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Abstract. We propose a method for consolidating entities in RDF data
on the Web. Our approach is based on a statistical analysis of the use
of predicates and their associated values to identify “quasi”-key proper-
ties. Compared to a purely symbolic based approach, we obtain promising
results, retrieving more identical entities with a high precision. We also
argue that our technique scales well—possibly to the size of the current
Web of Data—as opposed to more expensive existing approaches.

1 Introduction

In a distributed and collaborative environment like the current World Wide Web,
there can be a lot of redundancy across data sources. While redundancy in-
creases noisy or unnecessary information, it can also be an advantage, in the
sense that two descriptions of the same thing can mutually complete and comple-
ment each other. However, identifying the same thing is not a straight-forward
task at all, since different identifiers are used for equal entities scattered across
different datasets on the current Web of Data.

In the Semantic Web, identical entities can be made explicit by asserting a
owl:sameAs (resp. owl:equivalentClass, owl:equivalentProperty) relations
between instances (classes, properties, resp.). Entity consolidation on the Se-
mantic Web – as we view it here – thus boils down to the task of identifying
owl:sameAs relations between instances which are not explicitly related. In the
literature, this task is also sometimes referred to as “record linkage” [1], “dupli-
cate identification” [2], “object consolidation” [3], “instance matching” [4], “link
discovery” [5, 6], or “Co-reference resolution” [7].

In this paper, we define techniques for entity consolidation that take advan-
tage of statistical information about the way predicates are used throughout the
Web of Data in order to assess whether these predicates, along with the values
associated with them, are good candidate for identifying instances or, conversely,
discriminating them. For the moment, our technique relies on data described in
terms of overlapping vocabularies, i.e. sharing common identical properties; as we
focus on scale, we have decided for a deliberately simple approach.

The idea that we try to automatically simulate with our approach is based on
the following intuitions:

1. we can conclude that two instances are representing the same real-world entity
if they share several common property-value pairs;
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2. certain properties are more or less appropriate to disambiguate/consolitate
entities;

3. likewise, certain values of some properties are more or less appropriate to
disambiguate/consolidate entities.

Particularly, we assume that the necessary information to exploit (Item 2) and
(Item 3) can be gathered from statistics about Web data.

As an example, let us consider the case of identifying persons. Two descriptions
of unknown persons are representing the same human individual if they describe
common properties, such as, eye colour, height, gender, name (Item 1). The gender
of a person is usually of limited utility to identify someone, as opposed to the
name or address (Item 2). However, if the name is a very common one, such as
“Sam Smith” in an English-speaking country, the name property is not enough to
identify the person with reasonable certainty (Item 3) and e.g. another property
that is non-dissciminating by itself necessarily, such as the gender for instance,
may again become discriminating.

Interestingly, these three intuitions can be formalised into an algorithm that we
describe in Section 2. Then, we detail its implementation and some improvement
to make the process scalable and more efficient in Section 3. In Section 4, we
describe a preliminary but promising evaluation of our approach, along with some
more general discussion on the feasibility of properly evaluating such a system.
Section 5 presents related work and compare it to our approach. In Section 6,
we conclude wih important issues still to be solved, possible improvements and
future work.

2 Statistical entity consolidation

In this section, we formulate an abstract algorithm for computing a similarity
measure on pairs of RDF terms.

Let us first describe some formal notions used throughout this paper. We
denote RDF terms by U, B and L, i.e. the sets of all URIs, blank nodes, and
literals, respectively. RDF documents are sets of triples 〈s p o .〉 ∈ B ∪U×U×
U ∪B ∪L . For a given RDF document G, we denote by sub(G) (resp. pred(G),
obj(G)) the set of subjects (resp. predicates, objects) appearing in G. We write
RDF documents in the common 1 notation.

Example 1. For illustration purposes, let’s consider three documents crawled from
the Web containing candidate identifiers for consolidation—viz., ex1:SamSmith,
ex2:sam smith and ex3:Sam-Smith—as follows:

ex:SomeDoc dc:creator ex1:SamSmith .
ex1:SamSmith a foaf:Person ; foaf:name "Sam Smith" ;

foaf:gender "male" ; foaf:homepage ex:JSHompage .

