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Abstract Despite the growing popularity of knowledge graphs for
managing diverse data at large scale, users who wish to pose expressive
queries against such graphs are often expected to know (i) how to
formulate queries in a language such as SPARQL, and (ii) how entities of
interest are described in the graph. In this paper we propose a language
that relaxes these expectations; the language’s operators are based on
an interactive graph-based exploration that allows non-expert users
to simultaneously navigate and query knowledge graphs; we compare
the expressivity of this language with SPARQL. We then discuss an
implementation of this language that we call RDF Explorer and
discuss various desirable properties it has, such as avoiding interactions
that lead to empty results. Through a user study over the Wikidata
knowledge-graph, we show that users successfully complete more tasks
with RDF Explorer than with the existing Wikidata Query Helper,
while a usability questionnaire demonstrates that users generally prefer
our tool and self-report lower levels of frustration and mental effort.

1 Introduction

Over the past decade, hundreds of datasets have been published using the
Semantic Web standards covering a variety of domains [30]. These datasets are
described using the RDF data model, which is based on graphs. Beyond the
Semantic Web community, the idea of using graphs to model and manage diverse
data at large-scale has also become increasingly popular, marked by the recent
announcements of various knowledge graphs [12]. Some of these knowledge graphs
are proprietary, maintained internally by companies such as Google, Microsoft,
Apple, etc.; while others are open to the public via the Web, maintained by
dedicated international communities, like DBpedia [22], Wikidata [36], etc.

A number of query languages have then been proposed specifically for
graphs, including SPARQL for RDF graphs, Cypher for property graphs, etc. [3].
However, querying graphs using these languages can be challenging. First,
users are required to have technical knowledge of such query languages and
the semantics of their operators. Second, graphs are often used to represent
diverse data that may not correspond to a particular domain-specific schema,
meaning that the users may not be easily able to conceptualize the data that
they are querying, particularly for domain-agnostic knowledge graphs. Despite
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these limitations, query services for DBpedia and Wikidata are receiving in the
order of millions of queries per day [28,23]; although many such queries are from
“bots”, tens of thousands are not [23], where such statistics indicate the value
of being able to query graphs for many users and applications.

Several interfaces have been proposed to allow lay users to visualize,
search, browse and query knowledge graphs, with varying goals, emphases and
assumptions [15]. Some key approaches adopted by such interfaces (discussed
further in Section 2) involve keyword search, faceted browsing, graph-based
browsing, query building, graph summarization, visualization techniques, and
combinations thereof. In general however, many proposed systems trade
expressivity – the types of operators and interactions supported, and thus the
types of queries that can ultimately be captured through the interface – for
usability and efficiency. Few interfaces have been proposed, for example, that
can handle graph-patterns with cycles, such as to find siblings who have directed
movies together, drugs indicated and contraindicated for pairs of comorbid
illnesses, pairs of binary stars of the same classification, and so forth. Interfaces
that can capture such graph patterns often assume some technical expertise of
the query language and/or knowledge of how data are modeled.

This work proposes a language and associated interface that enables lay users
to build and execute graph-pattern queries on knowledge graphs, where the user
navigates a visual representation of a sub-graph, and in so doing, incrementally
builds a potentially complex (cyclical) graph pattern. More specifically, we first
propose a set of operators, forming a language that allows users to build SPARQL
graph patterns by interactively exploring an RDF graph; we further study the
expressivity of this language. We then discuss the design of a user interface
around this language, and the additional practical features it incorporates
to improve usability, such as auto-completion, result previews, generalizing
examples, etc.; we further describe how this interface can be implemented on top
of an existing query service (SPARQL endpoint). Our claim is that the resulting
interface allows lay users to express graph-pattern queries over knowledge graphs
better than existing interfaces that support similar expressivity. To evaluate this
claim, we present a task-based user study comparing the usability of our interface
with the Wikidata Query Helper; the results indicate that users achieve a higher
successful completion rate of tasks with our system.

