
A User Interface for Exploring and Querying Knowledge Graphs
(Extended Abstract)∗

Hernán Vargas1,3† , Carlos Buil-Aranda1,3 , Aidan Hogan2,3 and Claudia López1
1Universidad Técnica Federico Santa Marı́a, Valparaı́so, Chile

2DCC, Universidad de Chile, Chile
3Millenium Institute for Foundational Research on Data (IMFD), Chile

{hvargas,cbuil,clopez}@inf.utfsm.cl, ahogan@dcc.uchile.cl

Abstract
As the adoption of knowledge graphs grows, more
and more non-experts users want to explore and
query such graphs. These users are often not famil-
iar with graph query languages such as SPARQL,
and may not be familiar with the knowledge graph’s
structure. We provide a summary of our work on
a language and visual interface – called RDF EX-
PLORER – that helps non-expert users to navigate
and query knowledge graphs. A usability study
over Wikidata shows that users successfully com-
plete more tasks with RDF EXPLORER than with
the existing WIKIDATA QUERY HELPER interface.

1 Introduction
Knowledge graphs – which apply a graph-based abstraction
to manage diverse data at large-scale [Hogan et al., 2020] –
have gained considerable attention recently. In this setting,
knowledge graphs form a common substrate of knowledge
within an enterprise or community [Noy et al., 2019]. While
enterprise knowledge graphs are used within companies such
as eBay, Google, Facebook, IBM, Microsoft, etc. [Noy et al.,
2019]; open knowledge graphs, such as DBpedia [Lehmann
et al., 2015], Wikidata [Vrandečić and Krötzsch, 2014], etc.,
are published on the Web under liberal licenses.

In order to query knowledge graphs, a number of languages
are now available, including SPARQL for RDF graphs,
Cypher for property graphs, etc. [Angles et al., 2017]. How-
ever, non-expert users that lack knowledge of these query lan-
guages, or of how the knowledge graph is structured, may
struggle to express their information needs as queries.

Several systems have been proposed to help non-expert
users explore and query knowledge graphs [Dadzie and
Rowe, 2011]. These systems typically involve some combi-
nation of keyword search, faceted browsing, graphical brows-
ing, query building, graph summarisation, visualisation tech-
niques, and more besides. A general trade-off appears with
respect to expressivity versus usability: more expressive sys-
tems support more complex forms of queries, but are of-
ten more difficult to use; for example, many systems, such
∗This paper is an extended abstract of a paper originally pub-

lished at ISWC 2019 [Vargas et al., 2019].
†Contact Author

as those based on faceted browsing, only support acyclic
queries. Systems that do support cyclic queries often assume
that users have some technical knowledge of query languages.

In this work, we propose a language and associated system
– called RDF EXPLORER – that we claim helps users query
knowledge graphs with more ease than existing interfaces.
Our language is based on a simple set of operators that al-
lows users to incrementally build (cyclic) graph pattern. Our
system provides a visual user interface that supports these op-
erators, as well as other features for enhancing usability, in-
cluding auto-completion, result previews, etc. To evaluate our
proposal, we conduct a task-based usability study comparing
our interface with the WIKIDATA QUERY HELPER, where we
can conclude, with statistical significance, that users achieve
a higher successful completion rate of tasks with our system
than the baseline. This paper is an extended abstract sum-
marising system details and results that were previously pub-
lished at ISWC 2019 [Vargas et al., 2019].

2 Related Work
Various systems have been proposed to help non-expert users
to visualise, explore and query graphs [Dadzie and Rowe,
2011]. Early works included search systems for finding nodes
representing relevant entities by keyword [Berners-Lee et al.,
2006]. Other systems propose visualisations to help sum-
marise and explore graphs [Sayers, 2004; Skjæveland, 2012].
To help non-experts pose complex queries over graphs, query
editors and builders have also been investigated [Smart et al.,
2008; Hogenboom et al., 2010; Clemmer and Davies, 2011;
Grafkin et al., 2016; Rietveld and Hoekstra, 2017]. These
interfaces aim to help users with little expertise of the query
language and/or data to express complex queries.