1 Turtle.http://www.w3.org/TeamSubmission/turtle/



ex:SomeDoc dc:creator ex2:sam smith .
ex2:sam smith foaf:name "Dr. Sam J. Smith" ;

foaf:homepage ex:JSHompage .

ex:SomeOtherDoc dc:creator ex3:Sam-Smith .
ex3:Sam-Smith a foaf:Person ; foaf:name "Sam Smith" ;

foaf:gender "female" .

A human able to interpret the above notation will quickly discern that ex1:-
SamSmith and ex2:sam smith likely refer to the same person, and that ex3:Sam-
Smith is a separate person. In this case, a human will intuitively understand that
a single document is unlikely to have two authors with the same (first and last)
name, and that two people will rarely share a homepage. Sharing the same name
and the same homepage are both good indicators that the first and second entities
are referring to the same person. However, class membership such as foaf:Person
does not particularly indicates uniqueness. A human will also understand that the
third Sam Smith is female, and that a person usually only has one unique value
for gender—thus, the third entity is distinct from the earlier two.

In the following, we try to formalise the above described intuitions such that
we can implement an algorithm for performing entity consolidation similar to our
fictitious human consumer from this example. A human naturally has the required
experience of the world to draw the above conclusions, whereas a machine does
not; thus, we must first derive a means of identifying properties and property value
pairs which somehow discriminate an entity: e.g., that different entities rarely
have the same value for the foaf:homepage property. We must then provide a
means of translating our knowledge of properties and values into probabilistic
equivalence assertions for entities with shared property-value pairs: e.g., that if
two entities share a homepage, then there is a probability of p that they are the
same. We must further provide a means of aggregating all p values for the same
entity pairs to derive an overall score for an equivalence relation between those
two entities. Finally, following similar trains of thought we should be able perform
disambiguation of entities—again using our statistical knowledge of the usage of
properties—to derive a score indicating the likelihood that two entities are not
equivalent: e.g., that if two candidates initially deemed likely to be equivalent
have a different value for foaf:gender, then they are likely not equivalent after
all. However, in the present paper we only focus on the consolidation part, leaving
disambiguation as future work.

2.1 Web Crawl Dataset

To illustrate the type of results produced in our approach, we use a 20M triple
RDF Web crawl for which we offer statistics and later derive some evaluation.
This dataset was crawled in late January 2010. We also derive some real examples
from the dataset in this section. We refer to this dataset as G20M .



2.2 Property-centric statistics
In this paper, we tackle consolidation by relying purely on the statistical char-
acteristics of properties as observed for a given RDF graph. So, to begin, we
formalise some statistical characteristics of properties and property-value pairs
which approximately quantify how discriminating these are, i.e., to what degree
they “identify” the entity to which they are attached.

Thus, when in what follows we speak of cardinality for example, it is im-
portant to note that we rather intend the notion of an “observed” cardinality—
observed with respect to a given graph—in contrast to, e.g., the cardinality explic-
itly declared within OWL constructs owl:cardinality, owl:minCardinality,
owl:maxCardinality, owl:FunctionalProperty, owl:InverseFunctionalProp-
erty, etc. With this in mind, we now give some preliminary definitions.

Definition 1 (Cardinality). Let G be an RDF document, p be a property used
as a predicate in G and s be a subject in G. The observed cardinality (or simply
cardinality) of p wrt s in G, denoted CardG(p, s), is the cardinality of the set
{o ∈ obj(G) | 〈s p o .〉 ∈ G}.

Example 2. Take the graph GEX of all triples from Example 1; the cardinality
of the property dc:creator with respect to the subject ex:SomeDoc is given as
CardGEX

(dc:creator, ex:SomeDoc) =2.

We see the cardinality as an initial indicator of how suitable a given pair
< p, s > is for discriminating an entity identified by the object. Given a set of
cardinalities for a given property, we can define the straightforward notion of
average cardinality for p as the average of all cardinalities observed for p; viz :

Definition 2 (Average cardinality). Let G be an RDF document, and p be a
property used as a predicate in G. The average cardinality of p, written ACG(p), is
the average of the non-zero cardinalities of p wrt a variable s. Formally, ACG(p) =∑

s∈sub(G) CardG(s,p)

|{s∈sub(G)|〈s p o .〉∈G}| .