2 Related Work

A wide variety of interfaces have been proposed in recent years to help lay
users visualize and explore RDF graphs [15,11]. Amongst these works, we can
first highlight search and browsing systems that allow users to find entities by
keyword and potentially filter or modify results by selecting facets or following
paths (e.g., Tabulator [9], Explorator [4], VisiNav [19], amongst others); these
approaches are limited in terms of the types of queries that they can express,
not allowing (for example) to express cycles. Other types of interfaces focus on
providing visualizations to summarize data, be they domain-independent (e.g.,
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Sgvizler [31],or domain-specific (e.g., DBpedia Atlas [35], DBpedia Mobile [8],
LinkedGeoData Browser [34]) visualizations; such systems focus on providing
overviews of data rather than exploring or querying for specific nodes/entities.
Other systems combine browsing/exploration and visualization, often following
a graph-based navigation paradigm (e.g., RDF Visualiser [29], Fenfire [20], etc.);
these systems allow to focus on a specific node and explore its neighborhood in
the graph, but do not allow to generalize these explorations into queries.

To help users express more complex forms of queries over graphs,
various query editors and builders have been proposed for languages such as
SPARQL [16]. We provide an overview of such systems with publications in
Table 1. For space reasons we focus on features that relate to the present
contribution, omitting, for example, discussion of reasoning support in systems
such as QueryVOWL [17] and OptiqueVQS [33], or the schema-based notation
used by SPARQLing [7]. Such interfaces must deal with two antagonistic goals:
supporting complex queries while assuming as little technical expertise on the
part of the user as possible. Towards the more expressive end of the scale are
query editing interfaces – such as SPARQL Assist [24], YASGUI [27], etc. –
which offer users some helpful features when formulating SPARQL queries in a
text field, but still assume knowledge of SPARQL. On the other hand, query
builders aim to abstract away from SPARQL syntax, allowing to formulate
queries in a more visual way, based on form fields or graphs. From Table 1, we
conclude that the closest system to ours is Smeagol [14], which also supports key
features such as autocompletion, example-based querying (where users explore a
graph and then generalize some constants as variables), dynamic results (where
query results are generated on the fly and used to guide query construction), and
non-emptiness guarantees (to avoid users generating queries with zero results);
furthermore, Smeagol offers a task-driven user evaluation against a baseline
Pubby system with a substantial number of users and significance testing. Our
proposal is distinguished from Smeagol in key aspects; most importantly, while
Smeagol [14] focuses on supporting tree-shaped queries generated during user
exploration, our proposal also has general support for graph patterns.

Research on usable interfaces for querying graphs can not only have impact
beyond the Semantic Web community, it can also benefit from expertise in other
communities. In particular, the area of Human Computer Interaction (HCI) can
offer insights not only in terms of the challenges faced in such research, but also
in the design of user studies to evaluate the claims made of such research. Along
these lines, Bhowmick et al. [10] reflect on recent advances in what they refer to
as the visual graph querying paradigm from the HCI perspective, characterizing
the challenges in the area and the research directions that should be followed.
The authors define the challenges as follows: (1) the development of graph
queries requires a considerable cognitive effort; (2) users need to be able to
express their goal in a systematic and correct manner, which is antagonistic
with the goal of catering to lay users; (3) it is more intuitive to “draw” graph
queries than to write them, which implies the need for intuitive visual interfaces.
Regarding the latter point, the authors claim that current visual querying tools
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Table 1: Comparison of query interfaces for SPARQL, indicating the year of the
associated publication, the mode of interaction, the features supported (AC =
Autocomplete; EX = Example-based Querying; DY = Dynamic Results, NE =
Non-Empty Results), details of user evaluation conducted, if any (B = Baseline,
Q = Questionnaire, T = Tasks) and details of availability

System Year Mode
Features

User Eval. Expressivity
AC EX DY NE

NIGHTLIGHT [32] 2008 graph – – – – – SPARQL 1.0−

Konduit [2] 2010 form X – – – – BGPs+

RDF-GL [21] 2010 graph – – – – BQT (5 users) SPARQL 1.0−

Smeagol [14] 2011 graph X X X X BQT (43 users) Trees
SPARQL Assist [24] 2012 text X – – – – BGPs+

QUaTRO2 [6] 2013 form X – X X no details Trees+

QueryVOWL [17] 2015 graph X – – – QT (6 users) BGPs
YASGUI [27] 2017 text X – – – – SPARQL 1.1
OptiqueVQS [33] 2018 graph X – – – T (10 users) Trees
SPARQLing [7] 2018 graph – – – – – Trees
ViziQuer [13] 2018 graph – – – – BT (14 users) Trees+

WQH [23] 2018 form X – X – – BGPs

RDF Explorer 2019 graph X X X X BQT (28 users) BGPs−

suffer from poor aesthetics. They further indicate important primitives that such
tools should support to cater to diverse users and support diverse queries: edge
creation, pattern creation and example-based querying. Aside from this, they
emphasize action-aware query processing in which the system is able to deliver
partial information and immediate feedback while the user is developing the
query, based on dynamic result exploration and visualization. They acknowledge,
however, that these goals, when taken together, are challenging to address given
large-scale graphs and complex queries.

