CC5212-1

PROCESAMIENTO MASIVO DE DATOS
OTONO 2021

Lecture /
Information Retrieval: Crawling & Indexing

Aidan Hogan
aidhog@gmail.com

MANAGING TEXT DATA

T ’_;'; l -.V|\,|\ \i\{\,(
. . W
":r:k_h‘a\‘l‘ q ajod

w T4 e
L Uaigyy vie ing "Lne/

Information Overload

Getting information off the
- Internet is like taking a
& drink from a fire hydrant.

Mitchell Kapor

-

If we didn’t have search ...

:
Y.L
7o
5 i
5
L3

v,

{)N

THE LIBRARY OF BABEL »

JorGe Luts BorGEs

Erixk DEsMAZIERES

e Contains all books with
— 25 unique characters
— 80 characters per line
— 40 lines per page
— 410 pages
— 410x40x80=1,312,000 chars

_ 251,312,000 bOOkS

* Would contain any book
imaginable

— Including a book with the location
of useful books ;)

All information = Zero information

The book that indexes the library

8 Google X

C [www.google.com

Sign in

Google

Google Search I'm Feeling Lucky

Advertising Programs Business Solutions Privacy & Terms

WEB SEARCH/RETRIEVAL

Building Google Web-search

X

L] www.google.com

Sign in

GO« /8[6

Google Search I'm Feeling Lucky

Advertising Programs Business Solutions Privacy & Terms +Google About Google Google.ca

Building Google Web-search

GO g Ie how are you doing this google?|
how are you doing google
how are you doing google translate
hi how are you doing google
hello how are you doing google

Press Enter to search

(=
jo

What processes/algorithms does Google
need to implement Web search?

Crawling @
1. Parse links from webpages %

Schedule links for crawling 2
3. Download pages, GOTO 1 3.

)

Ranking @
1. How relevant is a page? (TF-IDF)

How important is it? (PageRank)
3. How many users clicked it?

i

Indexing
Parse keywords from webpages

Index keywords to webpages
Manage updates

O

O

INFORMATION RETRIEVAL:
CRAWLING

How does Google know about the Web?

0% of the Internet downloaded [_ | =]

S aving:

theinternet. zip from the Internet
[]
E stimated time left: 4,381 years (14kb of 23,993 564 995 MB copied)
Dawnload to: C:Dovvnlosdstheinternet zip

Tranzfer rate: 41.2 KB/Sec

¥ ‘Close this dislog box when download completes

Een (e Ealder | Cancel I

Download the Web. ©

crawl(list seedUrls)
frontier_i = seedUrls
while(!frontier i .isEmpty())
new list frontier_i+1
for url : frontier i
page = downloadPage(url)
frontier_i+1.addAll(extractUrls(page))
store(page)

What’s missing? @

Download the Web. ©

crawl(list seedUrls)
frontier_i = seedUrls
new set urlsSeen
while(!frontier i .isEmpty())
new list frontier_i+1
for url : frontier i
page = downloadPage(url)
urlsSeen.add(url)
frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))
store(page)

Performance? @

Download the Web. ©

crawl(list seedUrls)
frontier_i = seedUrls
new set urlsSeen
while(!frontier i .isEmpty())
new list frontier_i+1
for url : frontier i
page = downloadPage(url)
urlsSeen.add(url)
frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))
store(page)

Performance? @

Download the Web. ©

C:sUserssAidan?ping twitter.com

Pinging twitter.com [19?7.16.156.198]1 with 32 hbhytes of data:
192.16.156.198: bytes=32 time=118ms TTL=5H
172.16.156.178: bhytes=32 time=1Z26mz TTL=5@
192.16.156.198: bhytes=32 time=128ms TTL=5H
1972.16.156.178: bhytes=32 time=125ms TTL=5@

Ping statistics for 199.16.156.198:

Packets: Sent = 4, Received = 4, Lost = 8 (8% lo=ss2,.
Approximate round trip times in milli—seconds:

Minimum = 118ms,. Maximum = 125ms. Average = 126ms

C:xUserssAidan>

» Majority of time spent waiting for connection
» Disk/CPU usage will be near 0
» Bandwidth will not be maximised

crawl(list seedUrls)
frontier_i = seedUrls
new set urlsSeen
while(!frontier_i .isEmpty())
new list frontier_i+1
new list threads
for url : frontier i

thread = new DownloadPageThread.run(url,urlsSeen,frontier_i+1)
threads.add(thread)
threads.poll()

i++
DownloadPageThread: run(url,urlsSeen,frontier i+1)
page = downloadPage(url)

synchronised: urlsSeen.add(url)
synchronised: frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

synchronised: store(page)

Crawling: Multi-threading Important

Crawl 1,000 URLs ...

