
CC5212-1
PROCESAMIENTO MASIVO DE DATOS
OTOÑO 2020

Lecture 7
Information Retrieval: Crawling & Indexing

Aidan Hogan

aidhog@gmail.com

MANAGING TEXT DATA

Information Overload

If we didn’t have search …

• Contains all books with
– 25 unique characters

– 80 characters per line

– 40 lines per page

– 410 pages

– 410 x 40 x 80 = 1,312,000 chars

– 251,312,000 books

• Would contain any book
imaginable
– Including a book with the location

of useful books ;)

All information = Zero information

The book that indexes the library

WEB SEARCH/RETRIEVAL

Building Google Web-search

Building Google Web-search

What processes/algorithms does Google
need to implement Web search?

Crawling
1. Parse links from webpages
2. Schedule links for crawling
3. Download pages, GOTO 1

Indexing
1. Parse keywords from webpages
2. Index keywords to webpages
3. Manage updates

Ranking
1. How relevant is a page? (TF-IDF)
2. How important is it? (PageRank)
3. How many users clicked it?

...

INFORMATION RETRIEVAL:
 CRAWLING

How does Google know about the Web?

crawl(list seedUrls)
frontier_i = seedUrls

while(!frontier_i .isEmpty())

 new list frontier_i+1

 for url : frontier_i

 page = downloadPage(url)

 frontier_i+1.addAll(extractUrls(page))

 store(page)

 i++

Download the Web.

Crawling

What’s missing?

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

 new list frontier_i+1

 for url : frontier_i

 page = downloadPage(url)

 urlsSeen.add(url)

 frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

 store(page)

 i++

Download the Web.

Crawling: Avoid Cycles

Performance?

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

 new list frontier_i+1

 for url : frontier_i

 page = downloadPage(url)

 urlsSeen.add(url)

 frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

 store(page)

 i++

Download the Web.

Crawling: Avoid Cycles

Performance?

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

 new list frontier_i+1

 for url : frontier_i

 page = downloadPage(url)

 urlsSeen.add(url)

 frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

 store(page)

 i++

Download the Web.

Crawling: Avoid Cycles

Performance?

 Majority of time spent waiting for connection
 Disk/CPU usage will be near 0
 Bandwidth will not be maximised

Crawling: Multi-threading Important

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

 new list frontier_i+1

 new list threads

 for url : frontier_i

 thread = new DownloadPageThread.run(url,urlsSeen,frontier_i+1)

 threads.add(thread)

 threads.poll()

 i++

 DownloadPageThread: run(url,urlsSeen,frontier_i+1)
 page = downloadPage(url)

 synchronised: urlsSeen.add(url)

 synchronised: frontier_i+1.addAll(extractUrls(page).removeAll(urlsSeen))

 synchronised: store(page)

Crawling: Multi-threading Important

Crawl 1,000 URLs …

Crawling: Important to be Polite!

(Distributed) Denial of Server Attack: (D)DoS

Crawling: Avoid (D)DoSing

… more likely your IP range will be banned

 Christopher Weatherhead
 18 months prison

Crawling: Web-site Scheduler

crawl(list seedUrls)
frontier_i = seedUrls

new set urlsSeen

while(!frontier_i .isEmpty())

 new list frontier_i+1

 new list threads

 for url : schedule(frontier_i) #maximise time between two pages on one site

 thread = new DownloadPageThread.run(url,urlsSeen,fronter_i+1)

 threads.add(thread)

 threads.poll()

 i++

 DownloadPageThread: run(url,urlsSeen,frontier_i+1)
 page = downloadPage(url)

 synchronised: urlsSeen.add(url)

 synchronised: frontier_i+1.addAll(extractUrls(page) .removeAll(urlsSeen))

 synchronised: store(page)

Crawling: Distribution

Similar benefits to multi-threading

How might we implement a distributed crawler?

