)}
Table 2b {((event), STR, 1), ((event), STR, 2), ((2009), STR, 1), . . . , ((2019), STR, 1)}
Table 4 {((area), STR, 1), ((men, time (s)), NUM, 1), . . . , ((women, time (s)), NUM, 1), . . . , ((women, nation), STR, 1), }

on the same row of T for the indicated pair of columns
(being empty if no triples are found for those columns).
We further define incompatible properties as follows, where
α denotes a compatibility threshold for properties:6

Definition 3. Given a knowledge graph G = (V,E, P), we
call p1 ∈ P and p2 ∈ P incompatible properties, denoted
p1 6� p2 if and only if #(so(G,p1)∩ so(G,p2))

min(#so(G,p1),#so(G,p2)) < α;
otherwise we call p1 and p2 compatible, denoted p1 � p2.

Example 4. Given two properties wdt:P27 (country of cit-
izenship) and wdt:P1532 (country for sport), let us as-
sume that wdt:P27 relates 10,000 vertex pairs in the
knowledge graph (including, e.g., (wd:Q633, wd:Q16) aka.
(Neil Young,Canada)) while wdt:P1532 relates 1,000
vertex pairs (including, e.g., (wd:Q615, wd:Q414) aka.
(Lionel Messi,Argentina)). Let us assume that we set
α = 0.5. Since wdt:P1532 relates fewer pairs, for wdt:P27
and wdt:P1532 to be considered compatible, wdt:P27
must relate at least half (i.e., 500) of the pairs in the
knowledge graph that wdt:P1532 relates.

Analogously, we call two sets of properties P1 6� P2

incompatible if and only if there exists p1 ∈ P1 and p2 ∈ P2

such that pi 6� p2 (observe that the empty set is thus
compatible with any set of properties).

Finally, for each part T ′ ∈ T /∼Σ, we separate tables
T1 ∈ T ′ and T2 ∈ T ′ where there exists a pair of col-
umn indexes (i, j) such that Pmax

i,j (T1) 6� Pmax
i,j (T2).7 Let

Pmax(T) := {(Pmax
i,j (T), i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j}

capture the most frequent properties for all pairs of columns
in the table T . We first subdivide T ′ into the partition
T ′/∼P := {{T ′ ∈ T ′ | Pmax(T) = Pmax(T ′)} | T ∈ T ′}.
We then iterate over the parts of T ′/∼P in ascending order
of their cardinality, merging each successive part with the
largest compatible part found, maintaining the part if no
larger compatible part is found. This is repeated for all parts
of T /∼Σ, producing the final partition of tables.

The refinement of each part T ′ requires O(t2) compat-
ibility checks, for t = #T ′, potentially affecting scalabil-
ity. However, in practice, relatively few unique values for
Pmax(.) are identified within each part.

5.3 Extracting Candidate Triples from Merged Tables

With a set of refined/merged tables in hand, linked tables
can be merged, or alternatively merged tables can be linked,
in an analogous manner to that previously discussed. The
same process as described for individual tables in Section 4
can subsequently be applied for extracting candidate triples

6. Where available, property disjointness axioms could also be lever-
aged for determining incompatibility.

7. For brevity, we assume that column indexes have been aligned for
analogous columns in different tables of each part of T /∼Σ.

from merged tables. Rather than replace the features associ-
ated with individual tables in Section 4.2, we extend them
with analogous features computed for the merged table in
those cases where the value of the feature may differ; for
example, with respect to feature 3, we will maintain the
count of rows in the original table and the merged table
as two separate features; on the other hand, for feature 2,
the number of columns does not change and hence we keep
one feature. We thus include merged features for (2), (8),
(9), (11), (12), (14), (15), (41), (42), (43), (44), (45), and (46).
We distinguish the merged versions of features with ·m;
e.g., (9m). Though these features are defined analogously
as for individual tables, the merged variants can take very
different values for a given candidate triple, as they are
based on merged tables that in some cases have thousands
of times more rows than an individual table. We also add
two more features: (49m) is the triple proposed from the
individual table or (only) from the merged table; (50m) the
number of individual tables forming the merged table. We
expect both of these features to negatively correlate with the
positive class: merged tables (particularly large ones) should
exhibit more noise since a single relation observed in one
row of a merged table (with potentially thousands of rows)
will generate candidate triples for all rows. A positive or
high value (respectively) for these features should demand
stronger evidence for the positive class from elsewhere.

6 EVALUATION

We consider four key research questions. (Q1) How many
triples can be extracted from individual Wikipedia tables
using the proposed methods and at what level of precision?
(Q2) Do the novel features proposed in this work increase
the number of triples that can be extracted from individual
tables at a given level of precision? (Q3) Do the additional
features extracted from merged tables increase the number
of triples that can be extracted at a given level of precision?
(Q4) How many more novel, correct triples can be extracted
by merging tables overall, and at what level of precision?

MATERIALS AND FURTHER DETAILS: The Wikipedia corpus
is available online [43]. Code and other materials can be
found at https://wikitables.github.io/. Further details for
experiments and their results are also available in [44].