40

30

20 +

crawl time (min)

10 +

1 2 4 8 16 32 64 128 256

Noe of threads

80 1

20 +

100
S
o
=
-
[a W
O
0

60 1

40 +

1

2

4

8 16 32 64 128 256

Ne of threads

Crawling: Important to be Polite!

(Distributed) Denial of Server Attack: (D)DoS

(8 Low Orbit lon Cannon | U dun goofed | v. 1.1.1.25
IRC server Channel
© Manual Mode (Do it yourself) @ IRC Mode (HiveMind) #loic Disconnected.

3. Ready? -

l Lock on

e g IMMA CHARGIN MAH LAZER

[Lock on

NONE!

—Selected target -

2. Attack options

TCP /UDP message

<=faster Speed slower=>

HTTP Subsite

/ TCP 80 10 3001 [wvait for reply

. o « Sarles . se Gzip (HTTP)
[Append random chars to the subsite / message Method Port Threads Timeout K4 use Gzip (HTTP)

— Attack status

Idle Connecting Requesting Downloading Downloaded Requested Failed

github.com/MNewEraCracker/LOIC

Crawling: Avoid (D)DoSing

ﬁ_ Operation Payback A1~ W Follow

Anon_ operation Current Target:
www.mastercard.com | Grab your weapons
here: http://bit.ly/gepvGX and FIRE!!!
ddos #wikileaks #payback

» Christopher Weatherhead A\
» 18 months prison

... more likely your IP range will be banned

crawl(list seedUrls)
frontier_i = seedUrls
new set urlsSeen
while(!frontier_i .isEmpty())
new list frontier_i+1

new list threads
for url : schedule(frontier_i) #maximise time between two pages on one site

thread = new DownloadPageThread.run(url,urlsSeen,fronter_i+1)
threads.add(thread)
threads.poll()
i++
DownloadPageThread: run(url,urlsSeen,frontier i+1)
page = downloadPage(url)

synchronised: urlsSeen.add(url)
synchronised: frontier_i+1.addAll(extractUrls(page) .removeAll(urlsSeen))

synchronised: store(page)

Robots Exclusion Protocol

http://website.com/robots.txt

User-agent: *

No bots allowed on the website.

User-agent: *
/user/
/main/login.html

No bots allowed in /user/ sub-folder or login page.

User-agent: googlebot

Ban only the bot with “user-agent” googlebot.

Robots Exclusion Protocol (non-standard)

User-agent: googlebot

10

Tell the googlebot to only crawl a page from this host no
more than once every 10 seconds.

User-agent: *
:/
Allow: /public/

Ban everything but the /public/ folder for all agents

User-agent: *

- http://example.com/main/sitemap.xml

Tell user-agents about your site-map

How might we implement a distributed crawler? @

for url : frontier_i-1

map(url,count)

Similar benefits to multi-threading

What will be the bottleneck as machines increase? @

Bandwidth or politeness delays

Apache Nutch

* Open-source crawling framework!
e Compatible with Hadoop!

https://nutch.apache.org/

https://nutch.apache.org/
https://nutch.apache.org/

INFORMATION RETRIEVAL:
INVERTED INDEXING

Inverted Index

* [nverted Index: A map from words to documents

— “Inverted” because usually documents map to words

Examples of applications? @

IMDb __H

Maovies, TV Celebs, Events _ News & - e
& thWtImEh & Photos Community Watchlist

Google

I ¢ WIKIPEDIA
g English Espaiiol
SRS S i (FE3ING] M) The Free Encyclopedia La enciclopedia libre
4501 000+ articles 1096 000+ articulos
BAEE Deutsch

