The value of data ...

Twitter architecture

Google architecture

Generalise concepts to ...
Working with large datasets

Value/danger of distribution

Frameworks
- For Distrib. Processing
- For Distrib. Storage

The Big Data Buzz-word

GFS (HDFS) / MapReduce (Hadoop)

Distributed Systems
Course Marking

- 45% for Weekly Labs (~3% a lab!) [Easy]
- 20% for Small Class Project [Medium]
- 35% for Final Exam [Hard]

Final Exam (35%)

- Goal: test your understanding of concepts
 - Coding covered by labs/project
 - No syntax writing questions!
 - but there will be design and syntax reading questions
- Max. three hours
- Not marking you on English
 - If stuck, write in Spanish!
- Four questions (marked on best three) ...

The following is not a legally abiding agreement.
It is just a helpful guide for what’s important.
Q1: Distributed Systems

Possible Topics:
• Advantages/disadvantages of a distributed system
• Five distributed system design goals
• Distributed architectures (P2P vs. C-S, Fat/Thin, n-Tier, etc.)
• Java RMI (high-level)
• Eight fallacies of distributed computing
• Consensus basics (fail-stop vs. Byzantine, synchronous vs. asynchronous, goals)
• Consensus protocols (2PC, 3PC, Paxos)
• CAP theorem may appear in Q4, but will not appear in Q1

GFS (HDFS) / MapReduce (Hadoop)

Possible Topics:
• Google File System (reads, writes, fault-tolerance)
• MapReduce (incl. design question)
• HDFS/Hadoop (architecture)
• Pig (high-level, e.g., explain what a given script does)
Q3: Information Retrieval (Slides)

Slides:
Lecture 7: Information Retrieval I
Lecture 8: Information Retrieval II

Names per the homepage:
http://aidanhogan.com/teaching/cc5212-1/

Q3: Information Retrieval (Topics)

Possible Topics:
- Crawling (high-level multi-threading, DDoS, robots.txt, sitemap, distribution, bow-tie)
- Inverted indexes (data structure, normalisation, Heap's law, Zipf's law, Elias encoding, etc.)
- Ranking (relevance vs. importance, TF-IDF, Vector Space Model, etc.)
- PageRank (concept, random surfer, calculation)

Bring a Calculator!

Q4: NoSQL and Querying (Slides)

Slides:
Lecture 9: NoSQL I
Lecture 10: NoSQL II
Lecture 3: Distributed Systems II (slides on CAP)

Names per the homepage:
http://aidanhogan.com/teaching/cc5212-1/
Q4: NoSQL and Querying (Topics)

Possible Topics:
- CAP theorem (note out of order)
- The Database Landscape
- Key–Value stores (data model, operations, distribution, consistent hashing, replication, Dynamo, Merkle trees)
- Document stores (high-level)
- Tabular/column families (data model, Bigtable, sorting, tablets, column families, SSTables, writes, reads, compactions, hierarchy, bloom filters)
- Graph databases (high-level)
- Cassandra (high-level)

Final Exam (35%)

- Goal: test your understanding of concepts
 - Coding covered by labs/project
 - No syntax writing questions!
 - but there will be design and syntax reading questions
- Max. three hours
 - Not marking you on English
 - If stuck, write in Span(g)lish!
- Four questions (marked on best three) ...

SOME ADVERTISING

Next semester ... La Web de Datos
- Web of Data / Semantic Web / Linked Data

November ... ayudante wanted
- “Diplomado” version of this course
- 8 x 3 hour lectures over 3 weeks
- Help with:
 - Translating slides
 - Attending class
 - Laboratories
 - Marking
- 1 UF per hour! ($25,000/hour)