6.1 Setting
We discuss the table corpus, knowledge graph, classifiers
and relation extraction methods considered.

TABLE CORPUS: Our tables are sourced from Wikipedia.
Specifically, we downloaded 5,582,225 articles in HTML
format from English Wikipedia using the REST API.8 From

8. https://en.wikipedia.org/api/rest v1/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 9

these articles we extract 17,553,469 raw tables. Of these
tables, 52.5% are layout tables (not containing data), 21.7%
are info-boxes (not targeted by this work, being targeted
by dedicated methods [22, 23]), 3.2% are smaller than
2× 2 (and thus cannot have triples extracted), while 0.002%
are tables-of-content (not containing data). Filtering all of
these categories of tables, we input the remaining 3,957,549
(22.5%) tables into the normalisation process, which resulted
in 3,967,412 tables (the number increases slightly due to
unnesting inner tables). We then discard tables without
headers, leaving 3,631,229 (90.31%) of the normalised tables.

KNOWLEDGE GRAPH: We use the Wikidata knowledge
graph [5] for our experiments. Specifically we use the RDF
truthy dump from 2018-07-30. Since our method currently
extracts triples between entities, we filter triples with lit-
erals to make the knowledge graph more concise, leaving
470,573,942 edges, 51,488,027 vertices and 4,936 properties.
Entities in table cells are linked to Wikidata using the native
Wikidata ↔ Wikipedia mapping provided by Wikimedia.
Of the 3,631,229 tables in the corpus, at least one link was
found to Wikidata for 3,050,328 (85%) tables (not including
the protagonist, which is always linked). We found on av-
erage ∼5 Wikidata links per column, and an average of ∼5
columns and ∼13 rows per table with such entities. Links to
3,175,548 unique vertices/entities of Wikidata were found.

LABELLING DATA: Developing a training set for triples
requires labelling data manually. Where this is neces-
sary, we define four labels: CORRECT, INCORRECT, CON-
TEXTUAL, or UNKNOWN. The CONTEXTUAL label is used,
e.g., for triples that were true in the past, but not now,
such as (wd:30, wdt:P35, wd:Q76): United States has head
of state Barack Obama. The UNKNOWN label is used in
cases where the judge could not find information to
verify or reject a triple, or in subjective cases, such as
(wd:Q38222, wdt:P800, wd:Q165713): George Lucas has no-
table work Star Wars: Episode I – The Phantom Menace.

6.2 Results: Extracting Candidate Relations
We now discuss results up to and including the extraction
of candidate triples from individual and merged tables. In
the following, we define candidate triples as novel triples
(not appearing in Wikidata) with their associated features;
for example, the same triple appearing multiple times with
different features will be counted multiple times. At the end
of this section we will present numbers for unique triples.

CANDIDATES FROM INDIVIDUAL TABLES: A total of
14,670,522 (3,810,714 unique) existing triples in Wikidata
were identified in the table rows. Using the method de-
scribed in Section 4.1, we extracted 62,516,679 million can-
didate triples. As an initial evaluation of the precision of the
candidate set, we sampled 100 unique triples, which were
then labelled independently by two judges as CORRECT, IN-
CORRECT, CONTEXTUAL and UNKNOWN. The judges agreed
in 73/100 cases. Of these 73 cases, 10 (13.7%) were CORRECT
and 63 (86.3%) were INCORRECT. We can thus estimate that
there are approximately 8.6 million CORRECT candidates

MERGING TABLES: Merging 3,631,229 input tables by ob-
served schema resulted in 1,135,977 merged tables, with
on average ∼3.2 individual tables forming each merged

table. Approximately 30% of the input tables were not
merged with other tables, while approximately 30% were
merged with at least one thousand other tables. The
largest merged table consisted of 81,277 individual ta-
bles relating to political election results, with column la-
bels {party, candidate, vote,percentage}. We remark that
273,341 (7.5%), 577,856 (15.9%) and 776,798 (21.4%) of the
input tables, respectively, had hierarchical headers, multiple
columns with the same name and columns without a name;
i.e., we found a considerable number of tables for which the
approach of Ling et al. [15] is not well-defined but that are
supported by our approach based on observed schemata.

CANDIDATES FROM MERGED TABLES: From 1,135,977 tables
merged by the observed schema, we extract 461,360,797
candidate triples: 398,844,124 more than for individual ta-
bles. To estimate precision, 100 unique triples are randomly
sampled from those extracted from merged tables only,
and labelled by two judges, who agreed on 88 cases, of
which ∼4.5% were CORRECT and ∼95.5% INCORRECT. As
a baseline, we performed the same experiment merging
tables with the same schema incorporating hierarchical
headers and ordinals but without datatypes (more formally,
using partial column signatures σ′i(li, di) per Definition 1)
where the two judges agreed on 89 cases, of which ∼2.2%
were CORRECT and ∼97.8% were INCORRECT. Tables with
columns of the same label (e.g., rank) but with different
datatypes (e.g., NUM for numeric rank vs. STR for military
rank) are often – but not always – unrelated. The results that
follow are based on the more precise set of candidate triples
extracted based on observed schemata with full signatures.

FILTERING MULTI-LINK CELLS: Based on the preliminary
results, we observed that for individual tables, 59/100 can-
didate triples are extracted from a cell (subject, object or
both) with more than one entity, of which 53 (89.8%) are
INCORRECT. For the triples extracted (only) from merged
tables, 35/100 come from such a cell, of which 32 (91.4%) are
INCORRECT. We conclude that triples extracted from such
cells add a lot of noise. While we could delegate the task
of filtering such noise to the binary classifiers, in practice,
randomly sampling and labelling triples from these sets
would yield too few correct examples for training purposes.
We thus decided to remove all candidate triples generated
from a cell with multiple entities, leaving 18,587,101 and
134,058,618 million candidate triples in each set. Sampling
100 candidate triples from each filtered set, we find consen-
sus on 84 cases for individual tables: 31 (36.9%) CORRECT,
51 (60.7%) INCORRECT, 2 (2.4%) CONTEXTUAL; we find
consensus on 91 cases for merged tables: 4 (4.4%) CORRECT,
87 (95.6%) INCORRECT. The precision of candidate triples
for individual tables increases considerably, but not so for
merged tables; however, we have yet to apply refinement of
merged tables based on incompatible properties.

