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Abstract. Works on knowledge graphs and graph-based data management of-
ten focus either on graph query languages or on frameworks for graph analytics,
where there has been little work in trying to combine both approaches. However,
many real-world tasks conceptually involve combinations of these approaches: a
graph query can be used to select the appropriate data, which is then enriched with
analytics, and then possibly filtered or combined again with other data by means
of a query language. In this paper we propose a language that is well-suited for
both graph querying and analytical tasks. We propose a minimalistic extension of
SPARQL to allow for expressing analytical tasks over existing SPARQL infras-
tructure; in particular, we propose to extend SPARQL with recursive features, and
provide a formal syntax and semantics for our language. We show that this lan-
guage can express key analytical tasks on graphs (in fact, it is Turing complete).
Moreover, queries in this language can also be compiled into sequences of iter-
ations of SPARQL update statements. We show how procedures in our language
can be implemented over off-the-shelf SPARQL engines, with a specialised client
that can leverage database operations to improve the performance of queries. Re-
sults for our implementation show that procedures for popular analytics currently
run in seconds or minutes for selective sub-graphs (our target use-case).

1 Introduction

Recent years have seen a surge in interest in graph data management, learning and
analytics within different sub-communities, particularly under the title of “knowledge
graphs” [1]. However, more work is needed to combine complementary techniques from
different areas [2]. As a prominent example, while numerous query languages have
been proposed for graph databases, and numerous frameworks have been proposed for
graph analytics, few works aim to combine both: while some analytical frameworks
support lightweight query features [3,4], and some query languages support lightweight
analytical features [5,6,7], only specific types of queries or analytics are addressed.

Take, for example, the following seemingly simple task, which we wish to apply
over Wikidata4: find stations from which one can still reach Palermo metro station in
Buenos Aires if Line C is closed. Although standard graph query languages such as
SPARQL [5] or Cypher [6] support path expressions that capture reachability, they can-
not express conditions on the nodes through which such paths pass, as is required by
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this task (i.e., that they are not on Line C). Consider a more complex example that
again, in principle, can be answered over Wikidata: find the top author of scientific ar-
ticles about the Zika virus according to their p-index within the topic. The p-index of
authors is calculated by computing the PageRank of papers in the citation network, and
then summing the scores of the papers for each respective author [8]. One way this
could currently be achieved is to: (1) perform a SPARQL query to extract the citation
graph of articles about the Zika virus; (2) load the graph or connect the database with
an external tool to compute PageRank scores; (3) perform another query to extract the
(bipartite) authorship graph for the articles; (4) load or connect again the authorship
graph into the external tool to join authors with papers, aggregate the p-index score per
author, sort by score, and output the top result. Here the user must ship data back and
forth between different tools or languages to solve the task. Another strategy might be
to load the Wikidata dump directly into a graph-analytics framework and address all
tasks within it; in this case, we lose the convenience of a query language and database
optimisations for extracting (only) the relevant data.

In this paper, we instead propose a general, (mostly) declarative language that sup-
ports graph queralytics: tasks that combine querying and analytics on graphs, allowing
to interleave both arbitrarily. We coin the term “queralytics” to highlight that these tasks
raise new challenges and are not well-supported by existing languages and tools that fo-
cus only on querying or analytics. Rather than extending a graph query language with
support for specific, built-in analytics, we rather propose to extend a graph query lan-
guage to be able to express any form of (computable) analytical task of interest to the
user. Specifically, we explore the addition of recursive features to the SPARQL query
language, proposing a concrete syntax and semantics for our language, showing exam-
ples of how it can combine querying and analytics for graphs. We call our language the
SPARQL Protocol and RDF Query& Analytics Language (SPARQAL). We study the ex-
pressive power of SPARQAL with similar proposals found in the literature [9,10,11,12].
We then discuss the implementation of our language on top of a SPARQL query engine,
introducing different evaluation strategies for our procedures. We present experiments
to compare our proposed strategies on real-world datasets, for which we devise a set
of benchmark queralytics over Wikidata. Our results provide insights into the scale and
performance with which an existing SPARQL engine can perform standard graph ana-
lytics, showing that for queralytics wherein a selective sub-graph is extracted for anal-
ysis, interactive performance is feasible; on the other hand, the current implementation
struggles for larger-scale graphs, opening avenues for future research.

Example 1. Suppose that there is a concert close to Palermo metro station in Buenos
Aires; however, Line C of the metro is closed due to a strike. As mentioned in the
introduction, we would like to know from which metro stations we can still reach
Palermo. The data to answer this query are available on Wikidata [13]. We can express
this request in our SPARQL-based language, as shown in Figure 1. Two adjacent sta-
tions are given by the property wdt:P197 and the metro line by wdt:P81; the entities
wd:Q3296629 and wd:Q1157050 refer to Palermo metro station and Line C, respec-
tively. From lines 1 to 5, we first define a solution variable called reachable whose
value is the result of computing all stations directly adjacent to Palermo that are not on
Line C. From lines 6 to 17 we have a loop that executes two instructions: the first, start-