7 -aisn

906 000+ ;2%
Buscar o
‘ - Pycckuin

Die freie Enzyklopadie
1712 000+ Artikel

Frangais

CeobodHas sHyuknonedus
1108 000+ cTareit
Italiano
Lenciclopedia libera
1117 000+ voci

Polski

O sShow all ®Only English '® Only from Chile

Wolna encyklopedia
1042 000+ haset

3

BEMENEE

764 000- #8

Lencyclopédie libre
1499 000+ articles
Portugués
A enciclopédia livre
825 000+ artigos

Inverted Index: Example

€& - C [J enwikipedia.org/wiki/Fruitvale_Station

T

WIKifEDI A Fruitvale Station

The Free Encyclopedia

From Wikipedia, the free encyclopedia

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.

Posting List

a (1,2,..)
american (1,5,..)
Inverted index: and (1,2,.)
by (1,2,..)
directed (1,2,..)

drama (1,16,..)

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Example Search

american drama

 AND: Intersect posting lists
* OR:Union posting lists
e PHRASE: ?77

How should we implement PHRASE? @
a (1,2,..)
american (1,5,..)
Inverted index: and a,2,.)
by (1,2,..)
directed (1,2,..)

drama (1,16,..)

Inverted Index: Example

- C' | [0 enwikipedia.org/wiki/Fruitvale_Station

8 :

WikipepiA Fruitvale Station

The Free Encyclopedia

From Wikipedia, the free encyclopedia

1 10 182123 28 37 43 47 55 59 6871 76
Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.

Posting List

a (1,[21,96,103,..1), (2,[..1), -
american (1,028,1231), (5,[.01), ..
Inverted index: and (1,057,139,..1), (2,0.1), .
by (1,070,157,..1), (2,[..1), -
directed (1,[61,212,..1), (4,L.1), ..

drama (1,[38,87,..1), (16,[..1), ..

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Flavours

Record-level inverted index:

a (1,2,..)
Maps words to documents R
without positional information by (1203
directed 1,2,.)
drama (1,16,..)

Word-level inverted index: Tern List L Poscng

a (1,[21,96,103,..1), (2,[.1), .
o, . american (1,028,123D), (5,L.D), .
Additionally maps words with - e e
positional information e Sol05 7o TDp @D =
directed (1,061,212,..1), 4,L.1), .

drama (1,038,87,..1), (16,[.1), .

Inverted Index: Word Normalisation

drama

How can we solve this problem? @

Posting List

a (1,[21,96,103,..1), (2,[..1), -
american (1,028,1231), (5,[.01), ..
Inverted index: and (1,057,139,.1), (2,0.1), -
by (1,070,157,..1), (2,[..1), -
directed (1,[61,212,..1), (4,L.1), ..

drama (1,[38,87,..1), (16,[..1), ..

Inverted Index: Word Normalisation

drama

How can we solve this problem? @

Normalise words:

Stemming cuts the ends off of words using generic rules:
{ America, American, americas, americanise } - {america }

Posting List

a (1,[21,96,103,..1), (2,[..1), -
american (1,028,1231), (5,[.01), ..
Inverted index: and (1,057,139,.1), (2,0.1), -
by (1,070,157,..1), (2,[..1), -
directed (1,[61,212,..1), (4,L.1), ..

drama (1,[38,87,..1), (16,[..1), ..

Inverted Index: Word Normalisation

drama

How can we solve this problem?

Normalise words:

Stemming cuts the ends off of words using generic rules:
{ America, American, americas, americanise } - {america }

Lemmatisation uses knowledge of the word to normalise:
{better, goodly, best } > { good }

a

american
Inverted index: and

by

directed

drama

(1,[21,96,103,..1), (2,[.1), .
(1,028,1231), (5,L.), .
(1,057,139,..1), (2,[.1), .
(1,[70,157,..1), (2,[.1), ..
(1,[61,212,..1), (4,[.1), .
(1,038,87,..1), (16,[..1), ..

Inverted Index: Word Normalisation

Normalise words:

drama

How can we solve this problem?

Stemming cuts the ends off of words using generic rules:
{ America, American, americas, americanise } - {america }

Lemmatisation uses knowledge of the word to normalise:
{better, goodly, best } > { good }

Inverted Index:

{film,movie } 2> {movie }

Synonym expansion

and

by

directed

drama

(1,[57,139,...]1), (2,[..-]),
(1,[70,157,...]1), (2,[.--]),
(1,[61,212,...]), (4,[...]),
(1,[38,87,...]), (16,[...])

