
CC7220-1
LA WEB DE DATOS
PRIMAVERA 2023

Lecture 9: Shapes

Aidan Hogan

aidhog@gmail.com

Previously …

Semantic Web: Data, Logic, Query

* More or less

Semantic Web: Data, Logic, Query

* More or less

But what about Data Quality?

Graphs …

Graph Data: Pros and Cons

We don't have to impose a

structure (schema)
from the start

We don't have a

structure (schema)
imposed from the start

Graph Data: Pros and Pros

We don't have to impose a

structure (schema)
from the start

… and we can impose a
schema any time we like

So how can we define and impose a schema for graphs?

Shapes

Graph data: Validation

Is this graph “complete”?

Does it have “errors”?

How do we define “completeness” and “errors”?

Shapes Graph: Validating schema

Shapes Graph: Validate RDF graphs

Does it pass?

Yes!
We have not yet

defined a target for a

shape, so we don’t

know which shape

applies to which node

in the data

Shapes Graph: Define a target

Does it pass?

No. :Parasite does

not have a director

satisfying Person.

We are missing a name

and a date of birth for

Bong Joon-ho!

Shapes Graph: Multiplicity

How about now?

No. Any director of

:Parasite must still

satisfy Person.

We are missing a name

and a date of birth for

Bong Joon-ho!

Shapes Graph: Validation

And now?

Yes!

Shapes vs. RDFS/OWL and SPARQL

Shapes vs. RDFS/OWL

OWL assumes OWA and

no UNA. Cannot easily

detect missing data or

duplicated values!

Shapes vs. SPARQL

Correct semantics, but difficult to

express these types of constraints.

SHACL:
 Shapes Constraint Language

Shapes Graph: How do we define them?

So how do we define shapes graphs?

SHACL: Shapes Constraint Language

SHACL: Shapes graph

SHACL: Node and Property Shapes

SHACL: Referencing node shapes

SHACL: Targets

SHACL: Inheritance

SHACL: Inheritance

SHACL: Inheritance

SHACL:
 Targets

SHACL: Targets

• sh:targetClass instances of a class

• sh:targetSubjectsOf domain of a property

• sh:targetObjectsOf range of a property

• sh:targetNode a specific node

SHACL: Targeting range

SHACL: Targeting range

Valid?

Yes!

SHACL: Targeting subclasses

SHACL: Targets subclasses

Valid?

No

SHACL:
 Paths

SHACL: Paths

• :p property (:p)

• [sh:inversePath e] inverse of e (^e)

• (e f) e then f (e/f)

• [sh:alternativePath (e f)] e or f (e|f)

• [sh:zeroOrMorePath e] recursive e (e*)

• [sh:oneOrMorePath e] recursive+ e (e+)

• [sh:zeroOrOnePath e] optional e (e?)

SHACL: Paths

SHACL: Paths

Valid?

Yes!

SHACL: Paths

SHACL: Paths

Valid?

Yes!

SHACL:
 Core Constraints

SHACL: Shape Constraints

Given 𝜙 a shape and 𝑒 a path …

• sh:node 𝜙 all target nodes in 𝑁 satisfy shape 𝜙

• sh:property 𝜙, 𝑒 all value nodes 𝑉𝑛
𝑒 connected by path 𝑒 from

 each target node 𝑛 ∈ 𝑁 satisfy shape 𝜙

SHACL: Shape Constraints

SHACL: Boolean Constraints

Assuming that 𝜙, 𝜙1, … , 𝜙𝑛 are shapes then …
• sh:not 𝜙 negation (¬𝜙)

• sh:or (𝜙1 … 𝜙𝑛) disjunction (𝜙1 ∨ ⋯ ∨ 𝜙𝑛)

• sh:and (𝜙1 … 𝜙𝑛) conjunction (𝜙1 ∧ ⋯ ∧ 𝜙𝑛)

• sh:xone (𝜙1 … 𝜙𝑛) excl. disjunction (𝜙1 ⊕ ⋯ ⊕ 𝜙𝑛)

… are also shapes.