In this paper, we propose (yet another) visual query builder for SPARQL. In
so doing, we are particularly inspired by the discussion of Bhowmick et al. [10] in
terms of the main interactions and features that are key to making such systems
usable for non-experts, and by the “specific-to-general” paradigm adopted by
Smeagol [14]; however, we adopt various extensions to improve usability and
expressivity, key among which is support for graph patterns with cycles.

3 RDF Explorer

In this section, we propose our RDF Explorer system, whose goal is to enable lay
users to query and explore RDF graphs. We first discuss the operators that form
the basis of a visual query language in which users can express queries over graphs
through simple interactions; we characterize the expressivity of the language in
relation to SPARQL. Thereafter, we discuss how this query language is supported
by the RDF Explorer interface, and how the overall system is implemented.
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3.1 Visual Query Graph

The visual query language we propose is formulated with respect to a visual
query graph. Let I denote the set of IRIs, L denote the set of literals and V
denote the set of query variables. We define the visual query graph as follows.

Definition 1. A visual query graph (VQG) is defined as a directed, edge-labelled
graph G = (N,E), with nodes N and edges E. The nodes of the VQG are a finite
set of IRIs, literals and/or variables: N ⊂ I∪L∪V. The edges of the VQG are a
finite set of triples, where each triple indicates a directed edge between two nodes
with a label taken from the set of IRIs or variables: E ⊂ N× (I ∪V)× N.

We denote by var(G) the set of variables appearing in G = (N,E), either as
nodes or edge labels: var(G) := {v ∈ V | v ∈ N or ∃n1, n2 : (n1, v, n2) ∈ E}.

We say that the VQG is constructed through a visual query language,
consisting of four algebraic operators that will correspond to atomic user
interactions: adding a variable node, adding a constant node, adding an edge
between two existing nodes with a variable label, and adding an edge between
two existing nodes with an IRI label. More specifically, the VQG is initially
empty: G0 = (∅, ∅). Thereafter, a VQG can be constructed through the visual
query language (VQL), defined straightforwardly as follows.

Definition 2. Letting G = (N,E) denote the current VQG; the visual query
language (VQL) is defined through the following four atomic operations:

– Initialize a new variable node: η(G) := (N ∪ {v},E) where v 6∈ var(G).
– Add a new constant node: η(G, x) := (N ∪ {x},E) where x ∈ (I ∪ L).
– Initialize a new edge between two nodes with a variable edge-label:
ε(G, n1, n2) := (N,E ∪ {(n1, v, n2)}) where {n1, n2} ⊆ N and v 6∈ var(G).

– Add a new edge between two nodes with an IRI edge-label: ε(G, n1, x, n2) :=
(N,E ∪ {(n1, x, n2)}) where {n1, n2} ⊆ N and x ∈ I.

Note that for the VQL operators η(G) and ε(G, n1, n2), the variable is
not specified, where rather an arbitrary fresh variable can be automatically
generated. No matter what variables are chosen, since the variables added are
always fresh, the resulting VQG will be unique modulo isomorphism; in practice,
the system can thus take care of generating fresh names for each variable.

Though VQGs are a straightforward way to represent queries against graphs,
since VQGs allow for representing cycles, they already go beyond the expressivity
of many user interfaces for graphs (entity search, facets, etc.), and even many of
the related visual query languages proposed in the literature, which are based
on trees (see Table 1). On the other hand, we choose not to support query
operators that go beyond simple graph patterns as covered by similar graph-
based interfaces – such as NIGHTLIGHT [32] and RDF-GL [21], which support
unions, optional, etc. – as we consider such systems to be aimed at users with
some knowledge of query languages and do not know of an intuitive way to
represent such operators in a manner that would be accessible to a lay user. On
the other hand, VQGs will be converted to concrete SPARQL syntax, where a
more expert user can modify the resulting query as required.
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3.2 Translating VQGs to SPARQL

VQGs are designed as a visual metaphor for SPARQL basic graph patterns
(BGPs), where the translation is thus mostly direct and natural; however there
are BGPs that cannot be expressed as VQGs, and indeed, there are minor aspects
of VQGs that cannot be translated to BGPs. Before we discuss such issues, we
must first introduce some notation for RDF and SPARQL BGPs [26].

