
Discovering Domain-Specific Public SPARQL Endpoints:
A Life-Sciences Use-Case

Muntazir Mehdi*†, Aftab Iqbal†, Aidan Hogan‡, Ali Hasnain†,
Yasar Khan†, Stefan Decker†, and Ratnesh Sahay†

*Department of Computer Science †INSIGHT Centre for Data Analytics ‡Department of Computer Science
Technical University of Kaiserslautern National University of Ireland, Galway Universidad de Chile

m mehdi10@cs.uni-kl.de {first.last}@insight-centre.org ahogan@dcc.uchile.cl
Germany Ireland Chile

ABSTRACT
A significant portion of the LOD cloud consists of Life Sci-
ences data sets, which together contain billions of clinical
facts that interlink to form a “Web of Clinical Data”. How-
ever, tools for new publishers to find relevant datasets that
could potentially be linked to are missing, particularly in
specialist domain-specific settings. Based on a set of domain-
specific keywords extracted from a local dataset, this paper
proposes methods to automatically identify relevant public
SPARQL endpoints from a list of candidates.

Keywords
Linked Open Data (LOD) Cloud, Web of Data, SPARQL,
Healthcare and Life Sciences

1. INTRODUCTION
Over the past several years, a variety of publishers – com-

ing from academia, governmental organisations, online com-
munities and companies alike – have begun exposing their
corpora on the Web as Linked Data. The Linking Open Data
(LOD) Cloud1 provides an overview of 295 Linked Datasets,
which, according to publisher statistics2, incorporate over 30
billion facts. Of these, 41 datasets relate to Life Sciences,
incorporating 3 billion facts. With regards to accessing this
content, aside from crawling the raw data, 68% of the LOD
datasets offer a link to at least one SPARQL endpoint that
can be used to directly query the dataset. The Datahub cat-
alogue3 lists at least 427 such SPARQL endpoints available
on the Web (though indeed some are offline or unreliable [1]).

The LOD Cloud also contains 500 million cross-dataset
links (191 million links specifically in the life-sciences do-

1http://lod-cloud.net/; l.a. 2014/04/07.
2 Statistics are quoted from http://lod-cloud.net/state/;
l.a. 2014/04/07.
3http://datahub.io/group/lodcloud; l.a. 2014/04/07.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
IDEAS ’14 July 07–09 2014, Porto, Portugal
Copyright 2014 ACM 978-1-4503-2627-8 $15.00.
http://dx.doi.org/.../...

main)4, following the fourth Linked Data principle: “link to
related data”. From the perspective of a consumer, these
links allow for recursively discovering and navigating de-
tailed information about related entities elsewhere on the
Web. From the perspective of a publisher, links encour-
age modularity, where high-quality links (once in place) can
reduce the amount of content they need to host: for exam-
ple, instead of each publisher redundantly providing a basic
description of all the countries they mention in their data,
each publisher can link to a detailed description for each
country in a legacy dataset elsewhere (such as GeoNames or
DBpedia). Likewise such links can be used to disambiguate
entities. From the perspective of the Web, these links form
the mesh upon which the Web of Data is based.

But creating links is a challenging task for publishers. Ad-
dressing this challenge, a number of linking frameworks, such
as Silk [12] and LIMES [7], have been proposed to help pub-
lishers link their local datasets to a remote LOD dataset
through a specified SPARQL endpoint. However, given that
there are now hundreds of public SPARQL endpoints, a still-
more fundamental question has not been tackled: how can
publishers find SPARQL endpoints that are relevant targets
for links in the first place? As we will see, answering this
question is non-trivial, particularly for specialised domains.

Currently, the selection of relevant endpoints relies on
manual effort and requires experience and knowledge of avail-
able datasets and endpoints. One potential method is to
manually inspect the list of datasets and endpoints listed on
the DataHub catalogue, but only very high level dataset de-
scriptions are available regarding the topic of the dataset and
available access mechanisms. The content of SPARQL end-
points can be described using VoID5, SPARQL 1.1 Service
Descriptions, and specialised vocabulary (or ontology) [2],
which may help, but these are not available for many end-
points [1, 11].