Example 3. Again given GEX , the average cardinality of the property dc:creator
is given as ACGEX

(dc:creator) =1.5.

Given a property appearing as a predicate in the graph, the corresponding av-
erage cardinality is necessarily a positive value greater than one. We may view the
average cardinality as roughly corresponding to the probability that two entities
identified by a given object are equivalent if they share a given predicate-subject
pair—more succinctly, we could interpret properties with average cardinalities
close to one as quasi-functional.

Given that RDF graphs preserve direction, we can likewise introduce the dual
notion of inverse cardinality and average inverse cardinality, which intuitively
coincide with the above definitions replacing subject with object; viz., :

Definition 3 (Inverse cardinality). Let G be an RDF document, p a predicate
in G and o an object in G. The inverse cardinality of p wrt o in G is the cardinality
of the set {s ∈ sub(G) | 〈s p o .〉 ∈ G}. This is written ICardG(p, o).



Example 4. Again given GEX , the inverse-cardinality of property foaf:name with
respect to object "Sam Smith" is: ICardGEX

(foaf:name, "Sam Smith") =2.

Definition 4 (Average inverse cardinality). Let G be an RDF document, p a
predicate in G. The average inverse cardinality of p is the average of the non-zero
inverse cardinalities of p wrt a variable o. This is written AICG(p). Formally,

AICG(p) =
∑

o∈sub(G) CardG(p,o)

|{o∈sub(G)|〈s p o .〉∈G}| .

Example 5. Again given GEX , the average inverse cardinality of the property
foaf:name is: AICGEX

(foaf:name) =1.5.

In analogy to the above said, we may view the inverse cardinality as an initial
indicator of how suitable a given < p, o > pair is for discriminating an entity
identified by the subject, and see low average inverse cardinality scores as an
indicator for quasi-inverse-functional properties.

Please note that hereafter, whenever there is no ambiguity, we conveniently
omit the name of the graph in index, writing, e.g., Card(p, s) instead of CardG(p, s).

The above indicators are indeed näıve in terms of quantifying the inverse-
functional/functional nature of a given property, and require further tailoring.

Strangely, the absolute accuracy of the above metrics are contingent on the
consistency of naming for entities—the lack of which is the precise motivation
for the metrics; e.g., if we see that seven distinct subjects—which in actuality
refer to the same book—have a given object-value for the property ex:isbn,
we would unduely punish ex:isbn by deriving a higher score for the average
cardinality. However, we would hope that the more important relative accuracy
of our metrics in a large enough dataset are not so affected—as long as the metrics
for our properties are proportionately affected by inconsistent naming, we are not
so concerned.

In order to remove obvious noise, we must firstly consider the prevalence of
blank-nodes in Linked Data and their effect on our metrics: obviously, by their
very nature blank-nodes cannot have any naming consistency across Web docu-
ments. For example, the social blogging platform hosted on the livejournal.com
domain exports large volumes of FOAF2 data describing users, and only infre-
quently uses URIs to identify entities; users are given unique blank-node identi-
fiers in each document they appear in. Now, e.g., when the same foaf:weblog
object-value is given for the same user in several different documents, the average
inverse cardinality of foaf:weblog is severely and disproportionately increased.
In order to improve our initial näıve metrics, we can begin them by simply ig-
noring blank-node objects when computing average cardinalities and, conversely,
ignoring blank-node subjects when computing inverse average cardinalities. We
denote these adapted metics excluding blank nodes by Card-XB and AIC-XB,
respectively.

Along these lines, in Table 1 we present the average inverse cardinality for the
top five of those properties in our Web crawl which are explicitly declared to be
inverse-functional (i.e. of type owl:InverseFunctionalProperty). Following the

2 http://foaf-project.org



above discussion, we would reasonably expect values close to one; we also show the
corresponding values when blank-nodes are ignored as above. Somewhat confirm-
ing our suspicion, we can observe that, e.g., the AIC for foaf:weblog becomes
more accurate when blank-nodes are ignored. We also note that foaf:mbox still
has a high AIC-XB value due to one source which exports the same foaf:mbox
values for numerous diverse URI subjects.3

IFP Occurrences AIC AIC-XB
foaf:weblog 113,091 1.978 1.007
foaf:mbox sha1sum 74,525 1.039 1.014
foaf:homepage 72,941 1.016 1.004
contact:mailbox 1,272 6.144 1
foaf:mbox 1,113 2.338 2.006

Table 1. Average inverse-cardinalities for the top five instantiated properties asserted
to be inverse-functional.

