
CC7220-1
LA WEB DE DATOS
PRIMAVERA 2022

Lecture 7: SPARQL [1.0]

Aidan Hogan

aidhog@gmail.com

Last time …

Semantic Web: Logic

* More or less

Today's Topic

Semantic Web: Query

* More or less

First SPARQL (1.0)
Then SPARQL 1.1

SPARQL: Query Language for RDF

How to ask: “Who stars in ‘Sharknado’?”

SPARQL: Query Language for RDF

Query: Solutions:

SPARQL: Prefix declarations

SPARQL: prefix declarations

• Shortcuts for IRIs (exactly like in Turtle)

SPARQL: WHERE clause

SPARQL: WHERE clause

• Specifies what to match in the data

“Triple pattern”

(a triple with variables)

SPARQL: WHERE clause

Query: Solutions:

SPARQL: WHERE clause

How to ask: “What movies did the stars of ‘Sharknado’ also star in?”

SPARQL: Basic Graph Patterns

Query: Solutions:

SPARQL: Basic Graph Patterns

Query:

“Basic Graph Pattern”

(a set of triple patterns)

SPARQL: Join Variables

Query:

“Join Variable”

(a variable appearing in more
than one triple pattern)

SPARQL: Disjunction

How to ask: “What are the titles of the (first two) movies in the Sharknado series?”

SPARQL: Disjunction (UNION)

Query: Solutions:

SPARQL: Left-join

How to ask: “Give me the titles of all movies and, if available, their first-aired date?”

SPARQL: Left-join (OPTIONAL)

Query: Solutions:

“UNBOUND Variable”

(a variable without a binding in a solution)

SPARQL: Filtering results

How to ask: “What movies were first aired in 2014?”

SPARQL: FILTER

Query: Solutions:

“Empty Results”

SPARQL: FILTER

Query:

What happens in this case where ?date bound
in data to a string?

FILTERs (and other functions we see later) expect certain
types. If not given, a type error is given.

SPARQL: Boolean FILTER operators

• FILTERs evaluate as true, false or error

• Only results evaluating as true are returned

• Can apply AND (&&) or OR (||)

• Can also apply NOT (!)

– !E → E

???

SPARQL Operators

SPARQL Functions: Existence, equality, if ...

SPARQL Functions: Terms

SPARQL Functions: Strings

SPARQL Functions: Numerics

SPARQL Functions: Temporal

SPARQL Functions: Hashing

SPARQL: Casting between types

• Y: always allowed

• N: never allowed

• M: depends on value
– e.g., "2"^^xsd:string can be mapped to xsd:int but "P"^^xsd:string cannot

SPARQL: WHERE clause example (i)

Query:

What solutions would this query return?

Solutions:

SPARQL: WHERE clause example (ii)

Query:

What solutions would this query return?

Solutions:

Can do negation!

SPARQL: Query Types

SPARQL: SELECT with *

Query: Solutions:

SPARQL: SELECT with projection

Query:
DEFAULT “Bag Semantics”

(number of results
returned must
correspond to

number of matches
in data)

Solutions:

SPARQL: SELECT with DISTINCT

Query:
DISTINCT: “Set Semantics”

(each result row
must be unique)

Solutions:

SPARQL: SELECT with REDUCED

Query: Solutions:
OR

May (but do not need to)
return duplicates.

(This allows the engine do whatever is
most efficient.)

SPARQL: ASK

Query: Solutions:

Returns true if
there is a match,
false otherwise.

SPARQL: CONSTRUCT

Query: Solutions:

Returns an RDF graph based on the
matching CONSTRUCT clause.

SPARQL: DESCRIBE (non-normative feature)

Query: Solutions:

Returns an RDF graph “describing” the returned
results. This is an non-normative feature. What

should be returned is left open.

SPARQL: Solution Modifiers

Solution modifiers

• ORDER BY (DESC)
– Can be used to order results

– By default ascending (ASC), can specify descending (DESC)

– Can order lexicographically on multiple items

• LIMIT n
– Return only n results

• OFFSET n
– Skip the first n results

How might we ask for the second and third most recently released movies?

Without ORDER BY results for queries with LIMIT
or OFFSET might be non-deterministic!

Solution modifiers

How might we ask for the second and third most recently released movies?

The order of execution is always:
ORDER→ OFFSET → LIMIT

Changing the order of LIMIT/OFFSET makes no
difference to the query solutions.

ORDER BY must come before LIMIT/OFFSET
according to the query syntax

SPARQL: Named Graphs

SPARQL: Named Graphs

SPARQL defined over a Dataset

Core idea: SPARQL can support multiple RDF graphs, not just one.
When using SPARQL, you can partition your data into multiple graphs.

The default graph is chosen if you don’t specify a graph.
Otherwise you can explicitly select a named graph using it’s IRI name.

An example dataset

Creating a dataset for a query

• FROM
– Used to define a default graph for the query using graph names

– If multiple graphs are specified, they are RDF-merged

• FROM NAMED
– Used to select the active named graphs to be used for the query

Using either feature clears the index dataset

RDF merge: A quick reminder

How should we combine these two RDF graphs?

RDF merge: A quick reminder

How should we combine these two RDF graphs?

Creating a dataset for a query

Creating a dataset for a query

Creating a dataset for a query

Creating a dataset for a query

Querying the named graphs in a dataset

• We can query parts of the dataset using GRAPH

– Specifies the IRI of a named graph over which the
pattern is evaluated

– Can also be a variable that ranges over all named
graphs

– Does not access the default graph!

– If not specified, default graph is accessed

An example query

Query:

What solutions would this query return?

Solutions:

No GRAPH clause so answers
come from default graph only

Using FROM

Query:

What solutions would this query return?

Solutions:

No GRAPH clause so answers come from default graph
defined by FROM (old default graph cleared)

Using FROM NAMED

Query:

What solutions would this query return?

Solutions:

No GRAPH clause so answers come from default graph,
which is empty (since old default graph cleared)!

Using GRAPH with a variable

Query:

What solutions would this query return?

Solutions:

GRAPH clause only ranges over the named graphs.

Using GRAPH with a name

Query:

What solutions would this query return?

Solutions:

Using GRAPH with FROM

Query:

What solutions would this query return?

Solutions:

No named graphs specified!

Using GRAPH with FROM NAMED

Query:

What solutions would this query return?

Solutions:

GRAPH accesses the one and only named graph

Using GRAPH with FROM and FROM NAMED

Query:

What solutions would this query return?

Solutions:

Questions?