CANDIDATES AFTER REFINEMENT: In experiments varying
the compatibility threshold, we found that the refinement
is not sensitive to a choice of value α ∈ [0.1, 0.9] since
only 0.02% of the (non-reflexive) property pairs considered
fall within this range of compatibility scores, with the vast
majority of cases having no overlapping vertex pairs (a com-
patibility of 0), being clearly incompatible (a compatibility

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 10

TABLE 2
Training and test set

Training set Test set
CORRECT INCORRECT CORRECT INCORRECT

I 191 (38%) 309 (62%) 38 (38%) 62 (62%)
M 74 (15%) 426 (85%) 13 (13%) 87 (87%)

in (0, 0.1)) or clearly compatible (a compatibility in (0.9, 1]).
We thus choose α = 0.5 as the threshold. Refining the
1,135,977 merged tables to separate incompatible properties
resulted in 1,169,682 merged tables: 33,705 more merged
tables (∼+2.9%) than before refinement. After refinement,
we extract 112,180,480 candidate triples (83.7% of those ex-
tracted without refinement). To initially estimate precision,
100 triples are again randomly sampled and labelled by two
judges. The judges agreed in 84 of cases: 6 (7.1%) CORRECT,
77 (91.7%) INCORRECT and 1 (1.2%) CONTEXTUAL, indicat-
ing a slight improvement in precision (4.4% to 7.1%).

FINAL CANDIDATES: To summarise, from tables that are
not merged, we extract 18,587,101 unique candidate triples
(considering features; not appearing in Wikidata), corre-
sponding to 9,431,565 unique triples (not considering fea-
tures) at an estimated precision of 36.9%. For merged tables
after refinement, we extract 112,180,480 unique candidates,
62,109,161 of which correspond to unique triples at an
estimated precision of 7.1%. Note that we do not remove
candidates with duplicate triples as they have different
feature values, and thus may yield different classification
results: a single positive classification will be sufficient to
include a triple in the final output. Though the precision of
the candidates from merged tables is far lower, it contains
many more (unique) correct triples, where we now see if
binary classification succeeds in isolating these triples.

6.3 Results: Binary Classification

We now apply binary classifiers to identify correct triples
from both sets of candidate triples and thus boost precision.

EXPERIMENTS: To address our core research questions
(Q1–4), we perform experiments with respect to both sets of
candidate triples: I is extracted from individual tables, while
M is extracted from refined, merged tables (triples from
multi-link cells are filtered in both cases). We associate these
triples with three sets of features: ·i denotes the original
features for individual tables proposed in our previous
work [14], ·i+ extends ·i by adding the new features for
individual tables proposed herein (see Section 4.2), while ·m
extends ·i by adding features extracted from merged tables
(see Section 5.3). We will then perform experiments over I i

(for Q1), I i+ (for Q2), Im (for Q3) and Mm (for Q4).

LABELLED DATA: We randomly sampled 700 unique triples
from I and 700 from M for training and testing. These 1,400
triples were labelled by two judges. From each of these sets,
we take 600 triples classified by both judges as CORRECT
or INCORRECT (discarding triples classified as CONTEXTUAL
or UNKNOWN, or triples with disagreement). We split each
dataset into 500 triples for training, and 100 triples for
testing. Table 2 provides the number of triples per class.

TABLE 3
Top-10 features positively correlated and negatively correlated with the
CORRECT label in training sets (Pearson’s ρ, n = 500) for Im and Mm,

where ·+ indicates a new feature and ·m indicates a group feature

№ Im(pos.) Im(neg.) Mm(pos.) Mm(neg.)

1 (46m) 0.26 (35+) −0.16 (46m) 0.36 (49m) −0.25
2 (46) 0.24 (29) −0.13 (44m) 0.35 (31) −0.17
3 (42m) 0.21 (6) −0.12 (46) 0.30 (15m) −0.16

4 (44m) 0.21 (34+) −0.10 (44) 0.29 (2m) −0.16
5 (44) 0.19 (31) −0.10 (42m) 0.28 (12m) −0.16

6 (40) 0.19 (37+) −0.09 (45) 0.23 (11m) −0.15

7 (45) 0.18 (3) −0.09 (48+) 0.22 (14m) −0.14

8 (42) 0.18 (48+) −0.08 (42) 0.20 (8m) −0.14

9 (38) 0.17 (20+) −0.08 (41m) 0.18 (9m) −0.14
10 (45m) 0.17 (2) −0.07 (43m) 0.18 (16) −0.12

FEATURE CORRELATION: In Table 3 we present the most
useful features in terms of being positively or negatively
correlated with the CORRECT label (using Pearson’s ρ).9 First
looking at individual tables, among the most positively cor-
related features with the CORRECT class were, respectively,
features (41–46), relating to the number/ratio of rows for
which the corresponding relation held; and features (38–
40), relating to the string similarity between column names
and property labels. The features most negatively correlated
with the CORRECT class include: features (29,34,35,37) re-
lating to cells having long text, formatting, etc.; feature (6)
relating to the subject column ordinal; and features (2–3)
indicating the number of table rows and columns. The most
positively correlated features were similar for merged ta-
bles, but had higher correlation; conversely among the nega-
tively correlated features, we see features (8,9,11,12,14,15,49)
which all relate to having merged tables with many rows,
indicating more INCORRECT triples in larger merged tables.