1 LET reachable = ( # stations directly adjacent to Palermo not on Line C
2 SELECT ?s WHERE {
3 wd:Q3296629 wdt:P197 ?s . MINUS { ?s wdt:P81 wd:Q1157050 }
4 }
5 );
6 DO (
7 LET adjacent = ( # stations adjacent to stations in variable reachable
8 SELECT (?adj AS ?s) WHERE {
9 ?s wdt:P197 ?adj . MINUS { ?adj wdt:P81 wd:Q1157050 } QVALUES(reachable)

10 }
11 );
12 LET reachable = ( # add stations in variable adjacent to variable reachable
13 SELECT DISTINCT ?s WHERE {
14 { QVALUES(adjacent) } UNION { QVALUES(reachable) }
15 }
16 );
17 ) UNTIL(FIXPOINT(reachable) );
18 RETURN(reachable);

Fig. 1. Procedure to find metro stations from which Palermo can be reached

ing at line 7, computes all stations directly adjacent to the current reachable stations not
on Line C; here the QVALUES(reachable) clause is used to invoke all solutions stored
in variable reachable. The second, starting at line 12, adds the new adjacent stations
to the list of known reachable stations with a union. The loop is finished when the set
of solutions assigned to the variable reachable does not change from one iteration to
another (a fixpoint is thus reached). Finally, on line 18, we return reachable stations. ut

2 Related Work

We now discuss frameworks for applying graph analytics, proposals for combining
graph querying and graph analytics, and recursive extensions of graph query languages.
Frameworks for Graph Analytics. Various frameworks have been proposed for perform-
ing graph analytics at large-scale, including GraphStep [14], Pregel [15], HipG [16],
PowerGraph [17], GraphX [3], Giraph [18], Signal/Collect [19], etc. These frameworks
operate on a computational model – sometimes called the systolic model [20], Gath-
er/Apply/Scatter (GAS) model [17], graph-parallel framework [3], etc. – whereby each
node in a graph recursively computes its state based on data available in its neigh-
bourhood. However, implementing queries on such frameworks, selecting custom sub-
graphs to be analysed, etc., is not straightforward. Datalog variants also offer an interest-
ing framework for graph analytics, especially when Datalog is extended with arithmetic
features, as in, e.g., [21,12,22,23,24]. As we discuss in Section 4, SPARQAL can be
seen as bridging existing RDF databases and SPARQL services with such frameworks.
Graph Queries and Analytics. Our work aims to combine graph queries and analytics
for RDF/SPARQL. Along these lines, Trinity.RDF [25] stores RDF in a native graph
format where nodes store inward and outward adjacency lists, allowing to traverse from
a node to its neighbours without the need for index lookup; the system is then im-
plemented in a distributed in-memory index, with query processing and optimisation
components provided for basic graph patterns. Although the authors discuss how Trin-
ity.RDF’s storage scheme can also be useful for graph algorithms based on random



walks, reachability, etc., experiments focus on SPARQL query evaluation from stan-
dard benchmarks [25]. Later work used the same infrastructure in a system called Trin-
ity [26] to implement and perform experiments with respect to PageRank and Breadth-
First Search, this time rather focusing on graph analytics without performing queries.
Though such an infrastructure could be adapted to apply graph queralytics, the authors
do not discuss the combination of queries and analytics, nor do they propose languages.

Most modern graph query languages offer some built-in analytical features.
SPARQL 1.1 [5] introduced property paths [27] that allow for finding pairs of nodes
connected by some path matching a regular expression, and some extensions allow for
invoking specific extra analytical features [7]. The Cypher query language [6] (used by
Neo4j [28]) also allows for querying on paths with limited regular expressions; however,
it also supports shortest paths, returning paths, etc. The G-CORE query language [29]
also supports features relating to paths, allowing to store and label paths, find weighted
shortest paths, and more besides. In general, however, graph query languages tend to
only support analytics relating to path finding and reachability [30].

Gremlin [4] is an imperative scripting language that can express analytical tasks
through graph traversals. Per the Trinity.RDF system [25], graph traversals, when com-
bined with variables, can be used to express and evaluate, for example, basic graph
patterns [29]. Gremlin [4] also supports some standard query operators, such as union,
projection, negation, path expressions, and so forth, along with recursion, which allows
to capture general analytical tasks; in fact, the Gremlin language is Turing complete [4].
However, Gremlin is specifically designed to work under a property graph data model,
and more importantly is missing practical RDF-specific features of SPARQL such as
datatype ordering, built-in functions (e.g., langMatches, isIRI, year), named graphs,
federation, etc. Thus, using Gremlin in the context of RDF databases would require
porting these features between both systems, which is precisely what we want to avoid.
Recursive Graph Queries. Most graph query languages support recursively matching
path expressions; however, per Example 1, more powerful forms of recursion are needed
in order to support a more general class of analytics.5 Later we will compare the expres-
sive power of our proposal to recursive graph query languages, such as those proposed
by Reutter et al. [9] for SPARQL, and by Urzua and Gutierrez [11] for G-CORE. We
also highlight the LDScript language as proposed by Corby et al. [10], which also re-
lates to our proposal, supporting the definition of functions using SPARQL expressions;
local variables that can store individual values, lists or the results of queries; and iter-
ation over lists of values using loops, as well as recursive function calls. We remark
that LDScript does not include support for arbitrary do–until iteration, where applying
a fixed number of iterations is insufficient for a broad range of analytical tasks.
Novelty. Unlike graph analytics frameworks, we propose a language for combining
queries and analytics on graphs. Unlike Gremlin and Datalog variants, we propose a
language designed to extend SPARQL, thus benefiting from its built-in support for RDF.
The closest proposals to ours are those that extend graph query languages with recursive
features [9,10,11]. In comparison with the proposal of Reutter et al. [9] and Urzua and
Gutierrez [11], we allow recursion over SELECT queries, which adds flexibility by not