The most general option is to consider the SPARQL end-
points as black boxes whose content is opaque and directly
query them to determine if they are relevant. In this pa-
per, we explore this option. We assume that a high-quality,
representative set of domain-specific keywords is made avail-
able as input to the process; this set of keywords may be
extracted from any local source in any format – such as a
taxonomy, a relational schema or a term dictionary – or
can even be provided manually by an expert. Based on

4See footnote 2.
5http://www.w3.org/TR/void/; l.a. 2014/04/07.

http://lod-cloud.net/
http://lod-cloud.net/state/
http://datahub.io/group/lodcloud
http://dx.doi.org/.../...
http://www.w3.org/TR/void/

this set of domain-specific keywords, we propose to directly
probe SPARQL endpoints with queries to determine their
relevance. Initially, we identified three potential methods:

Full-text Search: SPARQL does not provide any standard
full-text search functionality. Although some SPARQL
vendors offer custom full-text search features imple-
mented by efficient inverted indexes (e.g., Virtuoso
provides a bif:contains keyword), not all SPARQL
endpoints will support such features.

REGEX Filters: SPARQL allows for matching literals with
REGEX filter expressions. However, filter expressions are
applied as a post-processing step: using REGEX for full-
text search would involve scanning all object literals
in the dataset, rendering this method inefficient and
impractical.

Exact Literal Matching: A final option is to create exact
literals from the domain keywords that can be looked
up directly. However, this method requires an exact
literal to be matched, meaning an exact case-sensitive
phrase match with the correct language tag.

Herein we focus on the third option given that it will
work for any SPARQL endpoint and will involve efficient
lookups (as opposed to inefficient post-filtering). In previ-
ous work, we proposed an algorithm (called QTermEx) for
combining raw clinical terms into literals [6]. The QTer-
mEx algorithm takes as input a terminology, in this case
a set of Clinical Terms (CTerms), and generates a set of
Query Terms (QTerms). The QTermEx algorithm incorpo-
rates stop-word removal, word permutations, and resolving
unique tokens from CTerms represented as sentences (e.g.,
“Migraine cumulative (with aura)”) or URIs (e.g., http://
www.chuv.ch/variables/schizophrenia/code:SZAPU2). In
the former case, for example, the QTerms extracted would
be “Migrane”, “cumulative”, and “Migrane cumulative” after
the punctuation and stop-words “aura” and “with” are re-
moved. To keep the output succinct, the order of words
is preserved in the QTermEx algorithm (i.e., it would not
produce “cumulative Migrane”). We then query endpoints
for the QTerm literals created from the terminology in this
fashion.

We take the output from the QTermEx algorithm and
expand it by creating multiple case and language-tag vari-
ants for each QTerm so as to generate more hits. We also
present comparative evaluation of our methods for a real-
world use-case involving three clinical partners who wish
to publish Linked Data and need to find existing relevant
datasets that can be linked to.

The rest of the paper is as follows: Section 2 presents the
methodology towards term extraction and a multi-matching
algorithm that creates literal variants. Section 3 presents
evaluation of our method for three clinical terminologies in
our use-case, seeking relevant LOD datasets for linking. Sec-
tion 4 discusses related work and Section 5 concludes. But
first we introduce our motivating scenario involving three
clinical partners.

Motivating Scenario:. Our work is conducted in the con-
text of the Linked2Safety6 EU Project, where the consor-

6http://www.linked2safety-project.eu/

Table 1: Example terms for Clinical Partners (CP)

Domain Example Terms

C
H
U
V

Cardiovascular Coronary Heart Disease

Psychiatric Disorder Major Depressive disorder

Migraine Migraine cumulative (with aura)

C
I
N
G

Diabetes Urine Microalbumin

Breast Cancer Breastfeeding duration

Neurology Spinal Muscular Atrophy

Z
E
I
N
C
R
O Concomitant Meds Hepatic or Biliary

Respiratory Rate of Spirometry

Medical History Musculoskeletal

tium features three clinical partners, namely, University Hos-
pital Lausanne (CHUV)7, Cyprus Institute of Neurology and
Genetics (CING)8, and ZEINCRO (a contract research organ-
isation offering clinical-trial services)9. These partners are
associated with the high-level domains listed in Table 1.

One of the core goals of the Linked2Safety project is to
publish biomedical datasets provided by the clinical part-
ners as high-quality Linked Data. Each clinical partner has
provided clinical terminologies for their specialised domain
with 150–215 terms each; Table 1 provides some examples.

