
CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTOÑO 2023

Lecture 6
Streaming: Kafka

Aidan Hogan

aidhog@gmail.com

Local Data Processing

Distributed Systems

Distributed Data Processing Distributed Data Management

Distributed Static

Data Processing

Distributed Dynamic

Data Processing

Distr. Unstructured

Data Management

Distr. (Semi-)structured

Data Management

Files

Files

• Batch processing

• Querying

Streams

Streams

• Event processing

• Continuous querying

• Real-time response

Applications: Social Media Analytics

• Event processing
– Kitten video goes viral
– Burst of tweets about earthquakes

• Continuous querying

– Track sentiment for company's products
– Monitor popular users tweeting about me

• Real-time response
– Put Emergency Services on alert
– Schedule Quality Control (QC) review

Applications: Social Media Analytics

Applications: Log Monitoring

• Event processing
– Burst of log messages
– Critical error message

• Continuous querying

– Track most critical fixes today
– Monitor memory leaks in new release

• Real-time response
– Disable unsafe feature in a web-site
– Automatically fire new developer

Applications: Log Monitoring

Applications: Finance

Applications: Finance

• Event processing
– Company goes public
– Stock drops sharply

• Continuous querying

– Track stocks with gains of 10% in a day
– Create alerts for major buy/sell transactions

• Real-time response

– BUY BUY BUY
– SELL SELL SELL

Applications: Astronomy

Applications: Astronomy

• Event processing
– The telescope moves
– A light source flashes

• Continuous querying

– Find possible supernovae
– Track object across the sky

• Real-time response

– Refocus telescope on important object
– Lower data filter thresholds

Applications: Astronomy

• Event processing
– The telescope moves
– A light source flashes

• Continuous querying

– Find possible supernovae
– Track object across the sky

• Real-time response

– Refocus telescope on important object
– Lower data filter thresholds

Streams: Internet of Things

Streams: Internet of Things

• Event processing
– A light turns on
– It starts to rain

• Continuous querying

– Tell me when temperature reaches 30°
– Update position of vehicle

• Real-time response

– Turn off air conditioning
– Take another route

DISTRIBUTED STREAMING PLATFORM

Available Frameworks

Application: Emergency Response

Real-Time Emergency Response

Real-Time Emergency Response

Real-Time Emergency Response

APACHE KAFKA

Apache Kafka vs. Franz Kafka

Apache Kafka

• Open Source

• Scala / Java

• Originated in LinkedIn

Kafka Overview

Consumers (Pull)

Producers (Push)

KAFKA: DATA MODEL

Kafka Record

Producers

Consumers

1

Kafka Record

1

Producers

Consumers

• Records represent "events"

• Records are immutable

• Contain id (offset), timestamp, key and value

– Timestamp assigned by application or Kafka

Kafka Ledger

1 2 4 3 5 6 7 8

Producers

Consumers

...

Kafka Ledger

1 2 4 3 5 6 7 8

Producers

Consumers

...

• Producers may only append to ledger

Kafka Ledger

1 2 4 3 5 6 7 8

Producers

Consumers

...

Kafka Ledger

1 2 4 3 5 6 7 8

Producers

Consumers

...

• Producers may only append to ledger

• Consumers can read from anywhere*

* kind of

KAFKA: TOPICS

Kafka Topics

Topic 1:
Disasters

Topic 2:
News

Topic 3:
Traffic

Kafka Topics

Topic 1:
Disasters

Topic 2:
News

Topic 3:
Traffic

Consumers
Subscribe to Topics

Producers
Publish to Topics

Topic

1 2 4 3 5 6 ...

1 2 4 3 5 6 7 8

1 2 4 3 ...

Partition 1

Partition 2

Partition 3

• Topics are persistent (on disk)

– Configurable retention policy

• Keep everything

• Delete once consumed

• Keep for a period of time

• Use fixed amount of space

Topic: Default Partitioning by Key

1 2 4 3 5 6 ...

1 2 4 3 5 6 7 8 ...

1 2 4 3 ...

Partition 1

Partition 2

Partition 3

Topic: Default Partitioning by Key

1 2 4 3 5 6 ...