An RDF triple uses terms from the set of IRIs (I), literals (L) and blank
nodes (B); more specifically a triple t = (s, p, o) is an RDF triple iff s ∈ I ∪B
(called the subject), p ∈ I (called the predicate) and o ∈ I ∪ B ∪ L (called the
object). A finite set of RDF triples is called an RDF graph.

SPARQL basic graph patterns (BGPs) correspond to RDF graphs, but where
variable terms (V) can also be used. Along these lines, a triple q = (s, p, o) is a
SPARQL triple pattern iff s ∈ I∪L∪V, p ∈ I∪V and o ∈ I∪L∪V.4 A SPARQL
BGP is then a finite set of SPARQL triple patterns. The semantics of a BGP
is defined in terms of its evaluation over an RDF graph, which returns a set of
mappings. A mapping µ : V→ (I∪B∪L) is a partial map from variables to RDF
terms; the set of variables for which µ is defined is called the domain of µ, denoted
dom(µ). Given a query Q, we denote the set of variables it mentions by var(Q);
furthermore, we denote by µ(Q) the image of Q under µ: the result of replacing
every occurrence in Q of every variable v ∈ var(Q) by µ(v) (or v if v 6∈ dom(v)).
The evaluation of a BGP Q with respect to an RDF graph G, denoted Q(G), is
then defined as the set of mappings {µ | dom(µ) = var(Q) and µ(Q) ⊆ G} (note
that this is equivalent to – but more succinct than – defining the evaluation of
a BGP as a join of the evaluation of its constituent triple patterns).

In terms of translating VQGs to BGPs, given a VQG G = (N,E), we observe
that by design, the set E is already a BGP, and we are done. However, first we
must remark that this translation is agnostic to orphan nodes – nodes with no
incident edges – in G; thus for example, G and η(G) will give the same BGP.
Second, while VQGs are BGPs have equivalent definitions, not all VQGs/BGPs
can be constructed by the four operators in the visual query language described
earlier. In particular, we cannot construct VQGs/BGPs where a join variable
– a variable appearing in more than one edge/triple pattern – appears as an
edge-label/predicate (since the ε(N) operation is defined only for fresh variables,
while ε(G, n1, x, n2) is defined only where x is constant); we do not consider this
to be an important limitation in practice since analysis of real-world SPARQL
query logs suggests that joins on the predicate position are rare [5].

The VQG can then be serialized in concrete SPARQL syntax: the
corresponding basic graph pattern is written as the WHERE clause of a SPARQL
query, where all variables are projected with SELECT *; at this point, a more
expert user may wish to modify the query, e.g., adding query operators.

With respect to complexity, we remark that for the evaluation decision
problem – which asks: given a mapping µ, a query Q and an RDF graph G,

4 We do not consider blank nodes in triple patterns, which can be modeled as
unprojected (aka. non-distinguished) query variables.
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is µ ∈ Q(G)? – the queries generated by a VQG are tractable for this problem as
they do not feature projection (a trivial upper bound is given by O(|Q|·|G|) [26]).
However, in the interface we implement a number of features for usability, where
one such feature is to suggest possible groundings of variables that will not lead to
non-empty results. The corresponding decision problem for this autocompletion
feature asks, given µ (where dom(µ) ⊆ var(Q)), a query Q and an RDF graph G,
is µ(Q)(G) non-empty? This problem is NP-complete in combined complexity
(considering the size of G and Q in the input) since µ(Q)(G) can represent a
graph, and one can reduce from the graph homomorphism problem; however, in
data complexity (considering the query Q as fixed) the problem is tractable.
In summary, the autocompletion task may become challenging as the VQG
grows more complex; currently we rely on a SPARQL query to generate these
suggestions, where we leave further optimizations for future work.