We propose a language for constructing graph patterns, and
a query builder system that supports this language. Our sys-
tem constructs SPARQL queries over RDF graphs, though
it can readily adapted to other query languages over other
graph models (e.g, Cypher over property graphs). In terms of
previous works, SMEAGOL [Clemmer and Davies, 2011] is
the closest to our proposal; however, a key difference is that
SMEAGOL focuses on supporting tree-shaped queries gener-
ated during user exploration, whereas we support cyclic graph
patterns. Our work is further distinguished by a systematic
usability evaluation of our proposal.



3 RDF Explorer
We now summarise the details of our proposed language and
system for helping non-experts to explore and query graphs.

3.1 Visual Query Graph
Our language is formulated with respect to a visual query
graph. Let I denote the set of IRIs, L denote the set of
literals and V denote the set of query variables. A visual
query graph (VQG) is defined as a directed, edge-labelled
graph G = (N,E), with nodes N and edges E. The nodes
of the VQG are a finite set of IRIs, literals and/or variables:
N ⊂ I ∪ L ∪ V. The edges of the VQG are a finite set of
triples, where each triple indicates a directed edge between
two nodes with a label taken from the set of IRIs or variables:
E ⊂ N× (I ∪V)× N. We denote by var(G) the set of vari-
ables appearing in G = (N,E), either as nodes or edge labels:
var(G) := {v ∈ V | v ∈ N or ∃n1, n2 : (n1, v, n2) ∈ E}.

A VQG is constructed through a visual query language,
consisting of a minimal set of four algebraic operators that
will correspond to atomic user interactions: adding a variable
node, adding a constant node, adding an edge between two
existing nodes with a variable label, and adding an edge be-
tween two existing nodes with an IRI label. More specifically,
as the base case, the VQG is initially empty: G0 = (∅, ∅).
Thereafter, letting G = (N,E) denote the current VQG; the
visual query language (VQL) is defined recursively through
the following four atomic operations: (1) Initialise a new
variable node: η(G) := (N ∪ {v},E) where v 6∈ var(G).
(2) Add a new constant node: η(G, x) := (N∪ {x},E) where
x ∈ (I∪L). (3) Initialise a new edge between two nodes with
a variable edge-label: ε(G, n1, n2) := (N,E∪ {(n1, v, n2)})
where {n1, n2} ⊆ N and v 6∈ var(G). (4) Add a new edge
between two nodes with an IRI edge-label: ε(G, n1, x, n2) :=
(N,E ∪ {(n1, x, n2)}) where {n1, n2} ⊆ N and x ∈ I.1

VQGs can then be translated directly to basic graph pat-
terns (BGPs) in the concrete (SPARQL) query syntax. If re-
quired, more expert users can then modify the resulting query.
There are, however, some details of BGPs that cannot be ex-
pressed with the VQL, and indeed, some VQGs that cannot
be translated to BGPs. In particular, we cannot use the VQL
to express a join on an edge-label/predicate variable; such
joins are rarely found in SPARQL query logs [Arias et al.,
2011] and their omission simplifies matters somewhat. On
the other hand, “orphan nodes” without incident edges must
be dropped when translating the VQL to a BGP. With respect
to complexity, query evaluation of VQGs – deciding if a so-
lution µ is a result for a query Q on a graph G – is tractable
as projection is not supported [Pérez et al., 2009].

3.2 The RDF Explorer Interface
The RDF EXPLORER system implements the VQL as an in-
terface. Figure 1 shows how the main drawing pane is used to
query Wikidata for movies directed by two siblings. The user
also has access to two other panes (not shown) in the main
application: a pane to the right allows for selecting a node

1For the operators η(G) and ε(G, n1, n2), an arbitrary fresh vari-
able can be automatically generated, where the resulting VQG will
be unique modulo isomorphism on variables.

Figure 1: VQG for siblings who direct movies together

editor (allowing to restrict a highlighted node), a SPARQL
query editor (showing the current query), and a help panel; a
pane to the left provides a search panel.