5 Though more complex forms of “navigational patterns” have been proposed in the literature,
they are mostly limited to path-finding and reachability [30].



requiring to maintain intermediate results as (RDF) graphs: for example, allowing us to
maintain multiple intermediate relations of arbitrary arity (without requiring some form
of reification); we further allow for terminating a loop based on a boolean condition (an
ASK query), which can more easily express termination conditions in cases where an
analytics task is infinitary and/or requires approximation (e.g., PageRank). Unlike LD-
Script [10], our focus is on supporting graph analytics, adding features, such as fixpoint
and do–until loops, that are essential for many forms of graph analytics.

3 Language

Recursion stands out in the literature as a key feature for supporting graph analytics. Our
proposal – called SPARQAL – extends SPARQL (1.1) with recursion by allowing to
iteratively evaluate queries (optionally) joined with solution sequences of prior queries
until some condition is met. In order to support this form of iteration, we need two
key operators. First, we extend SPARQL with solution variables to which the results
of a SELECT query can be assigned, and which can then be used within other queries to
join solutions. Second, we extend SPARQL with do–until loops to support iteratively
repeating a sequence of SPARQL queries until some termination condition is met; this
condition may satisfy a fixed number of iterations, a boolean ASK query, or a fixpoint on
a solution variable (terminating when the set of solutions do not change).

We refer back to Example 1, which illustrates how our language can be used to
address a relatively simple queralytic task. We now present the syntax of our language,
and thereafter proceed to define the formal semantics. We finish the section with a
second, more involved example for computing the p-index of authors in an area.

Preliminaries: To formally define our language and give our examples we assume fa-
miliarity with SPARQL and basic notions of graph analytics algorithms. We use the
standard syntax and semantics of SPARQL in terms of mappings [5]. We recall the
notion of a solution sequence, which is the result of a SPARQL query evaluated on a
graph (or dataset), listing zero-or-more solutions for which the query matches the data.
We assume use of the full SPARQL 1.1 query language as defined by the standard [5].

3.1 Syntax

SPARQAL aims to be a minimalistic extension of the SPARQL language that allows
to express queralytic tasks. Specifically, a task is defined as a procedure, which is a
sequence of statements. A statement can be an assignment, loop or return statement.

Assignment: Assigns the solution sequence of a query to a solution variable. The syntax
of an assignment statement is LET var = (Q); where var is a variable name and Q is a
SPARQL SELECT query that may use constructs of the form QVALUES(var).

Loop: Executes a sequence of statements until a termination condition holds. The syn-
tax of a loop statement is DO (S) UNTIL (condition); where S is a sequence of state-
ments and condition is one of the following three forms of termination condition: (1)
TIMES t, where t is an integer greater than 0; (2) FIXPOINT (var), where var is a solu-
tion variable; (3) AQ, an ASK query that may use QVALUES.



Return: Specifies the solution sequence to be returned by the procedure. The syntax of
a return statement is RETURN (var); where var is a solution variable.

Finally, a SPARQAL procedure is a sequence of statements satisfying the following
two conditions: (1) the last statement, and only the last statement, is a return statement;
(2) all solution variables used in QVALUES, FIXPOINT and RETURN have been assigned by
LET in a previous statement (or a nested statement thereof).

Example 2. Figure 1 illustrated a SPARQAL procedure with three statements: an as-
signment statement (lines 1–5); a loop statement with a fixpoint termination condition
and two nested assignments (lines 6–17); and a final return statement (line 18). ut

3.2 Semantics

We now give the semantics of statements that form procedures in SPARQAL. More
formally, let P = s1; . . . ; sn be a sequence of statements, and let var 1, . . . , var k be
all variables mentioned in any statement in P (including in nested statements). For a
tuple val0 = (r1, . . . , rk) of initial assignments of (possibly empty) solution sequences
to variables var 1, . . . , var k, we will construct a sequence val0, . . . , valn of k-tuples,
where each vali represents the value of all variables after executing statement si.

The construction is done inductively. Assume that vali−1 = (r1, . . . , rk). The value
of vali depends on whether si is an assignment, loop or return statement.

First, if si is the assignment statement LET var j = (Q);, then tuple vali is con-
structed as follows. Define SPARQL query Q[(var 1, . . . , var k) 7→ (r1, . . . , rk)] as the
result of substituting each subquery {QVALUES(var j)} in Q for the solution sequence
r j

6, and let r∗ be the result of evaluating this extended query over the database. Then,
substituting r j for r∗ in the tuple vali−1, we define vali = (r1, . . . , r j−1, r∗, r j+1, rk).

Next, if si is the loop statement DO (S) UNTIL (condition); the tuple vali is con-
structed as follows. Assume that S is the sequence s′1, . . . , s

′
` and notice that (by defi-

nition) S must use a subset of the k solution variables in P. Repeat the following steps
until the terminating condition is met:

1. Initialise val′0 D vali−1.
2. Compute the tuple val′` that represents the result of executing statements s′1, . . . , s

′
`.