1 2 3 4 5

for url : frontier_i-1

 map(url,count)

What will be the bottleneck as machines increase?

Bandwidth or politeness delays

Apache Nutch

• Open-source crawling framework!

• Compatible with Hadoop!

https://nutch.apache.org/

https://nutch.apache.org/
https://nutch.apache.org/

INFORMATION RETRIEVAL:
 INVERTED INDEXING

Inverted Index

• Inverted Index: A map from words to documents
– “Inverted” because usually documents map to words

Examples of applications?

Inverted Index: Example

Term List Posting List

a (1,2,…)

american (1,5,…)

and (1,2,…)

by (1,2,…)

directed (1,2,…)

drama (1,16,…)

… …

Inverted index:

1

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Example Search

Inverted index:

• AND: Intersect posting lists

• OR: Union posting lists

• PHRASE: ???

american drama

Term List Posting List

a (1,2,…)

american (1,5,…)

and (1,2,…)

by (1,2,…)

directed (1,2,…)

drama (1,16,…)

… …

How should we implement PHRASE?

Inverted Index: Example

Term List Posting List

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

1

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.
1 10 18 21 23 28 37 43 47 55 59 68 71 76

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler
http://en.wikipedia.org/wiki/Ryan_Coogler

Inverted Index: Flavours

Record-level inverted index:

Maps words to documents
without positional information

Term List Posting List

a (1,2,…)

american (1,5,…)

and (1,2,…)

by (1,2,…)

directed (1,2,…)

drama (1,16,…)

… …

Term List Posting List

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Word-level inverted index:

Additionally maps words with
positional information

Inverted Index: Word Normalisation

drama america

Term List Posting List

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Inverted Index: Word Normalisation

drama america

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ America , American , americas , americanise } → { america }

Term List Posting List

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Term List Posting List

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted Index: Word Normalisation

drama america

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ America , American , americas , americanise } → { america }

Lemmatisation uses knowledge of the word to normalise:
{ better , goodly , best } → { good }

Inverted Index: Word Normalisation

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ America , American , americas , americanise } → { america }

Lemmatisation uses knowledge of the word to normalise:
{ better , goodly , best } → { good }

Synonym expansion

{ film , movie } → { movie }

drama america

Inverted Index: Word Normalisation

Term List Posting Lists

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Inverted index:

How can we solve this problem?

Normalise words:
Stemming cuts the ends off of words using generic rules:

{ America , American , americas , americanise } → { america }

Lemmatisation uses knowledge of the word to normalise:
{ better , goodly , best } → { good }

Synonym expansion

{ film , movie } → { movie }

drama america

 Language specific!
 Use same normalisation on query and document!

Inverted Index: Space

Record-level inverted index:

Maps words to documents
without positional information

Term List Posting List

a (1,2,…)

american (1,5,…)

and (1,2,…)

by (1,2,…)

directed (1,2,…)

drama (1,16,…)

… …

Term List Posting List

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Word-level inverted index:

Additionally maps words with
positional information

Space?

Space?

Inverted Index: Unique Words

Not so many unique words …

– Heap’s law:

– English text

• K ∈ [10,100]

• β ∈ [0.4,0.6]

Number of words in text

N
u

m
b

er
 o

f
u

n
iq

u
e

w
o

rd
s

in
 t

ex
t

Raw words versus unique words

Inverted Index: Space

Record-level inverted index:

Maps words to documents
without positional information

Term List Posting List

a (1,2,…)

american (1,5,…)

and (1,2,…)

by (1,2,…)

directed (1,2,…)

drama (1,16,…)

… …

Term List Posting List

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Word-level inverted index:

Additionally maps words with
positional information

Space?

Space?