The user is first presented with a blank visual query editor.
The user then adds a new node, be it a variable (η(G)) or a
constant (η(G, x)). To find constants (entities) the user can
enter a keyword query in the search pane to generate auto-
completed results, any of the which can be dragged into the
central query editor pane. The user may then proceed to add
a second node by the same means. With two or more nodes
available, the user can now click and drag between two nodes
to generate an edge with a variable edge-label (ε(G, n1, n2)).
Clicking a variable edge-label will generate suggestions for
IRIs that can replace the variable while ensuring that the
query does not give empty results (ε(G, n1, x, n2)).

The user can click on a variable node to view a sample
of current results for that variable (generated by mapping
the current VQG to SPARQL and projecting that variable).
Clicking on a constant node, they will be shown the data
for that node. Thus the user can explore the graph and re-
ceive feedback on the results generated thus far, guiding next
steps [Bhowmick et al., 2017]. Constant nodes can also be
converted to variables nodes, allowing a user to explore a spe-
cific example and then generalise the graph to a graph pattern
(i.e., a graph query) [Clemmer and Davies, 2011].

4 Usability Study
We now present a usability study intending to evaluate the
RDF EXPLORER interface. We first enumerate our hypothe-
ses and then describe the dataset, baseline system and study
design used to test these hypotheses. We then characterise the
participants of the study and give our main results.

4.1 Hypotheses
Our system aims to allow users without prior knowledge of
graph query languages to explore and query a large, diverse
knowledge graph. Our hypotheses cover different aspects
relating to how the system succeeds in this goal relative to
a baseline system. The first hypothesis covers success in
terms of formulating a query graph that provides the expected
answers when evaluated. The second and third hypotheses
cover partial successes in terms of, respectively, formulating
a query graph with some correct edges, and formulating a
query graph with the same “shape” as a reference query graph
(even if some constants in the query graph are incorrect).



H1: Non-expert users can correctly formulate more query
graphs with our system than a baseline system. For a
query graph to be considered correct, it must return the
same results as the reference query for the task.

H2: Non-expert users are able to correctly formulate more
edges with our system than a baseline system. For an
edge (i.e., triple pattern) in a query graph to be consid-
ered correct, it must be contained in the reference query
(modulo variable names).

H3: Non-expert users are able to generate more query
graphs with the correct structure using our system than
a baseline system. For a query graph to be consid-
ered as having the correct structure, it must have the
same “shape” as the reference query graph, irrespec-
tive of the constants used. More formally, given a VQG
G = (N,E), let shape(G) denote a directed graph S =
(VS , ES) such that VS = N and (x, y) ∈ S if and only if
there exists an edge-label l such that (x, l, y, ) ∈ E; now
given the reference query graph G′, a user’s query graph
G′′, and their corresponding shapes S′ = shape(G′) and
S′′ = shape(G′′), the user’s query graph G′′ is consid-
ered correct if and only if there exists an isomorphism
h : V ′′S → V ′S such that h(S′′) = S′.

4.2 Knowledge Graph and Baseline System
We chose Wikidata as the knowledge graph for our eval-
uation; this knowledge graph currently describes 80 mil-
lions items with thousands of different properties. We chose
the official WIKIDATA QUERY HELPER [Malyshev et al.,
2018] (WQH) as our baseline system; it provides a form
with autocompletion alongside a form for editing the con-
crete SPARQL syntax of the query, where changes in one
are reflected in the other.2 Given that Wikidata receives tens
of thousands of “organic” queries per day [Malyshev et al.,
2018], the baseline WQH system is likely to be widely used
by people with varying expertise of SPARQL and Wikidata.

4.3 Study Design
To test our hypotheses, we conduct a task-based user study
to compare the participants’ ability to solve tasks on the
proposed interface versus the baseline interface [Munzner,
2014]. We use a within-subject design where each participant
completes five tasks using our query builder and five similar
tasks with the baseline. Each task consists of answering a
question (given in natural language) that requires formulating
a query to retrieve answer(s) from the Wikidata graph.

We divide the subjects into two groups. The first group is
given a set of five tasks, where each task requires formulating
a query (S1: find all dogs, find all popes who are female, find
all mountains located in European countries, find all emper-
ors whose father is also an emperor and find all Nobel prize
winners with a student who won the same Nobel prize) using
the proposed interface; afterwards they are asked to formu-
late an analogous set of five queries (S2: find all actors, find

2Available from http://query.wikidata.org/. At the time of writ-
ing, the form-based query editor of WQH that was used for exper-
iments has been removed. The details of this query editor are de-
scribed by Malyshev et al. [2018].