3. If val′` does not satisfy the condition, set val′0 D val′` and repeat step 2 above.
4. Otherwise finish, and set vali D val′`.

To define when a tuple val′` over k variables satisfies a condition, we have three cases:

– If the condition is TIMES t, then the condition is met once the loop above has re-
peated t times.

– If the condition is FIXPOINT (var j), then the condition is met when the j-th com-
ponent of val′` contains the same set of solutions as the j-th component of val′0.

– If the condition is AQ, then the condition is met when the ASK query
AQ[(var 1, . . . , var k) 7→ val′`] evaluates to true.

6 A syntactic way of doing this is to use a VALUES command in SPARQL.



1 LET zika = ( # directed graph of citations between Zika articles
2 SELECT ?node ?cite WHERE {
3 ?node wdt:P31 wd:Q13442814 ; wdt:P921 wd:Q202864 ; wdt:P2860 ?cite .
4 ?cite wdt:P31 wd:Q13442814 ; wdt:P921 wd:Q202864 .
5 }
6 );
7 LET nodes = ( # all nodes of Zika graph
8 SELECT DISTINCT ?node WHERE {
9 { QVALUES(zika) } UNION { SELECT (?cite AS ?node) WHERE { QVALUES(zika) } }

10 }
11 );
12 LET n = ( # number of nodes in Zika graph
13 SELECT (COUNT(*) AS ?n) WHERE { QVALUES(nodes) }
14 );
15 LET degree = ( # out-degree (>1) of nodes in Zika graph
16 SELECT ?node (COUNT(?cite) AS ?degree) WHERE { QVALUES(zika) } GROUP BY ?node
17 );
18 LET rank = ( # initial rank
19 SELECT ?node (1.0/?n AS ?rank) WHERE { QVALUES(nodes) . QVALUES(n) }
20 );
21 DO ( # begin 10 iterations of PageRank
22 LET rank_edge = ( # spread rank to neighbours via edges
23 SELECT (?cite AS ?node) (SUM(?rank*0.85/?degree) AS ?rankEdge) WHERE {
24 QVALUES(degree) . QVALUES(rank) . QVALUES(zika)
25 } GROUP BY ?cite
26 );
27 LET unshared = ( # compute total rank not shared via edges
28 SELECT (1-SUM(?rankEdge) AS ?unshared) WHERE { QVALUES(rank_edge) }
29 );
30 LET rank = ( # split and add unshared rank to each node
31 SELECT ?node (COALESCE(?rankEdge,0)+(?unshared/?n) AS ?rank) WHERE {
32 QVALUES(nodes) . QVALUES(n) . QVALUES(unshared) . OPTIONAL { QVALUES(rank_edge) }
33 }
34 );
35 ) UNTIL (TIMES 10);
36 LET p_index_top = ( # compute p-index for authors, select top author
37 SELECT ?author (SUM(?rank) AS ?p_index) WHERE {
38 QVALUES(rank) . ?node wdt:P50 ?author .
39 } GROUP BY ?author ORDER BY DESC(?p_index) LIMIT 1
40 );
41 RETURN(p_index_top);

Fig. 2. Procedure to compute the top author in terms of p-index for articles about the Zika virus

Finally, if si is the return statement RETURN(var j), then the program terminates and
returns the solution sequence r j that is the j-th component of vali.

Note that we assume all solution variables to have a global scope as it makes the se-
mantics simpler to define; one could define local solution variables analogously. More-
over, some SPARQAL statements may incur infinite loops; later we will discuss frag-
ments for which every program can be shown to terminate (as in, e.g., Datalog or re-
cursive SPARQL). Currently we do not consider blank nodes when checking FIXPOINT
conditions; these could be supported in a future version using the labelling of [31],
which has been shown to be efficient for a wide variety of graphs.

Example 3. We recall Example 1, this time to illustrate the semantics of SPARQAL.
In the first LET statement, we assign the solution sequence of the given SPARQL query
to the variable reachable. Then the procedure enters a loop. We assign adjacent to
the results of a SPARQL query that embeds the current solutions of reachable as a
sub-query, leading to a join between current reachable stations and pairs of adjacent



stations not on Line C. We then update the reachable solutions, adding adjacent solu-
tions; here we can use reachable in the LET and QVALUES of the same statement since it
was assigned before (line 1). In each iteration the solutions for reachable will increase,
discovering new stations adjacent to previous ones, until a fixpoint. Finally, the RETURN
clause specifies the solutions to be given as a result of the procedure. ut

3.3 Example with PageRank

We now illustrate a procedure for a more complex queralytic.

Example 4. Suppose we have the citation network of articles on a topic of interest and,
we want to apply a centrality algorithm in order to know which articles of the network
are the most important. Thereafter we wish to use these scores to find the most promi-
nent authors in the area. We can express this task using SPARQAL. In this case we
will consider the citation network of all the articles about the Zika virus on Wikidata,
where we then encode and apply the PageRank algorithm over the citation network,
using the resulting article scores to compute p-indexes for the respective authors. We
show a procedure in our language for solving this task in Figure 2.