MODEL CONFIGURATION: We experiment with the six bi-
nary classifiers mentioned in Section 4.3. Given the large
number of features, the class imbalance in the labelled data,
as well as the presence of hyper-parameters in some classi-
fiers, we consider four configurations for each model: (1) de-
fault: we apply classifiers with default hyper-parameters on
the unmodified data; (2) feature-selection: we prune features
that are highly intercorrelated and features not (inversely)
correlated with the labelled classes; (3) balancing: we add
positive triples that already exist in Wikidata to the training
set until the classes are balanced; (4) tuning: we use Grid
search to optimise the models’ hyper-parameters for the
AUC metric using cross-validation on the training set. Of
these four configurations, only tuning had a notable positive
effect; feature-selection and balancing had a neutral or neg-
ative effect versus baseline results. Henceforth we present
results with tuning as the most competitive configuration.

CLASSIFIER COMPARISON: In order to select the best-
performing classifier of the six considered, in Table 4 we
compare their results over the I dataset with three different
feature sets. Though other classifiers sometimes provide bet-
ter precision or recall for individual experiments, Extreme
Gradient Boost (XGB) provided the best F1 score for all three
experiments (tied with Random Forests in one case). The

9. Features with positive or negative correlations are useful: high
values for the former features suggest the positive class and for the
latter features suggest the negative class, and vice versa for low values.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 11

TABLE 4
Precision, recall and F1 results for tuned models using Bagging

Decision Trees (BDT), k-Nearest Neighbours (KNN), Linear Regression
(LR), Naive Bayes (NB), Random Forests (RF) and Extreme Gradient

Boost (XGB) classifiers on candidate triples extracted from individual (I)
tables, using original features (·i), extended features (·i+) and merged

features (·m), with best results per column in bold

Classifier Ii Ii+ Im

P R F1 P R F1 P R F1

BDT 0.71 0.66 0.68 0.74 0.68 0.71 0.70 0.55 0.62
KNN 0.77 0.18 0.30 0.75 0.32 0.44 0.50 0.16 0.24
LR 0.78 0.18 0.30 1.00 0.02 0.05 0.60 0.08 0.14
NB 0.44 0.87 0.58 0.41 0.92 0.59 0.67 0.11 0.18
RF 0.72 0.55 0.62 0.84 0.68 0.75 0.76 0.34 0.47
XGB 0.73 0.71 0.72 0.74 0.76 0.75 0.85 0.76 0.81

different feature sets have varying effects on the different
models, which may be due to overfitting, but for XGB both
precision and recall improve as more features are added,
and less variance is seen. Applying 5-fold cross validation
on the training set yielded similar results, with XGB dis-
playing better results overall and less variance across the
folds. We also obtained the AUC for each model, where XGB
achieves 0.89 (I i), 0.90 (I i+) and 0.88 (Im).

In further experiments with theMm dataset, XGB had by
far the best performance (P = 0.85, R = 0.46, F1 = 0.60), but
had a notable drop in recall and overall F1 scores compared
with the I dataset. One possible reason is the lower ratio
of CORRECT examples in the M candidate set. We tried
both oversampling and undersampling to improve these
results, but found that they reduced the F1 score, where
XGB already provides good baseline results for imbalanced
settings. Another approach to improve the results would be
to annotate more data in order to have more CORRECT ex-
amples, but learning curves for XGB (in all cases) show that
performance plateaus after 250–300 training examples (we
provide 500) [43], which suggests that adding more training
data will not improve performance. Lower performance
in the M dataset may rather be attributable to a higher
volume of difficult cases, i.e., triples with similar or even
indistinguishable features that are correct in some cases and
incorrect in others. These can occur from relations that are
intermittently correct, such as proposing wdt:P57 (director)
triples between two columns of a large merged table whose
relation is better described by the wdt:P161 (cast member)
property. We would expect the director relation to hold for
some fraction of rows – since people sometimes act in the
movies they direct – but the correct or incorrect cases would
not be easily distinguishable by the features generated. Such
cases occur more frequently in the M dataset as the wdt:P57
(director) need only hold for one row of the larger merged
table in order for candidates to be proposed for all rows.

From these experiments, we conclude that the XGB
classifier offers the best performance in our scenario.

6.4 Results: End-to-End
We now discuss results for the end-to-end process, which
takes the Wikipedia tables and Wikidata knowledge graph
as input, and outputs a set of novel triples not in Wikidata.

CLASSIFYING ALL CANDIDATES: We use XGB to classify the
full sets of candidate triples (I and M), with the 600 labelled

0 2 4 6 8

·106
0

0.2

0.4

0.6

0.8

1

Output candidate triples

P
re
ci
si
o
n

I i+

Im

Mm

Fig. 5. Precision vs. output candidate triples for the three models

triples for I and M used, respectively, for training. Having
already shown the benefits of the novel features for XGB, we
train models over I i+, Im and Mm. Comparing I i+ and Im

will allow us to see the effect of adding features extracted
from merged tables. Comparing I i+ and Mm will allow us
to see the effect of adding features and candidates extracted
from merged tables. Comparing Im and Mm will allow us
to see the effect of adding candidates extracted from merged
tables when features from merged tables are already consid-
ered. We classify and output CORRECT candidate triples.