(a) Task 1 (b) Task 2 (c) Task 3

(d) Task 4 (e) Task 5

Figure 2: Reference query shapes for the five tasks of each set

all German soccer players who participated in FIFA 2014,
find all container ships located in European countries, find
all physicists whose spouse is also a physicist, and find all rel-
atives participating in the same Olympic sport) but this time
using the baseline. Conversely, the second group is asked to
build the first set of queries (S1) using the baseline and the
second set (S2) with the proposed interface.

This design controls for individual differences by having
participants use both interfaces. Mixing the order of inter-
faces in both groups helps to control for carry-over effects,
such as learning or fatigue. The queries in both sets are de-
signed to be of increasing difficulty to follow a learning curve
and also to avoid users being discouraged early on. We fur-
ther aim to keep the nth query of both sets of tasks comparable
in terms of difficulty. As shown in Figure 2, each pair of tasks
corresponds to the same abstract visual query graph, and each
successive pair incrementally adds more complexity.

Before each set of tasks, we briefly trained the participants
on how to use the interface they were about to see (partici-
pants had to solve the task “Find all Clint Eastwood movies
in which any of his children participated” using the respec-
tive interface). A web page with other example queries for
the interfaces was also provided to the participants.

4.4 Study Participants
The study was conducted with 28 students enrolled in the
undergraduate course “User interface design”. The students
were in the fourth year of a Computer Science undergradu-
ate program in a Spanish-speaking university. They were not
familiar with SPARQL nor with Wikidata. Participants were
given up to 40 minutes to solve each of the sets of five tasks
using each interface; adding two 5 minute tutorials before
both sets of tasks, the total study time was thus 90 minutes.

4.5 Metrics
To compare our proposal to the baseline, we measure diverse
aspects of the users’ ability to perform the give tasks, includ-
ing task success rate and time for task completion. We also
store the query graphs to assess (partial) correctness.

5 Results
We now present the ratio of correct responses broken down
by three levels of granularity – queries, edges and shapes –
and then test the corresponding hypotheses.

http://query.wikidata.org/


1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Task

R
a
ti
o
co
rr
ec
t

re
wqh

(a) Queries

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Task

R
a
ti
o
co
rr
ec
t

re
wqh

(b) Triple patterns

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Task

R
a
ti
o
co
rr
ec
t

re
wqh

(c) Shapes

Figure 3: Mean ratios of correct results at three levels of granularity

5.1 Ratio of Correct Responses
Figure 3 shows the mean ratios of correct responses for the
proposed interface (RDF EXPLORER = RE) and the baseline
interface (WIKIDATA QUERY HELPER = WQH) at three dif-
ferent levels: queries, edges, and shapes. While queries and
shapes are either correct or incorrect for a response, in the
case of edges, we take the ratio of correct edges to total edges
in a response and present the mean of these ratios. In the first
task, which involves a single edge, WQH obtains better results
than RE. However, as queries become more “graph-like”, re-
sults are better for RE than WQH. Comparing the three levels
of granularity, in the RE system, users generally have more
success defining the correct query graph shape than identi-
fying the terms (constants) in the query graph; the opposite
trend is true for WQH, where users can more easily find the
correct query terms, but not the correct shape. A possible ex-
planation is that WQH is form-based while RE is graph-based;
another factor is that RE prevents users from creating query
shapes that give empty results while WQH does not.

5.2 Hypothesis Testing
To assess our hypotheses, we use paired-t tests to compare
the success rates (depicted in Figure 3) of participants using
both tools. We use α = 0.05 to reject the null hypothesis.
Given n = 28, we say that we have obtained a significant
result when t∗ is greater than tcrit = 2.052 (t∗ ≥ tcrit). For
our three hypotheses (see Section 4) the null hypothesis is that
there is no difference between the tools or that WQH performs
better. The alternative hypothesis is that RE performs better.
We denote the success rates for RE as x̄ and those for WQH as
ȳ; the average distances we denote by d̄ = (x̄− ȳ), and the
standard deviation by sd. We now test the three hypotheses:

H1 : Non-expert users can correctly formulate more query
graphs with our system than a baseline system. We use
the raw data of Figure 3a. With d̄ = (x̄− ȳ) = 0.1714
and sd = 0.2813 we obtain t∗ = 3.22 > tcrit = 2.052
rejecting the null hypothesis: we validate H1 with a sta-
tistically significant result favouring our interface.