In this procedure we start by defining a variable that contains a solution sequence
with pairs (?node, ?cite) such that both ?node and ?cite are instances of (P31) scien-
tific articles (Q13442814) about (P921) the Zika virus (Q202864) and ?node cites (P2860)
?cite. The solutions for this query are assigned to zika. We can think of this variable
as the representation of a directed subgraph extracted from Wikidata. We also define the
variables nodes with all nodes in the subgraph, n with the number of nodes, and degree
with the out-degree of all nodes in the graph (with some out-edge).

After extracting the graph and preparing some data structures for it, we then start
the process of computing PageRank. First we assign the variable rank with initial ranks
for all nodes of 1

n . We then start a loop where we will execute 10 iterations of PageRank.
In each iteration we will first compute and assign to rank edge the PageRank that each
node shares with its neighbours; here we assume a damping factor d = 0.85 as typical
for PageRank [32], denoting the ratio of rank that a node shares with its neighbours.
Next we compute and assign to unshared the total rank not shared with neighbours in
the previous step (this arises from nodes with no out-edges and the 1−d factor not used
previously for other nodes). We conclude the iteration by allocating the unshared rank
to each node equally, updating the results for rank. The loop is applied 10 times.

Subsequently, we join the PageRank scores for articles with their authors, and use
aggregation to sum the scores for each author, applying ordering and a limit to select
the top author according to that sum, assigning the solution to p index top. Finally, the
procedure returns the solution for p index top denoting the top author. ut

3.4 Graph Updates

Although there is a straightforward way to implement our language on top of any en-
gine using the VALUES clause, this can generate long query strings that current engines
struggle to process. Hence we define a recursive algebra for graphs that can also ex-
press queralytics. As a motivating example, consider the declaration of variables zika



and degree, in lines 1 and 15 respectively of Figure 2. These statements initialise these
variables, but we can view them as queries constructing two graphs. More precisely, we
use the graph ex:zika to store the result of the query:

1 CONSTRUCT { ?node ex:zikacites ?cite } WHERE {
2 ?node wdt:P31 wd:Q13442814; wdt:P921 wd:Q202864; wdt:P2860 ?cite .
3 ?cite wdt:P31 wd:Q13442814; wdt:P921 wd:Q202864 }

Thus, instead of storing pairs of values for <node> <cite> in a SPARQAL solution
variable zika, we store them as triples of the form <node> ex:zikacites <cite> in a
graph named ex:zika. Using this graph we can now store the result of degree in graph
ex:degree by means of the following query:

1 CONSTRUCT { ?node ex:zikadegree ?degree } WHERE {
2 SELECT ?node (COUNT(?cite) AS ?degree) WHERE {
3 GRAPH ex:zika {?node ?p ? cite} }
4 GROUP BY ?node }

We remark that a general solution would involve reifying any SPARQAL variable
using more than two SPARQL variables, possible generating new nodes.

Algebra of updates. Let G = {(n1,G1), . . . , (nk,Gk)} be a set of named graphs with IRIs
{n1, . . . , nk} and RDF graphs {G1, . . . ,Gk} such that ni = n j if and only if i = j. Let Q
be a CONSTRUCT query. Given an IRI n, we use n ← Q to express the action of storing
the result G of Q(G) as the named graph (n,G) in G, overwriting the graph previously
named n if necessary. Our algebra of updates consists of (1) update expressions of the
form n ← Q, for n an IRI and Q a CONSTRUCT query that may reference any of the
existing graphs in G, (2) loop expressions of the form DO A UNTIL (condition) where
A is a sequence of expressions and (condition) is again one of TIMES t; FIXPOINT n,
where n is a graph name in G; or AQ, an ASK query that may reference graphs in G.

With respect to the semantics of this algebra, starting with the initial set G, an ex-
pression modifies graphs inG as follows. An assignment expression n← Q removes the
graph (n,G) fromG (if it exists), and adds (n,Q(G)), where Q(G) denotes the evaluation
of Q over G. A loop expression DO A UNTIL (condition) applies iteration, evaluating
the sequence A: t times if condition is TIMES t, or until the named graph (n,G) ∈ G
did not change at the end of two subsequent iterations if condition is FIXPOINT n, or
until the evaluation of query AQ over G returns true if condition is AQ.

Given an expression A dealing with graphs in G, we use A(G) to denote the result of
evaluating A over G. Looking at our motivating example, one sees that transforming our
procedural language into the graph algebra is not difficult, and neither is transforming
graph algebra expressions into our procedural language. The following proposition,
proven in an extended version of this paper available online [33], summarises the claim
that both languages have the same expressive power.

Proposition 1. Let P be a SPARQAL procedure, with v the solution variable returned
by P. Then one can construct an expression A in the algebra of updates mentioning a
set G of graphs, and a SELECT query Q, such that evaluating Q over A(G) yields the
same solutions as those stored by v after evaluating P over G. Likewise, for an algebra
expression A mentioning graphs G, and any named graph (n,G) ∈ G, one can construct
a SPARQAL procedure P returning a solution variable v overG, and a CONSTRUCT query
Q, such that evaluating Q over the solutions stored by v yields the graph G.



Thus, we now have two strategies for implementing SPARQAL procedures: we can
implement them directly by translating QVALUES clauses as VALUES statements while
running the procedures, or we can compile the procedure into an expression in our
algebra of updates and implement this directly. We will analyse these two possibilities
in Section 5.2, but first we study the expressive power of these formalisms.