The classifiers for I i+, Im and Mm output 4,809,323,
4,881,566 and 5,313,880 candidate triples (with features),
respectively. These correspond to 3,565,603, 3,396,017 and
3,990,832 unique triples, respectively. Table 5 enumerates
the top-10 properties corresponding to the output of I i+,
Im and Mm. Amongst others, we see properties relating to
geography (P17, P131, P150, P276), sports (P54, P118, P1532)
and cinema (P161), reflecting common themes for tables on
Wikipedia. While the properties for I i+ are similar to Im,
those forMm are quite different (we will return to this later).

In the following results, we consider candidate triples
as the result for a unique triple can differ due to having
different features; later we will analyse unique triples.

We found that 17.7%, 17.7% and 49.8% of the candidates
from I i+, Im and Mm, respectively, use the protagonist col-
umn (0.7%, 0.7% and 2.9%, respectively, involve list articles).

To perform a validation of the output candidate triples,
we sample 200 from each set (for I i+, Im and Mm), which
are pooled into a set of 600 triples labelled by two judges
without knowing to which set they belong; this time, cases
with disagreement were discussed and a consensus reached.

In Figure 5, we show the precision (based on the 600
manually labelled candidates) versus the number of output
candidate triples (labelled CORRECT by the classifier) when
varying the models’ threshold. We see that Im maintains a
higher precision than I i+, while Mm maintains lower pre-
cision than I i+ early on, but plateaus to a similar precision
level (∼0.7) as I i+ and continues to output further triples.

Turning to unique triples, Table 6 summarises the num-
ber of unique (novel) triples (removing features) output by
the classifiers, along with their corresponding validation
results, estimated precision, precision error bound, and an
estimate of the number of correct triples in the output.
Comparing I i+ and Im, we see that Im offers a higher
precision (0.705 vs. 0.750), and outputs 1.3% more correct
triples than I i+. Comparing I i+ and Mm, Mm shows a
slight drop in precision (0.705 vs. 0.700), but outputs 11.1%

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 12

TABLE 5
Top-10 properties by number of (output) candidate triples classified as

CORRECT by Ii+, Im, Mm

№ Ii+ Im Mm

1 P131 731,444 P131 723,321 P131 751,680
2 P1532 467,984 P1532 462,402 P361 625,855
3 P361 423,480 P361 431,735 P710 608,648
4 P161 419,449 P161 409,990 P17 568,984
5 P150 347,913 P150 337,432 P1344 356,513
6 P54 279,483 P54 311,662 P161 296,085
7 P276 254,622 P276 246,795 P166 276,335
8 P1344 193,085 P1344 185,312 P118 258,144
9 P102 176,179 P102 182,646 P527 252,495

10 P166 168,721 P166 166,702 P1532 192,940

P17 country, P54 member of sports team, P102 member of political party, P118 league,
P131 located in the administrative territorial entity, P150 contains administrative

territorial entity, P161 cast member, P166 award received, P276 location, P361 part of,
P527 has part, P710 participant, P1344 participant of, P1532 country for sport

TABLE 6
Final results for three models and their combinations using XGB

including unique output triples classified CORRECT, and the result of
validating n = 200 sample output triples, indicating the number of

triples labelled CORRECT (CR.), INCORRECT (IN.), CONTEXTUAL (CN.),
and UNKNOWN (UN.), as well as precision (P = CR.

n
), standard error of

the mean (σP =
√

P(1−P)
n

), and the estimated correct triples

Model Output Validation
P σP

Correct
(Unique) CR. IN. CN. UN. (Unique)

Ii+ 3,565,603 141 53 4 2 0.705 ±0.032 2,513,750
Im 3,396,017 150 49 0 1 0.750 ±0.031 2,547,013
Mm 3,990,832 140 57 1 2 0.700 ±0.031 2,793,582

Ii+ ∪ Im 3,899,785 291 102 4 3 0.728 ±0.022 2,837,094
Ii+ ∪Mm 5,719,275 281 110 6 4 0.703 ±0.023 4,017,791
Im ∪Mm 5,525,730 290 106 1 3 0.725 ±0.022 4,006,154

Ii+ ∪ Im ∪Mm 5,936,091 431 159 5 5 0.718 ±0.018 4,262,113

more correct triples than I i+. Comparing Im and Mm, Mm

shows a notable drop in precision (0.750 vs. 0.700), but
outputs 9.6% more correct triples than Im.

Combining the output of the three classifiers, I i+ ∪ Im
yields a modest increase (11.4% more triples than Im). How-
ever, combining the results from Mm yields a significant
increase (with I i+ ∪ Im ∪ Mm yielding 69.6%, 67.3% and
52.6% more correct triples than output by I i+, Im and Mm).
Though one might expect the output for Mm to subsume
that of the other models (as Mm contains all the candidate
triples and features of the other models), this is not the case.
The candidate sets for I and M are sufficiently different –
only one sixth of the candidates of M appear in I – such
that they benefit from having separately trained models.

Ultimately we can extract 5.9 million unique triples that
do not exist in Wikidata with a precision of 0.718±0.018.