The life-sciences community have been very active within
the Linking Open Data movement: as aforementioned, 41
datasets on the LOD cloud are classified as specialising in
the “Life Sciences” domain and 70 SPARQL endpoints have
been made available by these publishers, most prominently
by the Bio2RDF10 and Linked Life Data11 initiatives. Other
general-knowledge datasets, such as DBpedia, also contain
rich information about the life sciences. Manually identi-
fying which of these LOD datasets are potential targets for
links from the local datasets of each clinical partner is a time
consuming process. Hence we propose methods that take as
input three sets of terminologies exemplified in Table 1 and
produce as output a list of potentially relevant SPARQL
endpoints for linking.

2. TERM EXTRACTION AND
MULTI MATCHING

As discussed earlier, we use our previously proposed algo-
rithm (QTermEx) [6] for extraction of literals from CTerms
(as exemplified in Table 1). These literals are then searched
against public endpoints. We propose an algorithm in this
paper that queries for case and language-tag variants for
extracted literals.

2.1 QTermEx Algorithm
The first algorithm, Query Term Extractor (QTermEx,

Algorithm 1), takes as input a terminology, in this case a set
of Clinical Terms (CTerms), and generates a set of Query
Terms (QTerms). Each QTerm ∈ QTerms will subsequently
be used to generate an RDF literal that can be queried
against the SPARQL endpoints of various LOD datasets.

7http://www.chuv.ch/; l.a. 2014/04/07.
8http://www.cing.ac.cy/; l.a. 2014/04/07.
9http:/www.zeincro.com/; l.a. 2014/04/07.

10http://bio2rdf.org/; l.a. 2014/04/07.
11http://linkedlifedata.com/; l.a. 2014/04/07.

http://www.chuv.ch/variables/schizophrenia/code:SZAPU2
http://www.chuv.ch/variables/schizophrenia/code:SZAPU2
http://www.linked2safety-project.eu/
http://www.chuv.ch/
http://www.cing.ac.cy/
http:/www.zeincro.com/
http://bio2rdf.org/
http://linkedlifedata.com/

All CTerms in the terminology are iterated over. The
input CTerm is first pre-processed by replacing junk char-
acters with spaces (JunkCharSet ; e.g., punctuation, par-
entheses, symbols, etc.), by removing stop words (SWSet,
e.g., “the”, “and’, etc.) and by removing general terms (GT-
Set ; e.g., “duration”, “rate”, “family”, etc.). Junk characters
are pre-defined. Stop words are collected from the terminol-
ogy using the Ranks.nl text-analysis tool12. General terms
are specific to a given terminology and are defined by domain
experts; these general terms are used to reduce the number
of QTerms created in the final output. Taking the example
CTerm “Migraine cumulative (with aura)” from Table 1, first
the parentheses will be removed as junk characters, “with”
will be removed as a stop-word and “aura” will be removed
as a general term (if defined). A list of unique token words,
KwList, is computed as a result.

Algorithm 1: QTermEx: Extracts Query Terms

Input: A finite set of Clinical Terms (CTerms)
Output: A finite set of Query Terms (QTerms)
JunkCharSet := set of Junk Characters;
SWSet := set of Stop Words;
GTSet := set of General Terms;
QTerms := ∅;
for CTerm in CTerms do

CTerm′ := replace each occurrence of
JunkCharSet in CTerm with space;
TokenList := tokenise CTerm′ based on spaces;
KwList := empty list;
for Token in TokenList do

if Token not in SWSet,GTSet or KwList
then

Add Token to KwList;

QTerms′ := all n-grams from KwList that preserve
ordering;
QTerms := QTerms′ ∪QTerms;

return QTerms;

Table 2: Distribution of KwList cardinalities

|KwList| = 1 |KwList| = 2 |KwList| = 3

CHUV 140 70 5
CING 92 58 24

ZEINCRO 138 7 5

All combinations of n-grams13 that preserve the ordering
of the original input term (but potentially skip terms) are
then computed from the resulting KwList. Thus, the re-
sult of our example would be three query terms: “Migraine”,
“cumulative” and “Migraine cumulative”. These n-grams are
added to the output QTerms. The total number of such
n-gram query terms is 2k − 1 for k = |KwList|. For our
use-case, Table 2 lists the distribution of cardinalities for
KwList (as defined in Algorithm 2; e.g., 70 input keyword
phrases from CHUV contained precisely two non-filtered key-
words): the exponential combination of tokens into n-grams

12http://www.ranks.nl/
13We slightly abuse the term: an n-gram is a string con-
taining n consecutive items (e.g., words) from the input in
sequential order; we do not require that the n-gram contains
consecutive words, only that it preserves order.

does not pose a significant problem since the size of KwList
never exceeds 3. Thus our algorithm is best suited to ter-
minologies with concise domain-specific phrases (after the
removal of stop words and general terms).