1 2 4 3 5 6 7 8 ...

1 2 4 3 ...

Partition 1

Partition 2

Partition 3

• Ordering (offset) guaranteed per partition

– Not across partitions!

– For ordering across partitions, use timestamp

Replication

• Topics can be replicated

– Choose factor per topic

– Automatic load balancing

Partition 1

Partition 2

Partition 3

Partition 3

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Problem?

Order?

Leader

• Topics can be replicated

– Choose factor per topic

– Automatic load balancing

• One machine is the leader

– The others are followers

– Leader automatically elected

– Ensures order per partition

– Reads/writes to leader

Partition 1

Partition 2

Partition 3

Partition 3

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 2

Partition 1

KAFKA: WRITE GUARANTEES

Pr
od
uc
er
s

Writes: Asynchronous (No Guarantee)

Partition 1

Partition 2

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 3

Pr
od
uc
er
s

Writes: Leader Commit

Partition 1

Partition 2

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 3

Pr
od
uc
er
s

Writes: Leader Commit + Quorum (2)

Partition 1

Partition 2

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 3

Write Guarantees

• Asynchronous

– No guarantee

– Very low latency

• Leader Commit

– Persistent on leader

– Medium latency (disk write + network ack)

• Leader Commit + Quorum n

– Persistent on leader + n machines

– High latency (disk writes + network acks)

KAFKA: READS

Kafka tracks consumer offset

1 2 4 3 5 6 7 8 ...

C1

C1: 1-2

1
2

Kafka tracks consumer offset

1 2 4 3 5 6 7 8 ...

C1

C1: 3-4

1
2
3
4

Kafka tracks consumer offset

1 2 4 3 5 6 7 8 ...

C1

C1: 5-6

1
2
3
4
5
6

Failures?

1 2 4 3 5 6 7 8 ...

C1

1
2
3
4
5
6

What should we do in the case of
a read failure?

KAFKA: READ GUARANTEES

Read Guarantees

• At least once

– Each value processed at least once

– Consumer offset updated on consumer ACK

• At most once

• Effectively once

• Exactly once

Read: At Least Once (Default)

1 2 4 3 5 6 7 8 ...

C1

1
2

C1: 1-2

 ①

 ②

Read: At Least Once (Default)

1 2 4 3 5 6 7 8 ...

C1

C1: 1-2

1
2

Read: At Least Once (Default)

1 2 4 3 5 6 7 8 ...

C1

 ①

1
2
3

C1: 1-2

Read: At Least Once (Default)

1 2 4 3 5 6 7 8 ...

C1

 ①

1
2
3
3
4

C1: 1-2 C1: 3-4 ②

Read: At Least Once (Default)

1 2 4 3 5 6 7 8 ...

C1

 ①

1
2
3
3
4
5
6

C1: 3-4 ② C1: 5-6

Read Guarantees

• At least once

• At most once

– Each value processed at most once

– Consumer offset updated immediately

• Effectively once

• Exactly once

Read: At Most Once

1 2 4 3 5 6 7 8 ...

C1

C1: 1-2

1
2

 ①

 ②

Read: At Most Once

1 2 4 3 5 6 7 8 ...

C1

C1: 3-4

1
2
3

 ①

 ②

Read: At Most Once

1 2 4 3 5 6 7 8 ...

C1

C1: 5-6

1
2
3
5
6

 ①

 ②

Read Guarantees

• At least once

• At most once

• Effectively once

– At least once but ...

– Consumer takes care of duplicates

• Exactly once

Read: Effectively Once

1 2 4 3 5 6 7 8 ...

C1

1
2

C1: 1-2

 ①

 ②

Distinct

Read: Effectively Once

1 2 4 3 5 6 7 8 ...

C1

C1: 1-2

1
2

Read: Effectively Once

1 2 4 3 5 6 7 8 ...

C1

 ①

1
2
3

C1: 1-2

Distinct

Read: Effectively Once

1 2 4 3 5 6 7 8 ...

C1

 ①

1
2
3
3
4

C1: 1-2 C1: 3-4 ②

Distinct

Read: Effectively Once

1 2 4 3 5 6 7 8 ...