We provide similar analysis in Table 2, giving average cardinalities for declared
owl:FunctionalProperties. Again we note that the values approximate one, but
we observe that the results are generally less affected by blank-nodes.

FP Occurrences AC AC-XB
foaf:primaryTopic 69,072 1.066 1.065
loc:address 2,540 1 1
loc:name 2,540 1 1
loc:phone 2,540 1 1
foaf:gender 1,513 1.001 1.001

Table 2. Average cardinalities for the top five instantiated properties asserted to be
functional.

Another problem which requires consideration in our metrics is that of incom-
plete knowledge: given the fact that less observations derive a lower AC/AIC score
for a property, we should be more conservative in using less observed properties
for consolidation. Thus, we introduce the notion of an adjusted average cardinal-
ity, where we use a standard credibility formula to dampen averages derived from
relatively few observations towards a more conservative mean value [8].

Definition 5 (Adjusted Average Cardinality). Let p be a property appear-
ing as a predicate in the graph. The adjusted average cardinality of p is then
AAC(p) = AC(p)×n←−p +AC×←−n

n←−p +←−n where n←−p is the number of distinct subjects that

appear in a triple with p as a predicate, AC is the average cardinality for all
predicate-subject pairs, and ←−n is the average number of distinct subjects for all
predicates in the graph.

Note that above, it may be more intuitive to think of n←−p as corresponding to
the number of observed cardinalities used to derive AC(p). The above credibility
3 http://rdfweb.org/2003/02/28/cwm-crawler-output.rdf



formula ensures that for AC values derived from a low number of observations
(n←−p �←−n ), the adjusted AC value is more influenced by the mean AC value than
the observed value AC(p); conversely, when n←−p �←−n , the observed AC(p) value
has more influence. From our dataset, for the AAC we observed a value for ←−n of
3985, and a value for AC of 1.153.

We define Adjusted AIC analogously, where AIC denotes the average cardinal-
ity for all predicate-object pairs and −→n is the average number of distinct objects
for all predicates in the graph. From our dataset, for the AAIC we observed a
value for −→n of 754, and a value for AIC of 6.094.

Example 6. From G20M , for property rel:childOf, AIC(rel:childOf)=1.414
and n−−−−−−−−→

rel:childOf
=74. Then, AAIC(rel:childOf)= 74×1.414+6.094×754

74+754 =5.85: a con-
servative score reflecting the lack of observations for rel:childof.

Taking property foaf:name, AIC(foaf:name)=1.161 and n−−−−−−→
foaf:name

=66,244.
Then, AAIC(foaf:name)= 66,244×1.161+6.094×754

66,244+754 =1.293: a more confident score
reflecting the wealth of observations for foaf:name.

2.3 Computing confidence for entity equivalences

We now want to use the cardinalities, inverse cardinalities, AAC and AAIC val-
ues of properties and values that are shared by two entities to derive some score
indicating the likelihood that those two entities are equivalent; referring back
to our running example, the instances ex1:SamSmith and ex2:sam smith share
the object-value ex:JSHomepage for property foaf:homepage and the subject-
value ex:SomeDoc for the property dc:creator—similarly, ex1:SamSmith and
ex3:Sam-Smith share the object-value "Sam Smith" for property foaf:name.
To do this, we need a metric which combines the (inverse) cardinality and the
AA(I)C score for a given property-value pair, where the former value indicates
the “uniqueness” of the value for the property, and the latter value gives a more
general indication of the (inverse-) functional nature of the property.

We start by assigning a coefficient to each pair 〈p, o〉 and each pair 〈p, s〉 that
occur in the dataset, where the coefficient is an indicator of how much the pair
helps determining the identity of an entity. In particular, for the purposes of later
aggregation, we require the coefficient to be a positive value less than one. We
determine the coefficient for a 〈p, s〉 pair as C(p, s) = 1

Card(p,s)×AAC(p) , and the
the coefficient for 〈p, o〉 as C−(p, o) = 1

ICard(p,o)×AAIC(p) .