Inverted Index: Word Normalisation

drama

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:
{ America, American, americas, americanise } - {america }

Lemmatisation uses knowledge of the word to normalise:
{better, goodly, best } > { good }

Synonym expansion
{film,movie } > {movie }

» Language specific!
» Use same normalisation on query and document!

alrectea (L,101,212,...0), \4,[...1), ..

drama (1,[38,87,...]), (16,[...]), ...

Inverted Index: Space

Record-level inverted index:

a (1,2,..)
Maps words to documents R
without positional information by (1203
directed 1,2,.)
drama (1,16,..)

Space? @ > aep U(d) (sum of unique words in all docs)

Word-level inverted index: Term List] Posing

a (1,[21,96,103,..1), (2,[.1), .
o, e . american (1,028,123D), (5,L.D), .
Additionally maps words with - e e
positional information E Sol05 7o TDp @D =
directed (1,061,212,..1), 4,L.1), .
drama (1,038,87,..1), (16,[.1), .

Space? @ > aep W(d) (sum of all word occurrences in all docs)

Inverted Index: Unique Words

Not so many unique words ...
— Heap'slaw: U(n) ~ KnP

— English text
« K€ [10,100]
« 6 €[0.4,0.6]

Number of unique words in text

8000

6000

4000

Raw words versus unique words

U(600,000) =~ 10 x 600, 000°-° ~ 7,740

200

200000 400000 600000 800000

Number of words in text

12+06

Inverted Index: Space U ~ K x WP A\

Record-level inverted index:

a (1,2,..)
Maps words to documents R
without positional information by (1203
directed 1,2,.)
drama (1,16,..)

Space? @ > aep U(d) (sum of unique words in all docs)

Word-level inverted index: Term List] Posing

a (1,[21,96,103,..1), (2,[.1), .
o, e . american (1,028,123D), (5,L.D), .
Additionally maps words with - e e
positional information E Sol05 7o TDp @D =
directed (1,061,212,..1), 4,[.1), .
drama (1,038,87,..1), (16,[.1), .

Space? @ > aep W(d) (sum of all word occurrences in all docs)

Inverted Index: Common Words

Many occurrences of few words

/ Few occurrences of many words

— Zipt’s law —————

— In English text:
* “the” 7% ol
e “of” 3.5%
* “and” 2.7%

e 135 words cover
half of all
occurrences

log(frecuency)

14

log(rank)

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

Inverted Index: Common Words

Many occurrences of few words

/ Few occurrences of many words

Expect long posting lists for common words A

DU B B B | ISI 1911 LCAL. L4 Py — L poraan
T - b

e “the” 7% 10}
e “0of” 3.5%
e “and” 2.7%

e 135 words cover
half of all
occurrences

log(frecuency)

14

log(rank)

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

Inverted Index: Common Words

* Perhaps implement stop-words?

* Most common words contain least information

drama america

Inverted Index: Common Words

Perhaps implement stop-words?
Perhaps implement block-addressing?

Fruitvale Station is a 2013 American drama film|written and directed by Ryan Coogler.

Block 1 Block 2
Whatis the effecton (@ &
phrase search? (1,01,..0), (2,0L.D),

american (1,01,.0), (5,0.0), -

Small blocks ~ okay

and 1,02, .1, (2,[.1),
Big blocks ~ not okay (o)

by a,tz, .1, ,L.D,

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Common Words

Many occurrences of few words

/ Few occurrences of many words

Expect long posting lists for common words
Expect more queries with common words

A3 BN B - /7 V SR
R

e “0of” 3.5%
e “and” 2.7%

e 135 words cover
half of all
occurrences

log(frecuency)

log(rank)

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

The Long Tail of Search

Number of results

< More gener.‘c mote sPec{Fic->

The Long Tail of Search

Nuwber of results

Coffee

==

< tore generic more sPeciFic->

Coffee Beans

Medium Roast
Coffee Beans

Vacuum Pack
Coffee Beans

Search Volume

Medium Roast Coffee
Beans Vacuum Pack

Long Tail

How to optimise for this? @ Caching for common queries like “coffee”