2.2 Multi-Matching: µMatch Algorithm
The QTerms generated from our algorithm QTermEx

can be used to query the SPARQL endpoints of LOD datasets.
We call this a Direct Matching (DM) approach, where each
QTerm is used to generate a single query literal. Each lit-
eral is then used to generate a simple SPARQL query as
“SELECT ?s ?p WHERE {?s ?p“Term”.}”, which can be used
to probe for relevant endpoints.

However, querying for exact literals is case sensitive and
many literals in LOD datasets contain language tags. Our
second algorithm, Multi Matching (µMatch; Algorithm 2),
queries SPARQL endpoints for multiple case variants of each
QTerm and for literals with language tags.

Algorithm 2: µMatch: Multi Matching Algorithm

Input: A Term (CTerm or QTerm), A language tag
(langTag)

Output: A finite set of dataset endpoints (EPSet)
SEndpoints := set of catalogued Dataset Endpoints;
for EP in SEndpoints do

add := QueryAndLog(Term, langTag, EP);
PCase := Proper Case Term;
add := add∨QueryAndLog(PCase, langTag, EP);
LCase := lower case Term;
add := add∨QueryAndLog(LCase, langTag, EP);
UCase := UPPER CASE Term;
add = add∨QueryAndLog(UCase, langTag, EP);
if add = true then

EPSet := EPSet ∪ {EP};

return EPSet;
QueryAndLog(Term, langTag, EP)

match := false;
Query := create SPARQL query for Term;
Result := supply Query to EP and retrieve results;
if Result not empty then

match := true;
log Result;

LangCaseQuery := Add langTag to supplied
Term and create query;
Result := supply LangCaseQuery to EP and
retrieve results;
if Result not empty then

match := true;
log Result;

return match;

µMatch (Algorithm 2) takes as input the QTerms key-
words generated by QTermEx and a list of URLs indicat-
ing the location of candidate SPARQL endpoints to query
(SEndpoints). We generate SEndpoints by logging URLs
of all candidate SPARQL endpoints in a particular domain.
For our use-case, we created a list of SEndpoints specifically
for the life-sciences domain. We considered SPARQL end-
points made publicly available by Bio2RDF14 or that are

14http://download.bio2rdf.org/release/2/release.html;
l.a. 2014/04/07.

http://www.ranks.nl/
http://download.bio2rdf.org/release/2/release.html

tagged in the Datahub15 repository with “lifesciences” or
“healthcare”; we also include DBpedia as a central cross-
domain dataset.

In the µMatch algorithm, for each Term, we queried
SEndpoints by executing the SPARQL query presented be-
fore. Since SPARQL is case-sensitive – for example, a literal
value “cancer” is not same as “Cancer” or “CANCER” – the
algorithm is refined to check for proper case, upper case
and lower case literals. Furthermore, language tags are of-
ten used with literal values, for example, in some cases the
literal value “cancer” is defined as “cancer”@en. Our algo-
rithm is thus refined to check for literals with language tags.
We use the @en language tag since the clinical terminologies
contained in the datasets from our scenario are primarily in
English. However, the proposed algorithm can easily accom-
modate other regional settings (for example: @de, @en-us,
@en-uk, etc.), with the caveat that four additional queries
will be required for each additional language tag. Likewise,
we do not consider the datatype xsd:string, where a plain
literal without a language tag, such as “cancer”, is semanti-
cally equivalent to the same literal with a string datatype,
such as “cancer”̂ ˆxsd:string. We omit this datatype since
it is rarely used with prose strings (it is incompatible with
language-tags which are recommended for internationalisa-
tion of prose strings); however, another variant could be
added to our algorithm to support this datatype.

For each Term supplied to the algorithm, we run µMatch
with a set of 8 queries: { original-case, proper-case, lower-
case, upper-case }×{ no-lang-tag, @en-tag }. All non-empty
results are logged along with the URLs and names of the
respective SPARQL endpoints in EPSet. In addition, the
bindings returned for the ?s (subject) and ?p (predicate)
query variables are also recorded and logged when a Term
match is found on some particular SPARQL endpoint. The
subject bindings are useful to count the number of unique
entities in the remote dataset that are matched by some lit-
eral term. The predicates returned are potentially useful
for linking frameworks, like LIMES [7] or SILK [12], that
are dependent on mapping information for generating links,
such as which predicates to use. For example, the predicates
found when searching for“Cancer”on different SPARQL end-
points (given in Listing 1) could provide an entry point for
linking based on string-similarity functions.