C1

 ①

1
2
3
4
5
6

C1: 3-4 ② C1: 5-6

Distinct

Read Guarantees

• At least once

• At most once

• Effectively once

• Exactly once

– Data and offset updated as a single transaction

Read: Exactly Once

1 2 4 3 5 6 7 8 ...

C1

1
2

C1: 1-2

 ①

 ②

Transaction 1: ①,②

Read: Exactly Once

1 2 4 3 5 6 7 8 ...

C1

C1: 1-2

1
2

Read: Exactly Once

1 2 4 3 5 6 7 8 ...

C1

 ①

1
2

C1: 1-2

Transaction 2: ①,②

Read: Exactly Once

1 2 4 3 5 6 7 8 ...

C1

 ①

1
2
3
4

C1: 1-2 C1: 3-4 ②

Transaction 3: ①,②

Read: Exactly Once

1 2 4 3 5 6 7 8 ...

C1

 ①

1
2
3
4
5
6

C1: 3-4 ② C1: 5-6

Transaction 4: ①,②

Pr
od

uc
er

s
Leader Replication and Reads

Partition 1

Partition 2

Partition 3

Partition 2

Partition 2

Partition 1

Partition 1

Partition 3

Partition 3

KAFKA: CONSUMER GROUPS

Pr
od

uc
er

s
Consumer Groups

Partition 1

Partition 2

Partition 3

Group 2

Group 1

Pr
od

uc
er

s

Partition 1

Partition 2

Partition 3

• Write to one consumer in each group

– Allows for partitioning consumers

– Load balancing within each group

Group 2

Group 1

Consumer Groups

KAFKA: STREAMS AND CONNECTORS

Kafka Overview

Consumers

Producers

Conn ectors

Stream

Kafka Overview

• Producer API:
– Append records to topics (push)

• Consumer API:
– Read records from topics (pull)

• Connector API:
– Read/write to external components

• For example, a database or other streaming platforms

• Stream API (Producer + Consumer):
– Read records from input topics

– Append records to output topics

OPTIMISATIONS AND OTHER FEATURES

Kafka Optimisations

• Log Compaction
– Repeated sequential values are suppressed

• Direct Disk-to-Network
– When data don't need to be loaded into JVM

• Consumer / Producer Quotas
– Set limits to avoid saturating the system

• ...

Kafka Streams API

• Aggregation (e.g., count messages)

• Joins (e.g., "unify" two streams)

• Windowing (define retention period)

• Continuous Querying (KSQL)

Available Frameworks

Questions?

CLASS PROJECTS

Course Marking

• 80% for Weekly Labs

– 11 labs total

– Best 9 labs count

• 20% for Class Project

Assignments each week

Working in groups

Hands-on each week!

Working in groups!

Class Project

• Done in threes

• Goal: Use what you’ve learned to do something cool/fun (hopefully)

• Process:
– We will assign groups tomorrow

– Start thinking up topics / find interesting datasets!

– Register topic

– Work on projects during semester

• Deliverables: 4 minute presentation (video), code repository with

documentation in README

• Marked on: Difficulty, appropriateness, scale, good use of techniques,

presentation, coolness, creativity, value

– Ambition is appreciated, even if you don’t succeed

Desiderata for project

• Must focus around some technique from the course!

• Expected difficulty: similar to a lab, but without any
instructions

• Data not too small:
– Should have >1,000,000 tuples/entries

• Data not too large:
– Should have <250,000,000 tuples/entries

– If very large, perhaps take a sample?

Where to find/explore data?

• Kaggle:
– https://www.kaggle.com/

• Google Dataset Search:

– https://datasetsearch.research.google.com/

• Datos Abiertos de Chile:
– https://datos.gob.cl/
– https://es.datachile.io/

• …

https://www.kaggle.com/
https://www.kaggle.com/
https://datasetsearch.research.google.com/
https://datasetsearch.research.google.com/
https://datos.gob.cl/
https://datos.gob.cl/
https://es.datachile.io/
https://es.datachile.io/