H2 : Non-expert users are able to correctly formulate more
edges with our system than a baseline system. We use
the raw data of Figure 3b. With d̄ = 0.06 and sd =
0.2609 we obtain t∗ = 1.1947 < tcrit = 2.052: the
results are not statistically significant.

H3 : Non-expert users are able to generate correctly struc-
tured query graphs with our system than a baseline sys-
tem. We use the raw data of Figure 3c. With d̄ = 0.1928
and sd = 0.2801 we obtain t∗ = 3.6431 > tcrit =
2.052 rejecting the null hypothesis: we validate H3 with
a statistically significant result favouring our interface.

Our study is thus conclusive regarding the claim that our
proposed interface is better than the baseline at helping non-
expert users formulate their queries as graphs (H1,H3), but is
inconclusive regarding the claim of our interface being better
at helping users to correctly generate edges (H2).

5.3 Other Results
We also posed questionnaires to the participants to assess
their subjective opinions of the two interfaces. The results
show that users preferred RE in all subjective criteria we
analysed except physical effort (RE requires more use of the
mouse than WQH) and perceived performance (RE generates
result previews and more precise suggestions, which may
cause lag). We refer to the ISWC 2019 paper [Vargas et al.,
2019] for details of these results, as well as task times.

6 Conclusions
We propose a language and visual interface to help non-
expert users formulate queries over knowledge graphs. Our
results indicate that our interface is, in general, more usable
than the baseline system used by Wikidata. In terms of as-
pects to improve, lower success rates for later tasks suggest
that non-expert users still struggle to express more complex
queries. More expressive features of SPARQL (e.g., aggre-
gations, unions, etc.) could be supported. The system also
generates some lag when generating suggestions that could
be improved by approximation techniques.

Live demos of the RDF Explorer system are available on-
line for the Wikidata (https://www.rdfexplorer.org/) and DB-
pedia (https://dbpedia.rdfexplorer.org/) knowledge graphs.

Acknowledgements
Vargas and Buil-Aranda were supported by Fondecyt Ini-
ciación Grant No. 11170714. Hogan was supported by
Fondecyt Grant No. 1181896. Vargas, Buil-Aranda and
Hogan were supported by the Millennium Institute for Foun-
dational Research on Data (IMFD).

https://www.rdfexplorer.org/
https://dbpedia.rdfexplorer.org/


References
[Angles et al., 2017] Renzo Angles, Marcelo Arenas, Pablo

Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj Vr-
goc. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv., 50(5):68:1–68:40, 2017.

[Arias et al., 2011] Mario Arias, Javier D. Fernández,
Miguel A. Martı́nez-Prieto, and Pablo de la Fuente. An
Empirical Study of Real-World SPARQL Queries. In Us-
age Analysis and the Web of Data (USEWOD), 2011.

[Berners-Lee et al., 2006] Tim Berners-Lee, Yuhsin Chen,
Lydia Chilton, Dan Connolly, Ruth Dhanaraj, James Hol-
lenbach, Adam Lerer, and David Sheets. Tabulator: Ex-
ploring and analyzing linked data on the semantic web.
In Proceedings of the 3rd international semantic web user
interaction workshop, volume 2006, page 159. Citeseer,
2006.

[Bhowmick et al., 2017] Sourav S Bhowmick, Byron Choi,
and Chengkai Li. Graph querying meets HCI: State of the
art and future directions. In ACM International Conference
on Management of Data, pages 1731–1736. ACM, 2017.

[Clemmer and Davies, 2011] Aaron Clemmer and Stephen
Davies. Smeagol: a “specific-to-general” semantic web
query interface paradigm for novices. In Database and
Expert Systems Applications (DEXA), pages 288–302.
Springer, 2011.