4 Expressive Power

In this section we review the expressive power of procedures in SPARQAL. Our results
come in two flavours: first we focus on what the language can do, showing Turing-
completeness and complexity results, and then we turn to the comparison between our
language and other related query languages extended with recursion.

4.1 Turing-completeness

Although do–until loops may appear to be just a mild extension to a query language, our
first result states that this is actually enough to achieve Turing-completeness. Formally,
we say that a query language L is Turing-complete if for every Turing machine M over
an alphabet Σ one can construct a query Q in L and define a computable function f that
takes a word in Σ∗ and produces an RDF graph, and such that a word w ∈ Σ∗ is accepted
by M if and only if the evaluation of Q over the graph f (w) produces a non-empty result.
Along these lines, we prove the following result:

Theorem 1. SPARQAL is Turing-complete

The proof of this theorem (presented in the extended version of this paper [33])
relies on the combination of do–until loops and the ability to create new values in the
base SPARQL language through BIND statements and algebraic functions [5]. Of course,
for the proof one must assume that there is no limit on the memory used by the evalua-
tion algorithm; however, the proof reveals a linear correspondence between the memory
used by the query and the number of cells visited by the machine M.

Traditional theoretical results have tended to study languages assuming that the cre-
ation of new values is not possible, or, if possible, that there is a bound on the number of
values that are created. But this is not the case with SPARQAL procedures; for starters,
we can iterate and sum to create arbitrarily big numbers. However, for the purpose of
comparing SPARQAL procedures against other traditional database languages, we ask,
what would be its expressive power if one disallows the creation of new values? In fact,
do–until loops have been studied previously in the literature, especially in the context
of relational algebra (see e.g. [34]). In our context, we ask what happens if we disallow
the invention of new values in the procedure: more formally, we say that a procedure P
does not invent new values if for every graph G and every variable var defined in P, all
mappings in any solution sequence associated to var always binds variables to values
already present in G. In this case, there is a limit on the maximum number of mappings
in the solution sequence of any variable at any point in time during evaluation of the
procedure, and this limit depends polynomially on the size of the graph. This implies
that the evaluation of this procedure can be performed in PSPACE (in data complexity),



and we can also show that this bound is tight. To formally state this result, let P be a
SPARQAL procedure. The evaluation problem for P receives a graph as an input, and
asks whether the evaluation of P over G is not empty.7 We can then state the following
(the proposition is proven in the extended version of this paper [33]):

Proposition 2. The evaluation problem for SPARQAL procedures that do not invent
new values is PSPACE-complete.

4.2 Comparison with other recursive extensions to SPARQL

We base our comparison on the recursive extension proposed by Reutter et al. [9],
but these results apply to similar languages, such as the (with) recursive operator in
SQL. The first observation is that these languages only define semantics for monotone
queries. For example, recursive SPARQL uses CONSTRUCT queries of the form:

1 WITH RECURSIVE G AS {QCONSTRUCT}
2 QSELECT

where G is an IRI used to denote a temporary graph, QCONSTRUCT is a CONSTRUCT SPARQL
query and QSELECT is a SELECT SPARQL query. The idea of this form of recursion is that
QCONSTRUCT defines a query meant to compute G in an iterative fashion (there may also
be references to the graph G inside this same query). In other words, we can view
QCONSTRUCT as an operator TQ(G) that – as a single step – takes as input an RDF graph
and produces as output an RDF graph. The final output graph then corresponds to the
least fixed point of the sequence TQ(∅), TQ(TQ(∅)), . . . . Such a fixed point is only guar-
anteed when QCONSTRUCT is monotone: where G ⊆ G′ implies that TQ(G) ⊆ TQ(G′).
To guarantee monotonicity, Reutter et al. [9] impose major syntactic restrictions on the
operands available for the QCONSTRUCT query, forbidding, for example, the use of BIND,
NOT EXISTS, MINUS, as well as OPTIONAL patterns that are not well designed [35].

So how does our language compare with these recursive variants? The first obser-
vation is that all of these queries can actually be expressed as a SPARQAL procedure: a
query in the form above can be straightforwardly simulated by the following procedure:

1 DO ( LET graph = ( SELECT ?s ?p ?o WHERE P′CONSTRUCT ) ) UNTIL ( FIXPOINT (graph) );
2 LET result = Q′SELECT;
3 RETURN result;

Here P′CONSTRUCT is the graph pattern of the WHERE clause of QCONSTRUCT from the
recursive SPARQL query, but where we retrieve triples from QVALUES(graph) instead of
from the temporary graph G. Query Q′SELECT corresponds to QSELECT from the recursive
SPARQL query, but where again we use QVALUES(graph) instead of G.