Example 7. Take GEX ′ as a version of G20M which contains GEX—essentially,
we want to refer to the running example using real statistics from our evaluation.
Take AAICGEX ′(foaf:name)=1.293 as before.

Now, let us speculate that ICardGEX ′(foaf:name, "Sam Smith") = 7, reflect-
ing in this example that “Sam Smith” is somehow a relatively common name.
Then, C−(foaf:name, "Sam Smith") = 1

7×1.293 = 0.11.
Now, speculate that ICardGEX ′(foaf:name, "Dr. Sam J. Smith") = 2, re-

flecting in this example that the name “Dr. Sam J. Smith” is more rare. Then,
C−(foaf:name, "Dr. Sam J. Smith") = 1

2×1.293 = 0.387 .



With coefficients for each property-value pair at hand, we can now derive an
aggregated confidence score for entity equivalences. To this end, we define the
following aggregation function:

Definition 6 (Aggregated Confidence Score). Let Z = (z1, . . . zn) be a non-
empty n-tuple such that Z ∈ [0, 1]n and let max ∈ [0, 1]. The aggregated confidence
value ACS(Z, max) is computed iteratively: starting with ACS0 = 0, then for each
k = 1 . . . n, ACSk = (max−ACSk−1)zk + ACSk−1.

The above confidence function is commutative (wrt. the order of zi, zj) and
produces a value between 0 and max inclusive. Taking max as 1, the main idea is
to view Z as a list of probabilistic scores for a given observation, and that each
successive score ACSk reduces the uncertainty 1 − ACSk−1 by a product of the
current observation zk—we parameterise max for full flexibility of the aggregation
function. Also, the function gives higher weight to more certain observations.
Indeed, take Za = (0.5, 0.5) and Zb = (0.9, 0.1); ACS(Za, 1) = (1 − 0.5) × 0.5 +
0.5 = 0.75 whereas ACS(Zb, 1) = (1− 0.1)× 0.9 + 0.1 = 0.91.

To compute the aggregated confidence score for the equivalence of two entities
e1, e2, we first define the sequence of subject equivalence coefficients se1,e2 =
(se1,e2

1 , . . . , se1,e2
n ) as an ordering of the multiset {C−(p, o) | 〈e1 p o .〉 ∈ G ∧

〈e2 p o .〉 ∈ G}—that is, the coefficients for pairs 〈p, o〉 that appear in a triple
with subject e1 as well as in a triple with subject e2. We define the sequence of
object equivalence coefficients oe1,e2 = (oe1,e2

1 , . . . , oe1,e2
n ) analogously via C(p, s).

Let Ze1,e2 be the concatenation of the sequences se1,e2 and oe1,e2 , that is,
Ze1,e2 represents the confidences derived from the coefficients of all property-value
pairs shared by the two entities. We could now näıvely compute the aggregated
confidence score as ACS(Ze1,e2, 1).

Example 8. Again take GEX ′, where AAICGEX ′(foaf:homepage) = 1.068 and
AACGEX ′(dc:creator) = 1.214. Further, let us assume ICardGEX ′(foaf:homepage,
ex:JSHompage) = 2 and CardGEX ′(dc:creator, ex:SomeDoc) = 2. As before, we
can determine C−(foaf:homepage, ex:JSHompage) = 0.468 and C(dc:creator,
ex:SomeDoc) = 0.412.

Now, taking ex1:SamSmith and ex2:sam smith as candidates for consolida-
tion, we can determine Zex1:SamSmith,ex2:sam smith = (0.468, 0.412), and finally com-
pute ACS(Zex1:SamSmith,ex2:sam smith, 1)=0.687.

However, the above aggregation is still too näıve for Web data in that it
assumes that observations based on property-value pairs are completely indepen-
dent. As a counter-example, we present Figure 1 which shows a real sample taken
from our crawl in which we see two people share some relation to six distinct
subject/object values. We observe a clear correlation between these properties.