Inverted Index: Common Words

 Many occurrences of few words

 / Few occurrences of many words

– Zipf’s law

– In English text:
• “the” 7%

• “of” 3.5%

• “and” 2.7%

• 135 words cover
half of all
occurrences

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

Inverted Index: Common Words

 Many occurrences of few words

 / Few occurrences of many words

– Zipf’s law

– In English text:
• “the” 7%

• “of” 3.5%

• “and” 2.7%

• 135 words cover
half of all
occurrences

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

Expect long posting lists for common words

Inverted Index: Common Words

• Perhaps implement stop-words?
• Most common words contain least information

the drama in america

Inverted Index: Common Words

• Perhaps implement stop-words?

• Perhaps implement block-addressing?

Fruitvale Station is a 2013 American drama film written and directed by Ryan Coogler.

Term List Posting List

a (1,[1,…]), (2,[…]), …

american (1,[1,…]), (5,[…]), …

and (1,[2, …]), (2,[…]), …

by (1,[2, …]), (2,[…]), …

… …

Block 1 Block 2

What is the effect on
phrase search?

Small blocks ~ okay
Big blocks ~ not okay

http://en.wikipedia.org/wiki/Drama_film
http://en.wikipedia.org/wiki/Ryan_Coogler
http://en.wikipedia.org/wiki/Ryan_Coogler

Zipf’s law: the most popular word will occur twice as often as the second most popular word,
thrice as often as the third most popular word, n times as often as the n-most popular word.

Inverted Index: Common Words

 Many occurrences of few words

 / Few occurrences of many words

– Zipf’s law

– In English text:
• “the” 7%

• “of” 3.5%

• “and” 2.7%

• 135 words cover
half of all
occurrences

Expect long posting lists for common words
Expect more queries with common words

The Long Tail of Search

The Long Tail of Search

How to optimise for this? Caching for common queries like “coffee”

Search Implementation

• Vocabulary keys:

– Hashing: O(1) lookups (assuming ideal hashing)

• no range queries

– Sorting/B-Tree: O(log(u)) lookups, u unique words

• range queries

– Tries: O(l) lookups, l length of the word

• range queries, compression

Tries?

Trie

b

a

b c

y k

s

e

d

a

g l

e o e

n

t

Memory Sizes

• Term list (vocabulary keys) small:

– Often will fit in memory (with compression …)!

• Posting lists larger:

– On disk / Hot regions cached

Term List Posting List

a (1,[21,96,103,…]), (2,[…]), …

american (1,[28,123]), (5,[…]), …

and (1,[57,139,…]), (2,[…]), …

by (1,[70,157,…]), (2,[…]), …

directed (1,[61,212,…]), (4,[…]), …

drama (1,[38,87,…]), (16,[…]), …

… …

Compression techniques

• Numeric compression important

Term List Posting List

country (1), (2), (3), (4), (6), (7), …

… …

Compression techniques: High Level

• Interval indexing

– Example for record-level indexing

• Could also be applied for block-level indexing, etc.

Term List Posting List

country (1), (2), (3), (4), (6), (7), …

… …

Term List Posting List

country (1–4), (6–7),

… …

Compression techniques: High Level

• Gap indexing

– Example for record-level indexing

• Could also be applied for block-level indexing, etc.

Term List Posting List

country (1), (3), (4), (8), (9), …

… …

Term List Posting Lists

country (1), 2, 1, 4, 1

… …

Benefit? Repeated small numbers easier to compress!

Compression techniques: Bit Level

• Variable length coding: bit-level techniques

• For example, Elias γ (gamma) encoding
– Assumes many small numbers

z: integer to
encode

n = ⌊log2(z)⌋
coded in unary

a zero marker next n binary
numbers

final Elias γ
code

1 0 0

2 1 0 0 100

3 1 0 1 101

4 11 0 00 11000

5 11 0 01 11001

6 11 0 10 11010

7 11 0 11 11011

8 111 0 000 1110000

… … … … …

<1,2,1,1,4,8,5> Can you decode “01000011000111000011001”?