Search Implementation

e Vocabulary keys:
— Hashing: O(1) lookups (assuming ideal hashing)

* NO range queries

— Sorting/B-Tree: O(log(u)) lookups, U unique words

* range queries

— Tries: O(l) lookups, | length of the word

* range gueries, compression

Tries? @

Trie

Memory Sizes

e Term list (vocabulary keys) small:

— Often will fit in memory (with compression ...)!

e Posting lists larger:
— On disk / Hot regions cached

Posting List

a (1,[21,96,103,..1), (2,[.1), ..
american (1,028,1231), (5,[.01), ..

and (1,[57,139,..DD, (2,[.DD, .

by (1,070,157,..1), (2,[.1), .
directed (1,061,212,..1), (4,L.1), ..

drama (1,[38,87,..1), (16,[..1), ..

Compression techniques

* Numeric compression important

Posting List

country (1, 2),), (4, &), (7), .

Compression techniques: High Level

* |nterval indexing

— Example for record-level indexing
* Could also be applied for block-level indexing, etc.

Posting List

country (1, 2),), (4, &), (7), .

Posting List

country (1-4), (6-7),

Compression techniques: High Level

* Gap indexing
— Example for record-level indexing
* Could also be applied for block-level indexing, etc.

Posting List

country (1, 3), (4, &), (9, .

o e

country (1), 2, 1, 4, 1

Benefit? @ Repeated small numbers easier to compress!

Compression techniques: Bit Level

* Variable length coding: bit-level techniques

For example, Elias y (gamma) encoding

— Assumes many small numbers

2|log, (=2

| 4+ 1 bits

integer to n = |log,(z)] a zero marker next n binary final Elias vy
encode coded in unary numbers code

o N o o1 b~ o w N

1

1
11
11
11
11
111

Can you decode “01000011000111000011001”? @ <1,2,1,1,4,8,5>

S © © & © & o

0

1
00
01
10
11
000

100

101
11000
11001
11010
11011
1110000

Compression techniques: Bit Level

* Variable length coding: bit-level techniques

 For example, Elias 6 (delta) encoding

— Better for some distributions

zZ: integer to |log,(2)] + 1 next |log,(2)] final Elias 6
encode coded in Elias y | binary numbers | code
0 0

1

2 100 0 1000

3 100] 1001

4 101 00 10100

5 101 01 10101

6 101 10 10110

7 101 11 10111

8 11000 000 11000000

Can you decode “0110000011001011001001”? @ <1,9,3,1,17>

* Previous methods “non-parametric”

— Don’t take an input value

 QOther compression techniques parametric:

— for example, Golomb-3 code:

zZ: integer to n = |(z-1)/3] zero separator remainder final Golomb-3
encode coded in unary code
0 00

1 0

2 0 10 010

3 0 11 011

4 1 0 0 100

5] 0 10 1010
6] 0 11 1011
7 11 0 0 1100
8 11 0 10 11010

* Small values

cadigo Elias 'y cadigo Elias 6 cadigo Golomb-3

1

2 100 1000 010

3 101 1001 011

4 11000 10100 100

5 11001 10101 1010
6 11010 10110 1011
7 11011 10111 1100
8 1110000 11000000 11010

. Larger values

cadigo Elias 'y cadigo Elias 6 cadigo Golomb-3

1111110100100 10110100100 1111111,

Compression techniques: Byte Level

e Use variable length byte codes
e Use last bit of byte to indicate if the number ends

* For example:

00100100 10100010 00000101 00100100

18 81 274

Other Optimisations

e Top-Doc: Order posting lists to give likely “top
documents” first: good for top-k results

e Selectivity: Load the posting lists for the most rare
keywords first; apply thresholds

e Sharding: Distribute over multiple machines .,

Extremely Scalable/Efficient

When engineered correctly ©

Movies, TV - Celebs, Events News & - Natchlist ~
O 8 e & Showtimes & Photos Community Watchlist

| v |
-4
WIKIPEDIA
Google Search I'm Feeling Lucky g "
English Espafiol
The Free Encyclopedia La enciclopedia libre
4501 000+ articles 1096 000+ articulos
B&:E) Deutsch
. [
Y AH - o) —GFlEs // @%;. Die freie Enzyklopadie
! ‘ | ‘ Buscar 906 000+ 25 *‘ 3 1712 000+ Artikel
CHILE s A g
Pycckun @ A Francgais
CeobodHas sHyuxknonedus Q 5 Lencyclopédie libre
1108 000+ cTaTeit r\“\ 1499 000+ articles
Italiano {(‘K_ Portugués
Lenciclopedia libera = A enciclopédia livre
1117 000+ voci S 825 000+ artigos