3.3 The RDF Explorer Interface

While the visual query graph offers a visual metaphor for basic graph patterns
and the visual query language describes the interactions by which a visual
query graph can be constructed incrementally by the user, these concepts leave
many questions open regarding usability. One key issue, for example, is how
the VQG should be visualized. Another practical issue we glossed over is that
while η(G) and ε(G, n1, n2) do not require any specific knowledge (in the latter,
the user can select two nodes displayed in the visualization, for example), the
operations η(G, x) and ε(G, n1, n2, x) require the user to give a specific (IRI or
literal) term x, which assumes domain knowledge. Furthermore, we have yet to
address the usability features discussed by Bhowmick et al. [10], such as example-
based querying, action-aware query processing, or dynamic result exploration and
visualization. Addressing such issues is key to achieving our goal of enabling
lay users to formulate expressive queries over graphs. Along these lines, we now
describe the RDF Explorer interface, which we propose to address these concerns.

The RDF Explorer interface is composed of six main components displayed
in three panes. Figure 1 provides a screenshot of the interface for querying
Wikidata, where we can see three components: a search panel (left pane), a
visual query editor (center pane), and a node detail view (right pane); in the
top right corner are buttons to switch the right pane to display one of the three
other components: a node editor (allowing to add restrictions to a highlighted
node), a SPARQL query editor (showing the current query), and a help panel.

The process starts with a blank visual query editor. The user must then start
by adding a new node, be it a variable node (η(G)) or a constant node (η(G, x));
for selecting x, the user can type a keyword phrase into the search pane on the
left, which will generate autosuggestions, where any of the results shown can be
dragged into the central query editor pane. The user may then proceed to add
a second node by the same means. With two or more nodes available, the user
can now click and drag between two nodes to generate an edge with a variable
edge-label (shown as a box nested inside the source node); a list of potential
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Figure 1: Example visual query finding siblings who have directed movies
together

IRIs will be suggested for replacing the variable, where only IRIs that generate
non-empty results for the underlying query will be offered.

Figure 2 illustrates some further features of the interface. Following
conventions used in the case of property graphs [3], we display datatype
properties within a given node to avoid clutter; this can be seen for the number
of children property in Figure 2. At any point, the user may click on a node to
view further details: if the node is variable (see Figure 1), they will be shown
a sample of current results for that variable (generated by mapping the current
VQG to SPARQL and projecting that variable); if the node is constant (see
Figure 2), they will be shown the data available for that node, organized by
datatype properties (which take a literal value) and object properties (which
take an IRI value). In this way, per the discussion of Bhowmick et al. [10], the
user can explore the graph and receive feedback on the results generated thus far,
guiding next steps. Constant nodes can be converted to variables nodes, enabling
the user to start with a specific example and then generalize the graph [14]. We
claim that these features improve the usability of the system for lay users.

4 User Study

We now describe a user study that we conducted to evaluate our interface. We
first make explicit our hypotheses and then describe the dataset, baseline system
and user-study design that we selected to test these hypotheses. We then give
details on the participants of the study and the metrics we collect.

Hypotheses The goal of our work is to enable users without prior knowledge
of the Semantic Web to explore an RDF database and correctly build SPARQL
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Figure 2: Example visual query finding politicians born in Auckland

queries encoding a specific information need. Our hypotheses are as follows,
where each hypothesis relates to user success at different levels of granularity:

H1: Non-expert users are able to correctly formulate more SPARQL queries with
our visual query builder than a baseline system. For a query to be considered
correct, it must return the same results as the reference query for the task.

H2: Non-expert users are able to correctly formulate more triple patterns with
our visual query builder than a baseline system. For a triple pattern to
be considered correct in the generated query, it must be contained in the
reference query (modulo variable names).

H3: Non-expert users are able to generate more correct query graphs with
our visual query builder than a baseline system. For a query graph to be
considered correct, its “shape” must be the same as that of the reference
query graph, irrespective of edge labels or node types/values. More formally,
given a visual query graph G = (N,E), let shape(G) denote a directed graph
S = (VS , ES) such that VS = N and (x, y) ∈ S if and only if there exists an
edge-label l such that (x, l, y, ) ∈ E; now given the reference query graph G′,
a user’s query graph G′′, and their corresponding shapes S′ = shape(G′) and
S′′ = shape(G′′), the user’s query graph G′′ is considered correct if and only
if there exists an isomorphism h : V ′′S → V ′S such that h(S′′) = S′.