[Dadzie and Rowe, 2011] Aba-Sah Dadzie and Matthew
Rowe. Approaches to visualising Linked Data: A survey.
Semantic Web, 2(2):89–124, 2011.

[Grafkin et al., 2016] Pavel Grafkin, Mikhail Mironov,
Michael Fellmann, Birger Lantow, Kurt Sandkuhl, and
Alexander V Smirnov. Sparql query builders: Overview
and comparison. In BIR Workshops, 2016.

[Hogan et al., 2020] Aidan Hogan, Eva Blomqvist, Michael
Cochez, Claudia d’Amato, Gerard de Melo, Claudio
Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Se-
bastian Neumaier, Axel Polleres, Roberto Navigli, Axel-
Cyrille Ngonga Ngomo, Sabbir M. Rashid, Anisa Rula,
Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab,
and Antoine Zimmermann. Knowledge graphs. CoRR,
abs/2003.02320, 2020.

[Hogenboom et al., 2010] Frederik Hogenboom, Viorel
Milea, Flavius Frasincar, and Uzay Kaymak. RDF-GL:
A SPARQL-Based Graphical Query Language for RDF.
In Emergent Web Intelligence: Advanced Information
Retrieval, pages 87–116. 2010.

[Lehmann et al., 2015] Jens Lehmann, Robert Isele, Max
Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick
van Kleef, Sören Auer, and Christian Bizer. Dbpedia -
A large-scale, multilingual knowledge base extracted from
Wikipedia. Semantic Web, 6(2):167–195, 2015.

[Malyshev et al., 2018] Stanislav Malyshev, Markus
Krötzsch, Larry González, Julius Gonsior, and Adrian
Bielefeldt. Getting the Most Out of Wikidata: Semantic
Technology Usage in Wikipedia’s Knowledge Graph. In

International Semantic Web Conference (ISWC), pages
376–394. Springer, 2018.

[Munzner, 2014] Tamara Munzner. Visualization analysis
and design. AK Peters/CRC Press, 2014.

[Noy et al., 2019] Natalya Fridman Noy, Yuqing Gao, An-
shu Jain, Anant Narayanan, Alan Patterson, and Jamie
Taylor. Industry-scale knowledge graphs: lessons and
challenges. Commun. ACM, 62(8):36–43, 2019.

[Pérez et al., 2009] Jorge Pérez, Marcelo Arenas, and Clau-
dio Gutiérrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

[Rietveld and Hoekstra, 2017] Laurens Rietveld and Rinke
Hoekstra. The YASGUI family of SPARQL clients. Se-
mantic Web, 8(3):373–383, 2017.

[Sayers, 2004] Craig Sayers. Node-centric rdf graph visual-
ization. Mobile and Media Systems Laboratory, HP Labs,
2004.

[Skjæveland, 2012] Martin G Skjæveland. Sgvizler: A
javascript wrapper for easy visualization of sparql result
sets. In Extended Semantic Web Conference, pages 361–
365. Springer, 2012.

[Smart et al., 2008] Paul R. Smart, Alistair Russell, Dave
Braines, Yannis Kalfoglou, Jie Bao, and Nigel R. Shad-
bolt. A Visual Approach to Semantic Query Design Using
a Web-Based Graphical Query Designer. In Knowledge
Engineering and Knowledge Management (EKAW), pages
275–291. Springer, 2008.

[Vargas et al., 2019] Hernán Vargas, Carlos Buil Aranda,
Aidan Hogan, and Claudia López. RDF Explorer: A Vi-
sual SPARQL Query Builder. In International Semantic
Web Conference (ISWC), pages 647–663, 2019.

[Vrandečić and Krötzsch, 2014] Denny Vrandečić and
Markus Krötzsch. Wikidata: a free collaborative knowl-
edgebase. Communications of the ACM, 57(10):78–85,
2014.


	Introduction
	Related Work
	RDF Explorer
	Visual Query Graph
	The RDF Explorer Interface

	Usability Study
	Hypotheses
	Knowledge Graph and Baseline System
	Study Design
	Study Participants
	Metrics

	Results
	Ratio of Correct Responses
	Hypothesis Testing
	Other Results

	Conclusions