15http://datahub.io/; l.a. 2014/04/07.

P1 : http ://www.w3 . org /ns/dcat#keyword .
P2 : http ://www.w3 . org / . . . / rdf-schema#l ab e l
P3 : http :// cu . sgd . org / vocabulary : synonym
P4 : http ://www.w3 . org / . . . / rdf-syntax−ns#value
P5 : http : / / . . . / pubmed vocabulary : keyword

Listing 1: Set of predicates for “Cancer”

3. EVALUATION
We carried out a series of experiments to compare our

proposed algorithms using the three datasets provided by
the three clinical partners mentioned in Table 1.

3.1 Experimental Setup
All experiments were conducted on a computer running

64-bit Windows 7 OS, with 4GB RAM and an Intel Core
i5 (2.53 GHz) CPU. We use a MySQL RDBMS to store ex-
perimental data, including the endpoints to search and the
results of successful queries. As previously discussed, we
consider a total of 44 public endpoints from the Bio2RDF
project and from the Datahub catalogue with“lifesciences”
or “healthcare” tags. Queries are sent to the public end-
points over HTTP using the standard SPARQL protocol.

Given three sets of raw clinical terms (CTerms) as input,
we generate three sets of query terms (QTerms) by applying
the QTermEx algorithm [6]. Based on these sets of terms,
we then perform the following four experiments:

CTerms–DM : We query endpoints using the raw clinical
terms with the Direct Matching (DM) approach: each
CTerm creates a single literal and a single query.

CTerms–µM : We query endpoints using the raw clinical
terms with the Multi Matching (µM) approach: each
CTerm creates eight literals with combinations of case
and language tags, resulting in eight queries per term.

QTerms–DM : We query endpoints using the extended que-
ry terms with the Direct Matching (DM) approach:
each QTerm creates a single literal and a single query.

QTerms–µM : We query endpoints using the extended que-
ry terms with the Multi Matching (µM) approach:
each QTerm creates eight literals and eight queries.

Table 3: Number of Queries generated per
dataset per experiment

Dataset
CTerms QTerms

DM µM DM µM

CHUV 215 1720 385 3080
CING 174 1392 434 3472

ZEINCRO 150 1200 194 1552

1
3

7
3

1
7

6
3

1
3

9
7

2
0

0
5

1
2

5
6

1
3

9
3

1
4

4
4

.2 1
7

9
3

.6

1
4

0
7

.9

2
0

9
0

.2

1
2

6
9

.4

1
4

1
6

.8

1
5

2
8 1

8
2

6

1
4

1
5

2
1

1
8

1
2

9
1

1
4

3
8

CHUV-CTERM CHUV-QTERM CING-CTERM CING-QTERM ZEINCRO-
CTERM

ZEINCRO-
QTERM

BEST CASE AVERAGE CASE WORST CASE

Figure 1: Query Generation Time (ms)

http://datahub.io/

The total number of queries generated for each of the three
datasets and each of the four experiments is shown in Ta-
ble 3. We can see that the query load of Multi Matching ap-
proach is fixed at 8× that of the Direct Matching approach.
We see that when using the expanded set of query terms,
the query load increases by 1.3–2.5× versus the raw clinical
terms. Furthermore, we see that our approach generates a
non-trivial load of thousands of queries per dataset. How-
ever, the queries we issue are single-pattern atomic lookups,
which should be efficient for the endpoint to execute.

Figure 1 shows the query generation time (in millisec-
onds) for all queries in each scenario categorised along two
dimensions (1) µMatch using CTerms; and (2) µMatch
using QTerms. Based on 20 runs (with terms shuffled be-
tween each run), we present times for the best, average, and
worst runs. We observe that execution time for CTerms Vs.
QTerms on all three cases does not deviate significantly.
Thus we see that the performance of query generation is not
a distinguishing factor for the different approaches.

3.2 Results
We compare the results of our four experiments based on

three metrics:

Matched Results (MR): represents the total number of
query results obtained for all terms against all SPARQL
endpoints.