Dataset and baseline According to statistics recently published by Malyshev
et al. [23], the Wikidata Query Service5 receives millions of SPARQL queries per
day, where tens of thousands of these queries are “organic” (written and posed
by humans rather than bots). The Wikidata knowledge graph itself is a large,
diverse graph, where at the time of writing it described 56,097,884 items and was
being collaboratively edited by 21,049 active users; such a graph is unfeasible for

5 http://query.wikidata.org/

http://query.wikidata.org/
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Table 2: Two sets of five increasingly-complex tasks

№ Set 1 (S1) Set 2 (S2)

1 Find all dogs Find all actors

2 Find all popes who are female Find all German soccer players who
participated in FIFA 2014

3 Find all mountains located in European
countries

Find all container ships located in
European countries

4 Find all emperors whose father is also
an emperor

Find all physicists whose spouse is also
a physicist

5 Find all Nobel prize winners with a
student who won the same Nobel prize

Find all participants of an Olympic sport
with a relative who participates in the
same sport

any user to conceptualize in its entirety. We thus view Wikidata as a potentially
challenging use-case for our visual query builder and adopt it for our study.

In fact, Wikidata already has a default query builder deployed to help users
query the knowledge graph: the Wikidata Query Helper (WQH) [23]. The WQH
visual interface accompanies a text field displaying the current SPARQL query;
changes in WQH are reflected in the query and vice versa. WQH is based on two
main functionalities: the ability to define a filter that allows to select a property
p and an object o, and the ability to show more data than what is being filtered
by fixing a property value and adding a variable to its associated o. To help users
select a given value for p and/or o, a search field is provided that autocompletes
a keyword query and provides ranked suggestions to the user.

Study design To test the hypotheses, we design a task-based user study to
compare the subjects’ ability to solve tasks on the proposed interface versus the
baseline interface [25]. This comparison focuses on the users’ ability to perform
query-based tasks, including aspects such as the users’ performance overall, their
perceived cognitive load, and usability aspects. Given limitations to how many
subjects we could recruit, we use a within-subject design where each participant
completes five tasks using our query builder and five similar tasks with the
baseline. Each task consists of answering a question (given in natural language)
that requires formulating a query to retrieve answer(s) from the Wikidata graph.

We divide the subjects into two groups. The first group is asked to build a
set of five queries (S1) using the proposed interface; afterwards they are asked to
build a different set of five queries (S2) using the baseline. Conversely, the second
group is asked to build the first set of queries (S1) using the baseline and the
second set (S2) with the proposed interface. This design controls for individual
differences with participants using both interfaces. Counterbalancing the order
of interfaces helps control for carry-over effects, such as learning or fatigue.
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Table 3: Basic graph patterns corresponding to tasks listed in Table 2

№ Set 1 (S1) Set 2 (S2)

1 ?dog wdt:P31 wd:Q144 . ?actor wdt:P106 wd:Q33999.

2
?pope wdt:P21 wd:Q6581072 .

?pope wdt:P39 wd:Q19546 .

?ppl wdt:P1344 wd:Q79859.

?ppl wdt:P27 wd:Q298.

3
?mount wdt:P31 wd:Q8502 .

?mount wdt:P17 ?country .

?country wdt:P30 wd:Q18 .

?ship wdt:P31 wd:Q17210 .

?ship wdt:P17 ?country .

?country wdt:P30 wd:Q46 .

4
?emp1 wdt:P39 wd:Q39018 .

?emp2 wdt:P39 wd:Q39018 .

?emp1 wdt:P22 ?emp2 .

?phy1 wdt:P106 wd:Q169470 .

?phy2 wdt:P106 wd:Q169470 .

?phy1 wdt:P26 ?phy2 .

5

?winner wdt:P166 ?novel .

?student wdt:P166 ?novel .

?student wdt:P802 ?winner .

?novel wdt:P31 wd:Q7191 .

?ppl1 wdt:P641 ?sp .

?ppl2 wdt:P641 ?sp .

?ppl1 wdt:P1038 ?ppl2 .

?sp wdt:P279 wd:Q212434 .

(a) Task 1 (b) Task 2 (c) Task 3

(d) Task 4 (e) Task 5

Figure 3: Expected query shapes for each pair of tasks shown in Table 2 where
constant (IRI or literal) nodes are shaded and variable nodes are unshaded

Table 2 list the tasks in sets S1 and S2. The queries in both sets are designed
to be of increasingly difficulty to follow a learning curve and also to avoid users
being discouraged early on. We further aim to keep the nth query of both sets of
tasks comparable in terms of difficulty. Along these lines, as shown in Figure 3,
each pair of tasks corresponds to the same abstract visual query graph, and
each successive pair incrementally adds more complexity. Table 3 lists the target
SPARQL basic graph patterns corresponding to each task in Table 2.