RECALL: We have not included recall measures for the end-
to-end process since it is unclear how we should define the
set of true outputs – i.e., the set of all correct Wikidata triples
that can be extracted from Wikipedia tables – and whether or not
it should include, for example, triples extracted vertically
from columns, from text within cells, from datatype values,
from imprecise values, etc. It is further unclear how to
handle true triples that are not directly stated, e.g., capital of
triples extracted from a table indicating the largest cities of
different countries. However, although we cannot precisely
define absolute recall for the end-to-end process, if we

assume the set of true outputs to be fixed, then we can say
that approaches extracting more (correct) triples have higher
recall since the denominator (the number of true outputs) is
fixed across all approaches. Thus we can estimate (e.g.,) that
the recall of I i+ ∪ Im ∪Mm is 1.696× that of I i+, even if we
do not know the absolute recall values.

SUMMARY: We now reflect back on our research questions:

Q1: We extract 3.6 million novel triples from the individ-
ual tables at a precision of 0.705 (Table 4).

Q2: The novel features extracted from individual tables
enable slight improvements for five of the six binary
classifiers considered, where the F1-score for the best
classifier, XGB, increases from 0.72 to 0.75 (Table 4).

Q3: For candidate triples from individual tables, features
from merged tables improve precision by 4–8 per-
centage points (Figure 5).

Q4: Approximately 280 thousand (+11.1%) more unique,
novel, correct triples are extracted from merged ta-
bles (Mm) versus individual tables (I i+) at the cost
of a slight drop in precision (from 0.705 to 0.700).
Considering only the additional features, and not the
additional candidates, from merged tables (Im), the
number of correct triples output increases slightly
(+1.3%) versus individual tables (I i+), but precision
increases significantly (from 0.705 to 0.700); thus the
results for Im are strictly better than I i+, producing
more correct triples at a higher precision. Comparing
triples extracted from merged tables (Mm) versus
individual tables with merged features (Im), approx-
imately 247 thousand (+9.6%) more unique, novel,
correct triples are extracted from merged tables (Mm)
at the cost of a notable drop in precision (from 0.750
to 0.700). If we combine all results for individual
and merged tables (I i+ ∪ Im ∪Mm), we can extract
approximately 1.75 million (+69.6%) more unique,
novel, correct triples as a result of merging (versus
I i+), with a slightly better precision of 0.718 vs. 0.705
(Table 6). These combined results are again strictly
better than those for individual tables alone.

7 CONCLUSIONS

We have proposed a distantly supervised method to extract
triples from Wikipedia tables using Wikidata as a refer-
ence knowledge graph. When applied to individual tables,
this process extracts 3.6 million triples with a precision
of 0.705 ± 0.032. Adding features from merged tables to
the process, we extract 3.4 million triples with a precision
of 0.750 ± 0.031 (with more correct triples output than
before). Adding features and candidate triples from merged
tables, we extract 4.0 million triples with a precision of
0.700 ± 0.031. Combining the results for all three con-
figurations outputs 5.9 million triples with a precision of
0.718± 0.018. These results show that merging tables facili-
tates extracting more triples at similar or higher precision.

In terms of future work, it would be interesting to
explore how methods for fact checking [45] or knowledge
graph refinement [46] could be leveraged to refine candi-
date sets. Another interesting direction would be to apply
knowledge fusion techniques, for example to choose a single

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 13

value from various extracted values for a given functional
or inverse-functional property on a subject/object [1]. Other
techniques that may enable improvements are word embed-
dings (for matching properties and column names), graph
embeddings (for plausibility scores), etc. Generating merged
tables of thousands or hundreds of thousands of rows also
suggests that semi-supervised methods may become practi-
cal, where input from an expert could help to extract large
batches of triples with relatively little cost. It would also be
of interest to adapt and evaluate the proposed methods for
HTML tables taken from the broader Web.

ACKNOWLEDGMENTS

This work was funded by Fondecyt Grant No. 1181896,
CONICYT-PCHA/Doctorado Nacional/2016-21160017, and
ANID Millennium Science Initiative Program ICN17 002.

REFERENCES

[1] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Mur-
phy, S. Sun, and W. Zhang, “From Data Fusion to
Knowledge Fusion,” PVLDB, vol. 7, no. 10, pp. 881–
892, 2014.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The Seman-
tic Web,” Sci. Am., vol. 284, no. 5, pp. 34–43, 2001.

[3] T. Heath and C. Bizer, Linked Data: Evolving the Web into
a Global Data Space. Morgan & Claypool, 2011.

[4] M. Schmachtenberg, C. Bizer, and H. Paulheim, “Adop-
tion of the Linked Data Best Practices in Different
Topical Domains,” in Int. Semantic Web Conf. (ISWC).
Springer, 2014, pp. 245–260.

[5] D. Vrandecic and M. Krötzsch, “Wikidata: a free collab-
orative knowledgebase,” Commun. ACM, vol. 57, no. 10,
pp. 78–85, 2014.

[6] S. Malyshev, M. Krötzsch, L. González, J. Gonsior,
and A. Bielefeldt, “Getting the Most Out of Wikidata:
Semantic Technology Usage in Wikipedia’s Knowledge
Graph,” in Int. Semantic Web Conf. (ISWC). Springer,
2018, pp. 376–394.