Matched Terms (MT): represents the number of distinct
terms for which non-empty results were found for at
least one SPARQL endpoint.

Matched Endpoints (ME): represents the number of dis-
tinct endpoints for which some term generated a non-
empty result.

To illustrate these metrics, consider an example where a
set of two Terms = { “lung”, “cancer” } is searched (using
DM or µM) on SEndpoints = { “GeneBank”, “DrugBank”,
“PubMed”}, where the results contained 5 matches of “lung”
in “GeneBank”, 0 matches in “DrugBank” and 2 matches in
“PubMed”. Similarly, the returned results for “cancer” had
0 matches in “GeneBank”, “DrugBank” and “PubMed”. In
this example, MR = 7, MT = 1 and ME = 2.

A detailed comparison of MR, MT and ME for all datasets
and experiments is presented in Figures 2–4 respectively. In
general, we see a small increase in the number of matches
when considering DM versus µM; whether or not the 8×
query-load of µM is cost effective depends on the scenario,
where the trade-off is the completeness of results versus the

Table 4: Fre-EPR for all datasets

Dataset # Endpoint Name Results

CHUV

1 Pubmed 190651
2 UniProt UniRef 51460
3 Toxkb 5518
4 CKAN 5044
5 DBPedia 885

CING

1 Pubmed 187153
2 UniProt UniRef 31938
3 Toxkb 25614
4 KEGG Pathway 17241
5 SGD 11112

ZEINCRO

1 Bio2RDF Atlas 12672
2 Pubmed 2671
3 GOA 736
4 NCBI-Gene 432
5 Toxkb 345

efficiency of the discovery process. Conversely, we see a more
significant increase for QTerm versus CTerm, which is asso-
ciated with an increased query load of 1.3–2.5×: the process
of removing junk characters, stop words and general terms,
and generating a variety of n-grams, leads to a significant
increase in matches, particularly for the dataset provided by
the second clinical partner (i.e., CING).

Of the 44 endpoints we consider, the querying process gen-
erates positive hits for 9–33 endpoints. With a high ratio of
potentially relevant endpoints being found, we thus deem it
important to rank the relevance of these endpoints, allowing
domain experts to consider more highly ranked endpoints
as better candidates for the linking process. Thus, in addi-
tion to comparing MR, MT and ME, we also investigated
two intuitive ranking schemes for endpoint-relevance with
respect to each of the three local datasets, as follows. Rank-
ing schemes are illustrated using the results collected from
QTerms–µM experiment.

In the first step: we computed a ranking based on
the number of distinct terms found per SPARQL endpoint,
which we call the “EndPoint Ranking (EPR)”. This metric
is a per-endpoint version of MT that indicates how broad
the coverage of domain terms is for each endpoint. The top-
10 most relevant endpoints according to this metric for each
of the three datasets is shown in Figures 5–7 respectively,
where the x-axis corresponds to the names of the SPARQL
endpoints and the y-axis represents the number of distinct
terms with non-empty results. From these figures, it can be

μ μ

Figure 2: MR Comparison
μ μ

Figure 3: MT Comparison
μ μ

Figure 4: ME Comparison

213

74
65

49
37

29 25 25 22
10

0

50

100

150

200

250

N
u

m
b

e
r

o
f

M
at

ch
e

d
 R

e
su

lt
s

Figure 5: EPR for CHUV

238

99 99

76 72 72 71 68
54 52

0

50

100

150

200

250

N
u

m
b

e
r

o
f

M
at

ch
e

d
 R

e
su

lt
s

Figure 6: EPR for CING

52

25

18

12 12
8

6 6 6 5

0

10

20

30

40

50

60

N
u

m
b

e
r

o
f

M
at

ch
e

d
 R

e
su

lt
s

Figure 7: EPR for ZEINCRO

seen that the DBpedia endpoint had the broadest coverage
of terms. We considered DBpedia for our experiments due
to its cross-domain characteristics.

In the second step: we computed a ranking based on
the number of results found per SPARQL endpoint across
all terms, which we call the “Frequency of results per End-
Point Ranking (Fre-EPR)”. This metric is a per-endpoint
version of MR that indicates how deep the coverage of spe-
cific domain terms is for each endpoint. A top-5 ranked
comparison of the total number of matches found in dif-
ferent SPARQL endpoints for each dataset is provided by
Table 4. As opposed to the EPR metric, which focuses
on how broad the coverage of domain-specific terms, Fre-
EPR catpures the depth of matches. Whereas DBpedia
was most highly ranked for EPR, we find that more spe-
cialised endpoints are ranked more highly for Fre-EPR: the
highest-ranked SPARQL endpoint for both CHUV and CING
is “Pubmed” and for ZEINCRO is “BIO2RDF Atlas”. More
specialised datasets offer more hits for specific terms, sug-
gesting that there are many potential entities that could be
linked to in the target dataset.