In the other direction, can recursive SPARQL simulate SPARQAL procedures? This
depends on what sorts of queries we allow in QCONSTRUCT. If we take the language as
originally defined by Reutter et al., so that queries QCONSTRUCT must be monotone, then
we know that the evaluation for recursive SPARQL queries is in PTIME [9]. Together
with Proposition 2, this means that recursive SPARQL cannot simulate SPARQAL pro-
cedures unless PTIME = PSPACE, which is widely assumed to be false. A similar result

7 This corresponds to boolean evaluation. This is without loss of generality because the problem
where one considers a tuple of values as an input can be simulated by means of filters.



was shown for similar extensions to relational algebra: relational algebra equipped with
fixed point cannot simulate do–until queries unless PTIME = PSPACE [34]

Conversely, the semantics for recursive SPARQL is not defined when one allows
to use operands such as BIND clauses. The standard solution for this case is to assign a
partial fixed point semantics, which means that a query of the form above would retrieve
a graph G which is the fixed point of the sequence TQ(∅), TQ(TQ(∅)), . . . , if it exists, or
an empty graph otherwise (when the operator runs into an infinite loop). In this context,
and if we allow full SPARQL 1.1 in QCONSTRUCT, one can show that both languages
coincide, because recursive SPARQL becomes Turing-complete as well.

4.3 Comparison with the Datalog framework

Our algebra of graph updates also gives us a way of comparing with Datalog variants
for analytics tasks that have been proposed in the literature (for this discussion we
assume familiarity with the Datalog language). Indeed, consider a set of named graphs
G = {(n1,G1), . . . , (nk,Gk)}, a sequence A of graph updates of the form n← Q, for n one
of n1, . . . , nk and Q a construct query over G. If we assume that each Q is monotone,
then an algebra expression DO A UNTIL FIXPOINT ni can be understood as a Datalog
program over k ternary predicates T1, . . . ,Tk, each interpreted as the triples in graphs
n1, . . . , nk, given by the rules←T1, . . . ,←Tk and a rule T j ← Q for each update n j ← Q
in A. We evaluate this program until the data for predicate Ti does not change.

Thus, for example, if we restrict queries in SPARQL so that they match the expres-
sive power of the SociaLite language by Seo et al. [12], then we end up precisely with
SociaLite. What SPARQAL adds on top of these Datalog variants is (1) native support
for SPARQL, since the right-hand side of rules are actually stated in SPARQL, and
(2) not having to depend on particular fixed point semantics8. As we remarked when
comparing to recursive SPARQL, this does come with an increase in expressive power.

5 Experiments

In this section we present our prototypical implementation of a queralytics engine based
on the SPARQAL language, along with experiments over different datasets to ascertain
its performance and limitations. The goals of this prototype are to demonstrate that the
language can be used, in practice, to express in-database analytics, and to ascertain the
performance achievable when operating over an off-the-shelf SPARQL query engine.
The target use-case for our prototype is – per the scenarios outlined in Examples 1
and 4 – to run queralytics (near-)interactively on small-to-medium graphs projected
from a larger graph using a query. Along these lines, the prototype was developed on
top of the Apache Jena Framework, version 3.10 (for our second set of tests we also
provide a version of the prototype mounted on top of Virtuoso). The implementation
provides the following core functionalities: (1) it parses a SPARQAL procedure into a
sequence of statements, which are evaluated according to their semantics by: (2a) main-
taining a map of solution variables to solution sequences; (2b) replacing variables used

8 Here we are not interested in languages with decidable containment, in part because we are
not addressing how to do reasoning within SPARQAL, but this is a fertile area for future work.



Table 1. Number of nodes and edges in graphs considered

Q1 Q2 Q3 Q4 Q5 Q6

Nodes 93 3,057 480 266 7,194 627
Edges 172 38,738 766 211 8,719 996

within a QVALUES clause with a VALUES string with the respective solution sequence; (2c)
evaluating SPARQL queries, and (2d) in order to handle FIXPOINT conditions, keeping
the previous solution sequence of the respective variable in-memory to track changes.
We also provide an initial prototype for the algebraic strategy defined in Section 3.4;
this prototype creates the new graphs using CONSTRUCT statements, and deletes/adds
new graphs using the native functionalities provided by SPARQL systems.

Experiments were tested on a MacBook Pro with a 3.1 GHz Intel I5 processor and
16 GB of RAM. For our motivating scenarios, Example 1 took just 1.3 seconds to return
16 stations from which Palermo can be reached without using Line C, and Example 4
– running 10 iterations of PageRank on a graph of 38,738 edges (citations) and 3,057
nodes (articles) – took 53.1 seconds to find the top author (from 2,214 authors) by p-
index in the citation network, which we consider to be reasonable, but improvable.9

To further test our implementation, we design a benchmark based on Wikidata for
running analytical tasks on sub-graphs extracted through queries. Finally, we stress-test
our prototype for a graph analytics benchmark at a larger scale. In particular, we show
that the algebraic approach may be better suited for handling large datasets.10

5.1 Wikidata: Queralytics Benchmark

To the best of our knowledge, there is no existing benchmark for queralytics along the
lines discussed in this paper. This led us to design a novel benchmark for queralyt-
ics over the Wikidata knowledge graph. We took the “truthy” RDF dump of Wikidata
as our benchmark graph [36]. Designing the queralytic tasks required collecting and
combining two elements: queries that return results corresponding to graphs, and graph
algorithms to apply analytics on these graphs. In terms of the queries returning graphs,
we revised the list of use-case queries for the Wikidata Query Service11. From this list,
we identified the following six queries returning graphs:

Q1 A graph of adjacent metro stations in Buenos Aires
Q2 A graph of citations for articles about the Zika virus
Q3 A graph of characters in the Marvel universe and the groups they belong to
Q4 A graph of firearm cartridges and the cartridges they are based on
Q5 A graph of horses and their lineage
Q6 A graph of drug–disease interactions on infectious diseases

9 For reference, the top such author is George Dick, with a p-index of 0.124.
10 All sources and datasets are available at https://adriansoto.cl/files/SPARQAL.zip.
11
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

https://adriansoto.cl/files/SPARQAL.zip
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
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Fig. 3. Results for Wikidata queralytic benchmark

These queries provide a mix of connected graphs, disconnected graphs, bipartite graphs,
trees, DAGs, near-DAGs, and so forth. We provide the sizes of these graphs in Table 1.