Firstly, we must consider that two entities which share at least one value for
a given property are more likely to share subsequent values; thus, we cannot
view the subsequent readings as independent observations, and must take into
account possible correlation: e.g., two people who have co-authored at least one
paper together are more likely to co-author more. Thus, as a counter measure,
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Fig. 1. Real example of inter- and intra-property correlation

for the observed shared property-value pairs for e1 and e2, we first aggregate
the values for each property pk (in each direction) separately using the above
aggregation function: during this aggregation, we set the max value to 1

AC(pk) or
1

AIC(pk) respectively. Thus, for the example presented in Figure 1, we would only
allow, e.g., dc:creator to contribute a total value of 0.824. We then perform the
aggregation function again over the individual scores of all properties (in each
direction).

Aside from correlation for values on a single property, there may also be cor-
relation between different properties—e.g., sub-properties or inverse-properties—
which relate two entities to the same external literal or entity. Thus, we prune our
observations whereby if we have multiple properties connected to the same term,
we keep the property with the lowest AC(p) or AIC(p) value for either direction,
and remove consideration of all other properties.

The above two steps to counter-act “obvious” correlation reduced the aggre-
gated confidence scores for the two entities presented in Figure 1 from 0.969 in the
näıve case, to 0.781. Admittedly, the new confidence is still quite high—one could
further try to detect and account for less obvious forms of correlation such as be-
tween a person’s affiliation, location and co-authors. However, such considerations
are outside of the current more preliminary scope.

3 Implementation

In order to simplify discussion of our implementation, we solely refer to the cal-
culations based on AIC until necessary. Calculations based on AC are directly
analogous, where object and subject are simply swapped.

We wish to see our methods used at scale over Linked Data, thus we attempt
to use scalable operations to implement our statistical analysis: specifically, we
rely mainly on sorts and scans. Data is stored in N-Triples (or possibly N-Quads)
format in a flat GZipped compressed file.

Assuming an input unsorted dataset, our first step is to sort the data according
to the following lexicographic order (using a merge-sort):

(p, o, s)



The data is thus grouped according to common p values, and further according
to common p, o pairs. Thus, we can calculate the inverse-cardinality for each p, o
by means of a scan. Further, by storing the distribution of inverse-cardinalities
observed for a given property, we can similarly compute the average inverse cardi-
nality for each property on the fly. Thus, we perform a single scan of the ordered
data and extract all of the cardinality information needed for the proceeding
steps, as well as the ←−n and AC figures required for the credibility formula.

We can then perform a second scan of the same data, this time using the
statistics produced in the first scan to derive initial confidence scores for each in-
dividual po pair. That is to say, we can use the AIC(p) and ICard(p, o) to compute
C−(p, o) values, and propagate these values as initial indicators of equivalence for
subjects with the same 〈p, o〉. Thus, after the second scan we produce the following
tuples:

(e1, e2, C
−(p, o), p, o,−)

These tuples are written again to a new compressed file (in general N-Triple
form); note that the ‘−’ is simply to indicate direction of the observation.

Applying the exact same process over data ordered by: (p, s, o), we can also
derive tuples of the form:

(e1, e2, C(p, s), p, s, +)

Note that we do not produce reflexive or symmetric versions of the above tu-
ples: for the above tuples, e1 will always be less than e2 with respect to the given
lexicographical order which allows us to halve the set of tuples, while ensuring
consistency in tuple “naming”. Indeed, the production of such tuples is quadratic
with respect to the given input which näıvely could seriously hamper scalabil-
ity we aim for. In order to illustrate this, Figure 2(a) and Figure 2(b) show the
cumulative increase in tuples when considering increasing sizes of “equivalence
classes” derived for increasingly common p, o and p, s pairs respectively. Con-
veniently however, the increased equivalence class sizes corresponds to a higher
inverse-cardinality/cardinality values, which implies that the common 〈p, o〉/〈p, s〉
pairs which produce the larger equivalence classes are in any case useless for con-
solidation in our scenario. For the moment, we implement an arbitrary threshold
and throw away equivalence tuples derived from 〈p, o〉/〈p, s〉 pairs with s/o values
greater than 100.

Finally, both incomplete sets of tuples can then be merge-sorted to produce a
file grouped by e1 and e2. The sorted tuples can then be scanned, with the above
aggregation functions being applied for each 〈e1, e2〉 pair.