We additionally look at the ratio of input terms for which
some results were returned from some endpoint, which we
refer to (loosely) as “recall”. Based on a subset of already
identified CTerms and/or QTerms on endpoints, we exe-
cuted our experiments and computed recall where Table 5
presents the results for different configurations. The QTerms
recall results for CHUV and CING improved significantly over
the CTerms recall results, which can be attributed to the

effect of trying multiple case variants and a language tag.
Figure 8 explores in more detail the effect of applying a

language tag for the µMatch algorithm, where Case-1 refers
to Matched Results (MR) without language tag but with all
case variants and Case-2 refers to Matched Results (MR)
with and without a language tag on all case variants. We see
results increase by a factor of 1.3–2.2× for different datasets.
Many datasets (for example, DBpedia) use language tags on
all labels for their resources.

4. RELATED WORK
With respect to finding relevant datasets on the Web, var-

ious keyword-based search engines have been proposed, in-
cluding, for example, Sindice [10] or SWSE [3]. However,
such search engines return entities as results and do not di-
rectly allow for finding relevant SPARQL endpoints.

To the best of our knowledge, only a few works have looked
at identifying candidate datasets for interlinking. Leme at
al. [4], rank the relevance of datasets for interlinking us-
ing probability measures based on existing links between
datasets; however, the approach analyses the existing high-
level link-network of datasets, which affects the generality
of the approach (e.g., new datasets). Nikolov et al. [8, 9]
propose an approach to identify relevant datasets for inter-
linking consisting of two steps: (1) searching relevant entities
in other datasets using keywords; and (2) filtering irrelevant
datasets based on semantic concept similarities using ontol-
ogy matching techniques; however, their methods assume
that the candidate datasets are centrally indexed.

Table 5: Recall for each dataset

Dataset
CTerms QTerms

DM µM DM µM

CHUV 0.17 0.23 0.64 0.88
CING 0.04 0.06 0.67 0.90

ZEINCRO 0.09 0.19 0.35 0.62

2
2
2

8
6
5

7
8

1
3
7
6

5
7 1
9
7

4
7
9

1
3
5
0

1
0
3

2
0
7
9

8
9

2
9
6

CHUV-CTERMS CHUV-QTERMS CING-CTERMS CING-QTERMS ZEINCRO-
CTERMS

ZEINCRO-
QTERMS

Case-1 Case-2

Figure 8: Impact of Language Tag on Matched Results (MR)

We previously mentioned that there are a number of link-
ing frameworks available for Linked Data, including Silk [12]
and LIMES [7]. Both offer a declarative language for guiding
the creation of links between datasets based on predicates.
However, both of these tools presume that a SPARQL end-
point for the target dataset is specified in the input. Our
work addresses the prior step of identifying public endpoints
of LOD datasets that are interesting to link to.

Maali et al. [5] propose an extension of the Google Refine
tool to curate and RDFise local datasets. The extension
can help find legacy URIs for entities from target endpoints
specified by the user. The authors propose using custom full-
text search over SPARQL endpoints to find relevant URIs
for keyword terms in the local dataset; e.g., using bif:contains
over Virtuoso endpoints. However, they presume that the
endpoints of interest are manually specified by the user. As
previously argued, we do not rely on the vendor-specific
full-text search features that are supported only by some
SPARQL endpoints.

Other works have discussed the difficulties of discovering
relevant SPARQL endpoints on the Web. For example, Buil
Aranda et al. [1] note that few structured descriptions are
available for endpoints. Paulheim and Hertling [11] also note
that the discovery of endpoints is a difficult problem and
propose methods to find endpoints given a URI of interest.

To the best of our knowledge, no work has presented meth-
ods to discover public SPARQL endpoints that are most rel-
evant to a list of domain-specific keywords (as needed by our
three clinical partners).

5. CONCLUSION
In this paper, we propose methods for automatically dis-

covering public SPARQL endpoints that are candidates for
linking with a local domain-specific dataset. We are inspired
by the needs of three clinical organisations that wish to gen-
erate Linked Data but are unsure which datasets are most
relevant to link to.