Compression techniques: Bit Level

• Variable length coding: bit-level techniques

• For example, Elias δ (delta) encoding
– Better for some distributions

 z: integer to
encode

⌊log2(z)⌋ + 1
coded in Elias γ

next ⌊log2(z)⌋
binary numbers

final Elias δ
code

1 0 0

2 100 0 1000

3 100 1 1001

4 101 00 10100

5 101 01 10101

6 101 10 10110

7 101 11 10111

8 11000 000 11000000

… … … …

<1,9,3,1,17> Can you decode “0110000011001011001001”?

Compression techniques: Bit Level

• Previous methods “non-parametric”
– Don’t take an input value

• Other compression techniques parametric:
– for example, Golomb-3 code:

z: integer to
encode

n = ⌊(z-1)/3⌋
coded in unary

zero separator remainder final Golomb-3
code

1 0 0 00

2 0 10 010

3 0 11 011

4 1 0 0 100

5 1 0 10 1010

6 1 0 11 1011

7 11 0 0 1100

8 11 0 10 11010

… … … …

Comparison

• Small values

• Larger values

z: integer de entrada código Elias γ código Elias δ código Golomb-3

1 0 0 00

2 100 1000 010

3 101 1001 011

4 11000 10100 100

5 11001 10101 1010

6 11010 10110 1011

7 11011 10111 1100

8 1110000 11000000 11010

z: integer de entrada código Elias γ código Elias δ código Golomb-3

100 1111110100100 10110100100 1111111...101

… …

Compression techniques: Byte Level

• Use variable length byte codes

• Use last bit of byte to indicate if the number ends

• For example:

00100100 10100010 00000101 00100100

18 81 274

Other Optimisations

• Top-Doc: Order posting lists to give likely “top
documents” first: good for top-k results

• Selectivity: Load the posting lists for the most rare
keywords first; apply thresholds

• Sharding: Distribute over multiple machines [...]

Extremely Scalable/Efficient

When engineered correctly

DISTRIBUTING AN INVERTED INDEX

Crawling: Distribution

How might we distribute an inverted index?

Split by word

1 2 3 4

Possible disadvantages?

• Complications for load balancing given common words
• AND or PHRASE search within each document involves multiple machines
• Difficult to store statistics, etc., for a document (not usually a big issue)

Term Posting

and 1,3,4,5,6

ate 1,2,3

cat 3,4,6

dog 3,5,6,7

the 1,2,3,4,5,6,7

vet 4

Term Posting

dog 3,5,6,7

Term Posting

ate 1,2,3

the 1,2,3,4,5,6,7

Term Posting

cat 3,4,6

Term Posting

and 1,3,4,5,6

vet 4

Crawling: Distribution

How might we distribute an inverted index?

Split by document

1 2 3 4

Possible disadvantages?

• All searches require unions over multiple machines
• Might be load balancing issues for large documents (not usually a big issue)
• Longer term lists per machine (not usually a big issue)

Term Posting

and 1,3,4,5,6

ate 1,2,3

cat 3,4,6

dog 3,5,6,7

the 1,2,3,4,5,6,7

vet 4

Term Posting

and 3,5

ate 3

cat 3

dog 5

the 3,5

Term Posting

and 1

ate 1

the 1

Term Posting

and 4

dog 7

the 7

vet 4

Term Posting

ate 2

cat 6

dog 6

the 2,6

LUCENE: TEXT INDEXING

• Inverted Index

– They built one so you don’t have to!

– Open Source in Java

– Single machine

Apache Lucene

Doug Cutting (above) & Mike Cafarella (below)

• Inverted Index

– Based on Apache Lucene

– Higher-level interfaces (and richer features)

– Distributed by document …

Apache Solr

• Inverted Index

– Based on Apache Lucene

– Higher-level interfaces (and richer features)

– Distributed by document …

Elasticsearch

Elasticsearch: a word of warning

https://en.wikipedia.org/wiki/Elasticsearch

https://en.wikipedia.org/wiki/Elasticsearch

Questions?