We deem the above methods to be relatively scalable—with the caveat of
quadratic equivalence tuples being produced—again, with a sensible threshold,
such explosion of output can be mitigated. In any case, we admittedly have yet
to test our methods with respect to performance or scale on larger datasets with
varying thresholds. For the moment, we focus on some quality evaluation to ensure
that our approach derives some reasonable results.
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Fig. 2. Cumulative increase in tuples when considering increasing sizes of “equivalence
classes” derived for increasingly common p, o and p, s pairs respectively.

4 Quality evaluation

The evaluation of our approach is problematic because there is no existing bench-
mark for consolidation of Web data. We nonetheless tried two different approaches.

Firstly, we extract our own “best-effort” benchmark from our crawl of 20
million triples by the following process:

– we extract asserted owl:sameAs statements and infer additional owl:sameAs
statements using the same technique as in [3]—a single iteration of reason-
ing using owl:FunctionalProperty and owl:InverseFunctionalProperty
assertions;

– we separate all owl:sameAs statements and additionally compute the transi-
tive closure thereof;

– we prune the dataset by keeping only triples which have either a subject or
an object that appears in a owl:sameAs statement;

– again, we discard the owl:sameAs statements which relate an entity for which
we have no information;

– we again finally prune the dataset removing triples for which the subject or
object do not have owl:sameAs statements.

The resulting set of owl:sameAs statements contains 36,134,230 transitively
closed, non-symmetric, non-reflexive (reflecting the nature of the same-as output
of our statistical approach) owl:sameAs statements over 87,586 entities. The eval-
uation data consists of 5,622,898 triples. We view the derived asserted/inferred
owl:sameAs statements as a partial ground-truth for our quality evaluation: please
note that we are aware of the somewhat ironic nature of our evaluation approach—
if we apply our previous work on reasoning, we would achieve a perfect 100% recall
and 100% precision. However, again this evaluation is best-effort, and is intended
in this preliminary analysis to present illustrative statistics about the precision
of our approach in the spirit of a proof-of-concept.



Along these lines, in Figure 3(a) we present the precision of our approach con-
sidering AIC values, AC values, and both values combined. Indeed, our precision
is quite high at even low levels of confidence, reaching roughly 92% at a confi-
dence value of 0.26. However, our approach suffers from deriving a small number
of incorrect equivalences at high confidence. Severe drops in precision are due to
the derivation of large numbers of correct inferences at an exact precision; e.g.,
we derive 630 correct inferences at the precise value of 0.6777389199225334—
all uniformly described entities found in the aforementioned livejournal.com
domain. Thus, once we go above that threshold, the precision severely drops. Es-
sentially, large volume equivalences are derived at lower confidence values, and
incorrect equivalences between entities described in smaller exporters are derived
at higher confidence values. Figure 3(b) is presented for cross-reference, where
the amount of remaining correct inferences drop in correlation with the drops in
precision from Figure 3(a). Interestingly, from Figure 3(a) we can conclude that
considering AIC values alone approximates consideration of both directions.

With respect to recall, we observed a value of about 3% with respect to the
transitively closed ground truth. However, one should note that we do not perform
any transitive closure over the output of our statistically derived equivalences, and
thus it is difficult to derive an adequate recall comparison.
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In our second evaluation, we used our consolidation approach as an instance
matching tool by selecting only the consolidation that matches named terms from
two distinct datasets. This method has the merit of being comparable to other
instance matching algorithms over the reference datasets of the Ontology Align-
ment Evaluation Initiative4. The OAEI offers a well established competition in
the ontology matching community, and an instance matching track was added in
2009. The drawback of this method is that the datasets used are very homoge-
neous (3 sets of bibliographic data) and are using the same terms in a very similar

4 OAEI.http://oaei.ontologymatching.org/



way to each other. Therefore, they are not representative of what is really found
on the Web of Data. The results in Figure 4 shows that we get a much lower recall
than specialised instance matching tools (cf. [9], Fig. 12, p40). We do not consider
that this demonstrate a flaw of our approach. On the contrary, we think that it
shows the limits of evaluating a generic consolidation approach with a specific,
small-scale instance matching dataset. Unfortunately, a solid evaluation standard
for entity consolidation is yet to be devised. Our previous home-made benchmark
is an attempt in that direction. In this experiment, AC did not contribute at all
to the overall confidence, because of the particular morphology of the data.
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5 Related work