Given a set of domain-specific keywords, we discussed
three possible methods by which the relevance of SPARQL
endpoints could be determined: we choose to investigate
algorithms that seek exact literal matches since the gener-
ated queries (1) would involve standard SPARQL features
supported by all endpoints, unlike vendor-specific full-text
search primitives and (2) would involve efficient lookups,
unlike REGEX filters that need to scan all indexed data.

However, exact literal matches require precise phrase mat-
ching and are sensitive to case, language tags, etc. We thus
presented two algorithms to generate a variety of phrases
from input keywords [6] and to query for variations of case
and language-tag. In experimental results for three real-
world clinical terminologies, we showed that these algorithms
increase the number of hits generated versus the raw key-
words. We also discussed some preliminary ranking methods
for the relevance of individual endpoints.

In an extended work, we would like to investigate using
the full-text search API of a Linked Data warehouse, such as
Sindice, to generate a list of relevant entity URIs, querying
the endpoint for the presence of these entities rather than for
exact literal matches. We would also like to investigate the
effectiveness of our methods for other domains. Finally, we
would like to investigate ranking metrics for the relevance of
endpoints in more depth, in particular how well they indicate
the potential for generating high-quality links.

Acknowledgements
This publication has emanated from research supported in
part by a research grant from Science Foundation Ireland
(SFI) under Grant Number SFI/12/RC/2289, by the EU
project Linked2Safety (contract Number 288328), and by the
Millennium Nucleus Center for Semantic Web Research un-
der Grant NC120004.

6. REFERENCES
[1] C. B. Aranda, A. Hogan, J. Umbrich, and P.-Y.

Vandenbussche. SPARQL Web-querying
infrastructure: Ready for action? In ISWC, pages
277–293. Springer, 2013.

[2] H. F. Deus, D. F. Veiga, P. R. Freire, J. N. Weinstein,
G. B. Mills, and J. S. Almeida. Exposing the cancer
genome atlas as a SPARQL endpoint. Journal of
Biomedical Informatics, 43(6):998–1008, 2010.

[3] A. Hogan, A. Harth, J. Umbrich, S. Kinsella,
A. Polleres, and S. Decker. Searching and browsing
linked data with swse: The semantic web search
engine. J. Web Sem., 9(4):365–401, 2011.

[4] L. A. P. P. Leme, G. R. Lopes, B. P. Nunes, M. A.
Casanova, and S. Dietze. Identifying candidate
datasets for data interlinking. In Web Engineering,
pages 354–366. Springer, 2013.

[5] F. Maali, R. Cyganiak, and V. Peristeras. Re-using
cool URIs: Entity reconciliation against LOD hubs. In
Linked Data On the Web (LDOW) Workshop. CEUR,
2011.

[6] M. Mehdi, A. Iqbal, A. Hasnain, Y. Khan, S. Decker,
and R. Sahay. Utilizing Domain-Specific Keywords for
Discovering Public SPARQL Endpoints: A
Life-Sciences Use-Case. In ACM SAC (SWA track),
2014 (to appear).

[7] A.-C. N. Ngomo and S. Auer. LIMES – a
time-efficient approach for large-scale link discovery on
the Web of Data. In T. Walsh, editor, IJCAI, pages
2312–2317. IJCAI/AAAI, 2011.

[8] A. Nikolov and M. d’Aquin. Identifying relevant
sources for data linking using a Semantic Web index.
In Linked Data On the Web (LDOW) Workshop.
CEUR, 2011.

[9] A. Nikolov, M. d’Aquin, and E. Motta. What should I
link to? Identifying relevant sources and classes for
data linking. In JIST, pages 284–299. Springer, 2011.

[10] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: a
document-oriented lookup index for open linked data.
IJMSO, 3(1):37–52, 2008.

[11] H. Paulheim and S. Hertling. Discoverability of
SPARQL endpoints in Linked Open Data. In ISWC
(Posters & Demos), pages 245–248. CEUR, 2013.

[12] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk -
a link discovery framework for the Web of Data. In
Linked Data On the Web (LDOW) Workshop. CEUR,
2009.

	Introduction
	Term Extraction and Multi Matching
	QTermEx Algorithm
	Multi-Matching: bold0mu mumu Match Algorithm

	Evaluation
	Experimental Setup
	Results

	Related Work
	Conclusion
	References