Before presenting each set of five tasks, we provide some brief training for
the participants on how to use the interface they are about to see. Our training
involves a description of the system’s main functionalities and formulating an
example query using these functionalities. For example, we pose the task “Find
all Clint Eastwood movies in which any of his children participated” and show
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how to build the query in the corresponding interface. A web page with other
example queries for the interface is also provided to the participants.

Study participants The study was conducted with 28 students enrolled in
the undergraduate course “User interface design”. The students were in the
fourth year of a Computer Science undergraduate program in a Spanish-speaking
university. They have no previous knowledge of SPARQL nor the Semantic Web.
Their native language was Spanish; the text of tasks was presented in Spanish
and while both interfaces were offered in English, a tooltip was added that
automatically translates an English word to Spanish when the user hovers the
mouse over a word. Participants were given up to 40 minutes to solve each of
the sets of five tasks using each interface; adding two 5 minute tutorials before
both sets of tasks, the total study time was thus 90 minutes.

Metrics To compare our visual query builder and the the baseline WQH query
builder, we measure diverse aspects of the users’ ability to perform a set of
requested five tasks using each interface. We collect metrics for the users’ task
performance such as task completion rate and time for task completion. In terms
of level of completion, we check the correctness of the query, the triple patterns,
and the query graph (as previously described for our hypotheses). We also use
the NASA Task Load Index [18] (NASA-TLX) to allow users to self-report the
level of workload perceived by the user in a scale from 0 to 100. We use Likert
scales from 1 to 5 to ask for usability aspects. We also include open questions to
describe the data structure that the users believe to be behind each interface.
We ask users to answer such questions using simple natural language that avoids
technical jargon where we restrict the words they can use to the 1,000 most
common words in their native language; we also ask them to illustrate (draw)
how they understand the data structure.

5 Results

We begin by presenting the ratio of correct responses broken down by three
levels of granularity: queries, triple patterns and shapes. Next we evaluate our
hypotheses with respect to these data. We then present analysis of the subjective
impressions of the interfaces.

Ratio of correct responses Figure 4 shows the mean ratios of correct
responses for the proposed interface (RDF Explorer = re) and the baseline
interface (Wikidata Query Helper = wqh) at three different levels of granularity:
queries, triple patterns, and shapes. Note that while queries and shapes are
binary – either correct or not – in the case of triple patterns, we take the ratio
of correct triple patterns versus total triple patterns provided in the response,
where the presented results are then the mean of these ratios across all users.
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(b) Triple patterns

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Task

R
a
ti
o
co
rr
ec
t

re
wqh

(c) Shapes

Figure 4: Mean ratios of correct results at three levels of granularity

Though we note a relatively high correctness ratio for earlier tasks, most
users still struggled with later tasks; not only were earlier tasks easier, given
the fixed time period for the study, some users did not reach the final task(s).
Contrasting the two systems, in the first task, although all users of both systems
got the query shape correct in both systems (which is trivially a single edge),
they had more success correctly finding the terms of the triple pattern in wqh
than re; we believe that this is because wqh offers autocomplete forms that
directly correspond to triple patterns whereas re is more complex to use at first.6

However, as tasks progress and queries become more “graph-like”, users have
more correct responses using the re interface than the wqh interface; another
possible interpretation is that users learn more about re as the task progresses.
Comparing the three levels of granularity, in the re system, users generally have
more success defining the correct query graph shape than identifying the terms
(constants) in the query graph; the opposite trend is true for wqh, where users
can more easily find the correct query terms, but not the correct query shape;
we attribute this to two possible factors: the fact that wqh is form-based while
re is graph-based, and also based on the fact that re blocks users from creating
query shapes that give empty results while wqh does not.

Hypothesis testing To test our hypotheses, we assess the difference between
completion rates of participants using both tools (whose mean values are
depicted in Figure 4). We use paired-t tests to assess differences in the users’
ability to perform the requested tasks; this test is appropriate because we are
comparing the same participants using two different tools. We use α = 0.05 to
reject the null hypothesis and thus interpret that we have obtained a significant
result when t∗ is greater than tcrit = 2.052 (t∗ ≥ tcrit).7 For our three hypotheses
(see Section 4) the null hypotheses are that there is no difference between the
tools or wqh performs better. The alternative hypothesis is that re performs

6 Given that the first task results in a query with a single triple pattern, the results
for queries and triple patterns are the same.