[7] T. E. Putman, S. Lelong, S. Burgstaller-Muehlbacher,
A. Waagmeester, C. M. Diesh, N. A. Dunn, M. C.
Munoz-Torres, G. S. Stupp, C. Wu, A. I. Su, and B. M.
Good, “WikiGenomes: an open web application for
community consumption and curation of gene anno-
tation data in Wikidata,” Database, vol. 2017, p. bax025,
2017.

[8] P. Mika, E. Meij, and H. Zaragoza, “Investigating the
Semantic Gap through Query Log Analysis,” in Int.
Semantic Web Conf. (ISWC). Springer, 2009, pp. 441–
455.

[9] R. Meusel, P. Petrovski, and C. Bizer, “The WebData-
Commons Microdata, RDFa and Microformat dataset
series,” in Int. Semantic Web Conf. (ISWC). Springer,
2014, pp. 277–292.

[10] J. Martı́nez-Rodrı́guez, A. Hogan, and I. López-
Arévalo, “Information extraction meets the Semantic
Web: A survey,” Semantic Web, vol. 11, no. 2, pp. 255–
335, 2020.

[11] H. Chen, S. Tsai, and J. Tsai, “Mining tables from
large scale HTML texts,” in Int. Conf. on Computational

Linguistics (COLING). Morgan Kaufmann, 2000, pp.
166–172.

[12] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang, “WebTables: exploring the power of tables
on the Web,” PVLDB, vol. 1, no. 1, pp. 538–549, 2008.

[13] E. Crestan and P. Pantel, “Web-scale table census and
classification,” in Web Search and Web Data Mining
(WSDM). ACM, 2011, pp. 545–554.

[14] E. Muñoz, A. Hogan, and A. Mileo, “Using Linked Data
to mine RDF from Wikipedia’s tables,” in Web Search
and Web Data Mining (WSDM). ACM, 2014, pp. 533–
542.

[15] X. Ling, A. Y. Halevy, F. Wu, and C. Yu, “Synthesizing
Union Tables from the Web,” in Int. Joint Conf. on
Artificial Intelligence (IJCAI). IJCAI/AAAI, 2013, pp.
2677–2683.

[16] O. Lehmberg and C. Bizer, “Stitching Web Tables for
Improving Matching Quality,” PVLDB, vol. 10, no. 11,
pp. 1502–1513, 2017.

[17] G. Limaye, S. Sarawagi, and S. Chakrabarti, “Annotat-
ing and Searching Web Tables Using Entities, Types and
Relationships,” PVLDB, vol. 3, no. 1, pp. 1338–1347,
2010.

[18] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca,
W. Shen, F. Wu, G. Miao, and C. Wu, “Recovering
Semantics of Tables on the Web,” PVLDB, vol. 4, no. 9,
pp. 528–538, 2011.

[19] M. Cannaviccio, L. Ariemma, D. Barbosa, and P. Meri-
aldo, “Leveraging Wikipedia Table Schemas for Knowl-
edge Graph Augmentation,” in Int. Workshop on the Web
and Databases (WebDB). ACM, 2018, p. 5.

[20] A. Pivk, P. Cimiano, Y. Sure, M. Gams, V. Rajkovic, and
R. Studer, “Transforming arbitrary tables into logical
form with TARTAR,” Data Knowl. Eng., vol. 60, no. 3,
pp. 567–595, 2007.

[21] Y. Wang and J. Hu, “A machine learning based ap-
proach for table detection on the web,” in World Wide
Web Conf. (WWW). ACM, 2002, pp. 242–250.

[22] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kon-
tokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van
Kleef, S. Auer, and C. Bizer, “DBpedia - A large-
scale, multilingual knowledge base extracted from
Wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–195,
2015.

[23] J. Hoffart, F. M. Suchanek, K. Berberich, and
G. Weikum, “YAGO2: A spatially and temporally en-
hanced knowledge base from Wikipedia,” Artif. Intell.,
vol. 194, pp. 28–61, 2013.

[24] V. Mulwad, T. Finin, and A. Joshi, “Semantic message
passing for generating Linked Data from tables,” in Int.
Semantic Web Conf. (ISWC). Springer, 2013, pp. 363–
378.

[25] S. Zwicklbauer, C. Seifert, and M. Granitzer, “DoSeR –
A knowledge-base-agnostic framework for entity dis-
ambiguation using semantic embeddings,” in Extended
Semantic Web Conf. (ESWC). Springer, 2016, pp. 182–
198.

[26] P. Buche, J. Dibie-Barthélemy, L. Ibanescu, and L. Soler,
“Fuzzy Web data tables integration guided by an
ontological and terminological resource,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 4, pp. 805–819, 2013.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MONTH 20XX 14

[27] H.-J. Dai, C.-Y. Wu, R. Tsai, W.-L. Hsu et al., “From
Entity Recognition to Entity Linking: a survey of ad-
vanced Entity Linking techniques,” in Japanese Society
for Artificial Intelligence (JSAI), 2012.

[28] C. S. Bhagavatula, T. Noraset, and D. Downey, “TabEL:
Entity Linking in Web tables,” in Int. Semantic Web Conf.
(ISWC). Springer, 2015, pp. 425–441.

[29] Y. Ibrahim, M. Riedewald, and G. Weikum, “Making
Sense of Entities and Quantities in Web Tables,” in Int.
Conf. on Information and Knowledge Management (CIKM).
ACM, 2016, pp. 1703–1712.

[30] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro,
and V. Christophides, “Matching Web Tables with
Knowledge Base Entities: From Entity Lookups to En-
tity Embeddings,” in Int. Semantic Web Conf. (ISWC).
Springer, 2017, pp. 260–277.