Next we must define the analytics that we would like to apply on these graphs. For
this, we adopted five of the six algorithms from the Graphalytics Benchmark [37]:

BFS Breadth-First Search PR PageRank
LCC Local Clustering Coefficient WCC Weakly Connected Components
SSSP Single-Source Shortest Path

We do not include the Community Detection through Label Propagation CDLP as it
assumes data with initial labels. We implement these five algorithms as procedures in
the SPARQAL language, prefixing each with the six different Wikidata graph queries,
stored as solution variables. The result is a benchmark of 6 × 5 = 30 queralytic tasks.

In Figure 3, we show the results for these 30 tasks using our in-memory imple-
mentation. First we remark that the Weakly Connected Components (WCC) algorithm
timed-out in the case of the Zika graph after 10 minutes. While the cheapest algo-
rithm in general was BFS, the most expensive was WCC. Although some of these
tasks took over a minute in the case of graphs with thousands or tens of thousands of
nodes (Zika/Q1 and Horses/Q5), those with fewer than a thousand nodes/edges ran in
under a second, and thus would be compatible with interactive use.

5.2 Graphalytics: Stress Test

The scale of the previous graphs is quite low and uses (mostly) the in-memory algo-
rithm. Hence we use the Graphalytics Benchmark [37] to perform stress tests for our
prototype at larger scale with the goal of identifying the choke points of the current
implementation. We adopt the cit-Patents dataset: a directed graph with 3,774,768
vertices and 16,518,947 edges. We implement both alternatives for evaluating SPAR-
QAL procedures: using VALUES and using Graph Updates. In order to try a different
backend, we also implemented the Graph Updates alternative on top of Virtuoso.

The results of the Graphalytics benchmark are shown in Table 2. For the VALUES
implementation, we identify two key choke points. An obvious choke-point is presented
by the fact that solution sequences are stored in memory: this puts an upper-bound
on scalability, leading to oom errors for complex queralytics on larger graphs (with



Table 2. Execution time (min) for Graphalytics benchmark. Here oom is for out-of-memory error.

Algorithm BFS LCC PR SSSP WCC

SPARQAL/Jena–Values 11 oom 250 300 oom

SPARQAL/Jena–Updates 2 26 112 127 13
SPARQAL/Virtuoso–Updates 1 timeout 244 5 310

millions of nodes and tens of millions of edges). The other choke-point is the handling
of QVALUES clauses using a VALUES clause with large solution sequences, yielding queries
that are inefficient for Apache Jena. We view a number of possibilities for addressing
these choke points in future work. Keeping with the in-database analytics scenario, the
first choke point could be alleviated with compression and indexing techniques, while
both choke points could be addressed by batch-at-a-time processing of QVALUES clauses.

The performance issues of the VALUES implementation are alleviated, to some extent,
when we switch to the implementation based on graph updates. Intermediate graphs are
stored in memory, but their sizes tend to be smaller than the size of solution sequences,
as one avoids replication. Here, the main choke-point is the fact that constructed graphs
are not currently indexed, and thus queries over them run slower. When comparing
the Jena/Updates implementation against the one using Virtuoso, we see several dif-
ferences. Both implementations handle BFS much better. We speculate that Virtuoso is
better at SSSP because it is more efficient when dealing with strings representing paths.
On the other hand, all of LCC, WCC and PR require large update operations on temporary
graphs, something that transactional databases like Virtuoso are not designed for.

Looking to the future, we speculate that implementing lightweight indexes in con-
structed graphs would provide even faster times for our Updates implementation. An-
other in-database alternative would be using GPU-acceleration for parallelising batches.
In general, however, in order to process larger graphs, an in-database solution may not
be feasible, but rather SPARQAL procedures would need to be translated to tasks that
can run on graph processing or Datalog frameworks, as discussed in Section 2.

6 Conclusion

We believe that the combination of graph queries and analytics is a natural one, in
the sense that tasks of interest to users often involve interleaving both paradigms. The
SPARQAL language provides a way to express such tasks, and makes initial steps to-
wards a system to support them. We see this language as being useful for combining
querying and analytical tasks specifically in an RDF/SPARQL setting.

We hope that our proposal ignites discussion on different ways for enriching
SPARQL with graph analytics, and the best architecture to support them (see [38] for a
related discussion). A key research challenge relates to the optimisation of SPARQAL
procedures. We have investigated batch-at-a-time and also compilation into algebraic-
like statements for evaluation within the database, but we still need support for indexing
temporary graphs (perhaps as in [39]), and looking at whether or not traditional database
optimisation tasks are likewise suitable for optimising SPARQAL procedures.
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