In our previous work, we used reasoning (functional properties, inverse functional
properties, cardinality restrictions) to consolidate Web data with limitation both
in terms of precision and recall [3]. Entity consolidation has an older related
stream of research relating largely to databases, with work under the names of
record linkage, instance fusion, and duplicate identification; cf. [1, 10, 11] and a
survey at [2]. Due to the lack of formal specification for determining equiva-
lences, these older approaches are mostly concerned with probabilistic methods.
Bouquet et al. [12] motivate the problem of (re)using common identifiers as one
of the pillars of the Semantic Web, and provide a framework and fuzzy match-
ing algorithms to fuse identifiers. Online systems such as Sig.Ma5, rkbexplorer6,
and ObjectCoref offer on-demand querying for owl:sameAs relations found for a
given input URI, which they internally compute and store. Another related field
which gained more recent attention is Instance matching. Some references include
matching database instances [13], domain-dependent similarity of instances [14,
15], [4], instance matching and linking guided by a “linking language” (Silk) for

5 http://sig.ma
6 http://www.rkbexplorer.com/sameAs/



Linked Data [5]. Also, in 2009, the Ontology Alignment Evaluation Initiative7 has
introduced a new test track on instance matching8.

6 Discussion and conclusion

Indeed, our work is quite preliminary, and there are many open questions. Firstly,
in order for such an approach to be proven useful, we would need to demonstrate
that the statistical approach presented can generate additional equivalence rela-
tions than standard reasoning approaches. Such was not possible given the na-
ture of our evaluation setups. In theory however, we believe that the presented
approach should be able to conclude additional equivalences, and in future work
we would need to devise a means of evaluating such. Similarly, we should also
incorporate reasoning approaches into the current statistical model, developing a
hybrid approach which hopefully generates more equivalences.

Perhaps a more interesting use-case for statistical approaches is for disam-
biguating entities: that is, stating that two entities are different. Such owl:-
differentFrom relations are rarely specified on the Web—they can however be
inferred from, e.g., more common owl:disjointWith assertions. Given a set
of candidate equivalences derived through reasoning, statistical or hybrid ap-
proaches, disambiguation can be applied to improve precision of results; reason-
ing on, e.g., owl:InverseFunctionalProperty assertions is known to be im-
precise [3]—clearly, our approach could also benefit from some disambiguation
post-processing. Indeed, one could consider an iterative approach, where the con-
fidence scores for equivalence and difference are iteratively refined—and statistics
are iteratively made more accurate—until a satisfactory fixpoint.

Further, we would intend to evaluate the performance characteristics of our
approach on larger datasets, with the aim of applying the analysis over a dataset in
the order of a billion triples. Again, our approach is based on a scalable substrate
of sorts and scans, and so we would see this as a feasible goal.

With respect to improving the algorithms presented herein, we would need
to consider more advanced topics. Perhaps the most important is the consider-
ation of the source of data when deriving statistics. The statistics for usage of
properties is heavily influenced by large RDF exporters on the Web. Most of the
incorrect highly-confident equivalences were the result of applying such statistics
over smaller heterogeneous sources. One might argue that there currently is not
enough heterogeneous Linked Data to give enough confidence for such statistical
approaches—the “reasonable ineffectiveness of Linked Data” if you will; however,
we should still attempt to consider some notion of a “dataset” as a grouping of uni-
form RDF data—e.g., published by the same exporter—and consider a weighted
version of our statistics which includes such a concept.

Also, we would have to look at deriving some form of transitive closure over the
‘fuzzy’ equivalences produced to improve recall. The exact nature of such a closure
is the topic for future research. Similarly, detection of some notion of correlation

7 OAEI.http://oaei.ontologymatching.org/
8 Instance data matching. http://www.scharffe.fr/events/oaei2009/



between properties—besides the more obvious cases already discussed—is worthy
of further investigation, and would be useful to ensure more sensible aggregation
of confidence scores. Other topics, such as fuzzy string matching techniques or
string-normalisation pre-processing, would also be worth further analysis.

To summarise, we defined a new approach towards consolidating data in a
very heterogeneous environment (the Semantic Web at large). We have barely
scratched the surface but can already attest that the results are promising.
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