[31] X. Luo, K. Luo, X. Chen, and K. Q. Zhu, “Cross-
Lingual Entity Linking for Web Tables,” in AAAI Conf.
on Artificial Intelligence. AAAI Press, 2018, pp. 362–369.

[32] J. Wang, H. Wang, Z. Wang, and K. Q. Zhu, “Under-
standing Tables on the Web,” in Int. Conf. on Conceptual
Modeling (ER). Springer, 2012, pp. 141–155.

[33] Z. Zhang, “Effective and efficient semantic table in-
terpretation using Tableminer+,” Semantic Web, vol. 8,
no. 6, pp. 921–957, 2017.

[34] O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel, H. Paul-
heim, and C. Bizer, “The Mannheim Search Join En-
gine,” J. Web Sem., vol. 35, pp. 159–166, 2015.

[35] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
K. Murphy, T. Strohmann, S. Sun, and W. Zhang,
“Knowledge vault: a Web-scale approach to proba-
bilistic knowledge fusion,” in Int. Conf. on Knowledge
Discovery and Data Mining (SIGKDD). ACM, 2014, pp.
601–610.

[36] H. Gonzalez, A. Y. Halevy, A. Langen, J. Madhavan,
R. McChesney, R. Shapley, W. Shen, and J. Goldberg-
Kidon, “Socialising Data with Google Fusion Tables,”
IEEE Data Eng. Bull., vol. 33, no. 3, pp. 25–32, 2010.

[37] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaud-
huri, “InfoGather: entity augmentation and attribute
discovery by holistic matching with web tables,” in Int.
Conf. on Management of Data (SIGMOD). ACM, 2012,
pp. 97–108.

[38] C. S. Bhagavatula, T. Noraset, and D. Downey, “Meth-
ods for exploring and mining tables on Wikipedia,” in
ACM SIGKDD Workshop on Interactive Data Exploration
and Analytics (IDEA@KDD). ACM, 2013, pp. 18–26.

[39] M. Yoshida, K. Torisawa, and J. Tsujii, “Extracting
ontologies from World Wide Web via HTML tables,”
in Pacific Association for Computational Linguistics (PA-
CLING), 2001, pp. 332–341.

[40] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller, “Table
Union Search on Open Data,” PVLDB, vol. 11, no. 7,
pp. 813–825, 2018.

[41] Y. Wang and Y. He, “Synthesizing Mapping Relation-
ships Using Table Corpus,” in Int. Conf. on Management
of Data (SIGMOD). ACM, 2017, pp. 1117–1132.

[42] F. Mahdisoltani, J. Biega, and F. Suchanek, “Yago3:
A knowledge base from multilingual Wikipedias,” in
Conf. on Innovative Data Systems Research (CIDR). CIDR
Conf., 2014.

[43] J. Luzuriaga, A. Hogan, E. M. noz, and H. Rosales,
“Wikitables,” Oct. 2019. [Online]. Available: https:
//doi.org/10.5281/zenodo.3483254

[44] J. Luzuriaga, “Merging HTML Tables for Extracting
Relations,” Master’s thesis, University of Chile, 2019.

[45] G. L. Ciampaglia, P. Shiralkar, L. M. Rocha, J. Bollen,
F. Menczer, and A. Flammini, “Computational fact
checking from knowledge networks,” PLOS ONE,
vol. 10, no. 6, pp. 1–13, 06 2015.

[46] H. Paulheim, “Knowledge graph refinement: A survey
of approaches and evaluation methods,” Semantic Web
J., vol. 8, no. 3, pp. 489–508, 2017.

Jhomara Luzuriaga received a B.Eng. from the
Universidad Nacional de Loja, Ecuador in 2012,
after which she worked as a software devel-
oper. She received an M.Sc. in Computer Sci-
ence from Universidad de Chile in 2019, working
on Information Extraction and Machine Learning
topics. She is interested in the integration of
client applications with Machine Learning and
Knowledge Graphs. She is currently working
as a Data Analyst for Promerica Produbanco-
Ecuador, integrating data with web services.

Emir Muñoz received a B.Eng. and M.Sc.
in Computer Engineering from Universidad de
Santiago, Chile, in 2009 and 2011, respectively.
He is pursuing a Ph.D. in Computer Science at
the National University of Ireland, Galway, on the
topic of Knowledge Graph mining. He is also
a Senior Machine Learning Engineer in the AI
Group at Genesys, where he works on applying
ML for improving customer experience.

Henry Rosales-Méndez received his B.Sc. from
the Universidad de Oriente, Cuba, in 2012,
where he continued as a lecturer until 2014. He
began his Ph.D., focussing on Information Ex-
traction, at the Universidad de Chile in 2016, un-
der the supervision of Aidan Hogan and Barbara
Poblete. He has been a PC Member in the Inter-
national Workshops/Conferences: SOTICS’19,
OM’19, ECAI’20. He is also a member of the
Chilean Association of Pattern Recognition.

Aidan Hogan received a B.Eng. and Ph.D. from
the National University of Ireland, Galway, in
2006 and 2011, respectively. He is currently an
Associate Professor at the Department of Com-
puter Science, Universidad de Chile, where he
also holds the position of Associate Researcher
in the Millennium Institute for Foundational Re-
search on Data (IMFD). His primary research in-
terests centre on the Semantic Web, Information
Extraction and Graph Databases.