Polski hX

Wolna encyklopedia BHMERNEE
I n g 1 042 000+ haset 764 000- 48

O Showall ®Only Engiish '® Only from Chile

‘0\ | English v ‘T‘

DISTRIBUTING AN INVERTED INDEX

Inverted Index: Distribution g 1,345
ate 1,2,3
cat 3,4,6

How might we distribute an inverted index? @ dog 3,5,6,7
) the 1,2,3,4,5,6,7
Split by word P
<A1
dog 3,5,6,7 and 1,3,4,5,6 ate 1,2,3 cat 3,4,6
vet 4 the 1,2,3,4,5,6,7
Possible disadvantages? @

 Complications for load balancing given common words
e AND or PHRASE search within each document involves multiple machines
e Difficult to store statistics, etc., for a document (not usually a big issue)

Inverted Index: Distribution ad 13,856
ate 1,2,3
cat 3,4,6
How might we distribute an inverted index? @ dog 3,5,6,7

the 1,2,3,4,5,6,7

Split by document

vet 4

and 4

ate 2 and
cat 6 ate 3 ate 1 dog 7
dog 6 cat 3 the 1 the 7
the 2,6 dog 5 vet 4
the 3,5
Possible disadvantages? @

* All searches require unions over multiple machines
 Might be load balancing issues for large documents (not usually a big issue)
 Longer term lists per machine (not usually a big issue)

LUCENE: TEXT INDEXING

Apache Lucene S wcrnm

* |nverted Index
— They built one so you don’t have to!
— Open Source in Java

— Single machine

My God. It's full of win.

Doug Cutting (above) & Mike Cafarella (below)

Apache Solr

Apache

Solr

— Higher-level interfaces (and richer features)

— Distributed by document

7 4
.‘
g

* |nverted Index

— Based on Apache Lucene

Elasticsearch

e Inverted Index v

elasticsearch
— Based on Apache Lucene

— Higher-level interfaces (and richer features)

— Distributed by document

Elasticsearch: a word of warning

Reported Elasticsearch data breaches [edit]

+ 2018-11-15 AWS Elasticsearch database belonging to VoxOx exposed tens of millions of text messages, including
password reset links, two-factor codes, shipping notifications and more.[36]

» 2018-11-27 Elasticsearch database belonging to Urban Massage exposed more than 309,000 user records, including
names, email addresses and phone numbers.[37]

» 2019-01-12 Elasticsearch server belonging to do-it-yourself chain, B&Q exposed personal details of individuals caught or
suspected of stealing goods from stores.[381[39]

» 2019-01-21 Elasticsearch database belonging to Youth-run agency AIESEC exposed over 4 million intern applications
including the applicant’s name, gender, date of birth, and the reasons why the person was applying for the internship.[40]

* 2019-01-23 Elasticsearch database belonging to Ascension Data and Analytics exposed 24 million financial and banking
documents, representing tens of thousands of loans and mortgages from some of the biggest banks in the U.S.[4"]

* 2019-09-13 Elasticsearch database belonging to Dealer Leads exposed 198 million car buying records which contained
the personal information of customers.[42]

» 2019-10-26 Elasticsearch database belonging to Adobe exposed 7.5 million customer records which contained email
addresses, Adobe member IDs (usernames), country of origin, and what Adobe products they were using.[4°]

» 2019-11-19 Elasticsearch database belonging to Conrad Electronic exposed 14 million customer records which
contained postal addresses, in parts fax- and telephone numbers as well as IBANs on a fifth of the exposed data-
records.[44]

https://en.wikipedia.org/wiki/Elasticsearch

https://en.wikipedia.org/wiki/Elasticsearch

Questions?