SHACL: Boolean Constraints

SHACL: Value Type Constraints

For each node 𝑛 ∈ 𝑁 it holds that:
• sh:class 𝐶 𝑛 is an instance of class 𝐶

• sh:datatype 𝐷 𝑛 has the datatype 𝐷

• sh:nodeKind 𝐾 𝑛 is of kind 𝐾

– 𝐾 can be: sh:BlankNode, sh:IRI, sh:Literal, sh:BlankNodeOrIRI,
sh:BlankNodeOrLiteral, sh:IRIOrLiteral

SHACL: Value Type Constraints

SHACL: Value Range Constraints

For each node 𝑛 ∈ 𝑁 it holds that:
• sh:minInclusive 𝑚 𝑛 ≥ 𝑚

• sh:maxInclusive 𝑚 𝑛 ≤ 𝑚

• sh:minExclusive 𝑚 𝑛 > 𝑚

• sh:maxExclusive 𝑚 𝑛 ≤ 𝑚

SHACL: Value Range Constraints

SHACL: Value Range Constraints

For the set of nodes 𝑁 it holds that:

• sh:hasValue 𝑣 𝑣 ∈ 𝑁

• sh:in (𝑣1 … 𝑣𝑛) 𝑁 ⊆ * 𝑣1, … , 𝑣𝑛+

SHACL: Value Range Constraints

SHACL: String-based Constraints

Each node 𝑛 ∈ 𝑁 is not a blank node and:
• sh:minLength 𝑚 has string length ≥ 𝑚

• sh:maxLength 𝑚 has string length ≤ 𝑚

• sh:pattern 𝑝, 𝑓 matches regex 𝑝 with flags 𝑓

SHACL: String-based Constraints

SHACL: String-based Constraints

Each node 𝑛 ∈ 𝑁 is a literal and:
• sh:languageIn (𝑙1 … 𝑙𝑛) has a lang. tag matching 𝑙 ∈ * 𝑙1, … , 𝑙𝑛+

Each node 𝑛 ∈ 𝑁:

• sh:uniqueLang true has no lang. tag, an empty lang. tag or

 or a lang. tag unique in 𝑁

SHACL: String-based Constraints

SHACL: Cardinality Constraints

Given a path 𝑒, for each node 𝑛 ∈ 𝑁, there are …
• sh:maxCount 𝑚 at most 𝑚 nodes in 𝑉𝑛

𝑒

• sh:minCount 𝑚 at least 𝑚 nodes in 𝑉𝑛
𝑒

• sh:qualifiedMinCount 𝑚, 𝜙 at least 𝑚 nodes in 𝑉𝑛
𝑒 that satisfy 𝜙

• sh:qualifiedMaxCount 𝑚, 𝜙 at most 𝑚 nodes in 𝑉𝑛
𝑒 that satisfy 𝜙

SHACL: Cardinality Constraints

SHACL: Property-pair Constraints

Given a path 𝑒, for each target node 𝑛 ∈ 𝑁, it holds that …

• sh:equals 𝑝 𝑉𝑛
𝑒 = 𝑉𝑛

𝑓

• sh:disjoint 𝑝 𝑉𝑛
𝑒 ∩ 𝑉𝑛

𝑓
= ∅

• sh:lessThan 𝑝 max 𝑉𝑛
𝑒 < min (𝑉𝑛

𝑓
)

• sh:lessThanOrEquals 𝑝 max 𝑉𝑛
𝑒 ≤ min (𝑉𝑛

𝑓
)

SHACL: Property-pair Constraints

SHACL: Closed Constraints

• sh:closed true only properties in shapes graph allowed

– sh:ignoredProperties optional list of exceptions

SHACL: Closed Constraints

SHACL:
 SPARQL Constraints

SHACL: SPARQL Constraints

Results indicate

constraint violations.

$this will be replaced

with target nodes.

ShEx:
 Shape Expressions Language

ShEx: Shape Expressions Language

ShEx: Used by Wikidata

Shapes:
 (Optional) validating schema!

We don't have to impose a

structure (schema)
from the start

… and we can impose a
schema any time we like

using shapes!

Questions?