7 The value for tcrit is given by α and the number of participants (n = 28, giving n−1 =
27 degrees of freedom). See http://www.numeracy-bank.net/?q=t/stt/ptt/3.

http://www.numeracy-bank.net/?q=t/stt/ptt/3
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better. We denote the completion rates for re as x̄ and those for wqh as ȳ; the
average distances we denote by d̄ = (x̄− ȳ), and the standard deviation by sd.
We can then test the three hypotheses:

H1 : Non-expert users are able to correctly formulate more SPARQL queries
with our visual query builder than a baseline interface. We use the data
summarized in Figure 4a. With d̄ = (x̄− ȳ) = 0.1714 and sd = 0.2813 we
obtain t∗ = 3.22 > tcrit = 2.052 rejecting the null hypothesis; i.e., we validate
H1 by obtaining a statistically significant result in favor of our interface.8

H2 : Non-expert users are able to correctly formulate more triple patterns
with our visual query builder than a baseline interface. We use the data
summarized in Figure 4b. With d̄ = 0.06 and sd = 0.2609 we obtain
t∗ = 1.1947 < tcrit = 2.052: the results are not statistically significant.

H3 : Non-expert users are able to generate more correct query graphs with
our visual query builder than a baseline interface. Here we use the data
summarized in Figure 4c. With d̄ = 0.1928 and sd = 0.2801 we obtain
t∗ = 3.6431 > tcrit = 2.052 rejecting the null hypothesis; i.e., we validate H3

by obtaining a statistically significant result in favor of our interface.

Our user study is thus conclusive regarding the claim that our proposed
interface is better than the baseline at helping non-expert users formulate their
queries as graphs, but is not conclusive regarding the claim of our interface being
better at helping users to correctly generate triple patterns.

Time results For space reasons, we present the results regarding task
completion time as online reference data [1]. In summary, the average time
needed for completing all ten tasks was 65 minutes while the fastest participant
needed 50 minutes to complete all tasks.

Subjective results Figure 5 shows the results of the NASA-TLX questionnaire,
where lower scores are deemed better. We see that for both systems, users still
expressed concerns about both systems, where they found wqh particularly
frustrating and demanding of mental effort; on the other hand, they found the
the physical effort required to use wqh to be lower (perhaps because re requires
more clicks, drags, etc.). Figure 6 shows the usability results, where higher scores
are better; the users express a preference across all dimensions for re when
compared with wqh.

6 Conclusions

We present a language and its visual implementation (re) to support non-expert
users in generating graph queries. Our results indicate that our re interface

8 The data were found to be normally distributed and there were no clear outliers;
hence use of the paired t-test is considered valid. We also conducted a non-parametric
Wilcoxon test to compare the users’ ability to perform the requested tasks using the
different interfaces; the results give a p-value of 0.001647 < 0.05.
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is more effective at supporting non-expert users in creating correct SPARQL
queries than the baseline wqh system. The data suggest that this difference
could be attributed to better support for generating the correct graph patterns
rather than the correct triple patterns, as well as usability features such as
non-empty suggestions. Even though these benefits come at the cost of higher
physical effort, they require lower mental effort and generate less frustration.

Future work can be followed along several lines. First, additional user studies
may reveal further insights into the RDF Explorer system, where it would be of
interest to compare with other baseline systems (such as Smeagol), with other
endpoints, with other types of questions, and with a more diverse set of users.
More generally, we could explore the potential reasons behind these usability
differences, including whether or not our graph-like visualization leads users to
develop more productive mental representations of the data structures. Aside
from evaluation, the system could be improved along a number of lines, most
importantly in terms of approximations for non-empty suggestions to improve
performance for more complex visual query graphs, and support for features
such as optionals, unions, etc. (while maintaining the usability of the system).

A demo of RDF Explorer is available at https://www.rdfexplorer.org/

operating over the Wikidata SPARQL Query Service.
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Skjæveland, D. Hovland, R. Schlatte, S. Brandt, H. Lie, and I. Horrocks.
OptiqueVQS: A visual query system over ontologies for industry. Semantic Web,
9(5):627–660, 2018.
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