Lab 5 — IMDB’s Most Frequent Co-stars

CCh212-1
April 9, 2015

No more counting words!
Today we count the stars.

More specifically, we will count co-stars in movies that are listed in IMDbE| Your mission ... should you
choose to accept it ... is to create a set of MapReduce jobs that count the pairs of actors or actresses that
have co-starred in the most movies together. Hopefully it shouldn’t be impossible.

The goal of the lab is to demonstrate that you can now independently code MapReduce jobs to process
large amounts of data. Since we did something very similar on the board in the lecture on Monday and since
last Wednesday, we already saw the syntax and steps needed to code and run a MapReduce job, in this lab
I’'m not going to give you detailed step-by-step instructions. Instead, I'll give you the instructions to get you
started and will point you to the material that will help you complete the lab. The rest will be up to you.

e The instructions for logging into the server, for accessing and uploading data to HDF'S, for building your
code and running it, etc. are available from last weeks’ instructions: http://aidanhogan.com/teaching/
ccb212-1/doc/lab4 . pdf.

e The data you need are on HDFS in the /uhadoop/shared/imdb/ folder. The imdb-stars.tsv file
is about 1GB and contains 13 million roles played by different actors in IMDb (pretty much the full
database). Have a look inside the start of the ﬁleﬂ The header (not included in the file) is as follows:

Star Name | Movie Name | Year | Movie Number | Movie Type | Episode Name | Starring As | Role

Columns are tab delimited. Some values may not apply and may be null.

Star Name is the name of the star. The file is sorted alphabetically so you might see stars with weird
names in there at the start of the file.

Movie Name is the name of the movie or tv series, etc., that the star appears in.

Year is ... well yes, the year the movie was released.

Movie Number is used when a movie with the same name appears in the same year (e.g., http:
//wwu.indb.com/title/tt0801505/ is the second movie called “Crash” listed in 2004 so it will have IT
here). Often this will be null (if there was only one movie with that name in that year).

Movie Type is the type of movie ... if it’s a theatrical movie, a TV movie, a TV series, etcﬂ
Episode Name is the name of an episode if it was a TV series.
Starring As is the name of the actor/actress in the credits.

Role is the character they played.

IThe Internet Movie Database ... http://imdb.com/ ... I'm sure many of you know it?
’hdfs dfs -cat [file] | more pressing spacebar to scan, Ctrl4+C to end.
3In the code later, the options will appear in org.mdp.imdb.ActorMovieParser.MovieRole.MovieType

http://aidanhogan.com/teaching/cc5212-1/doc/lab4.pdf
http://aidanhogan.com/teaching/cc5212-1/doc/lab4.pdf
http://www.imdb.com/title/tt0801505/
http://www.imdb.com/title/tt0801505/
http://imdb.com/

We will mainly focus on the first five columns. The Star Name is unique for a person. However,
for movies, Movie Name is not unique ... only the combination of Movie Name, Year
and Movie Number are enough together to uniquely identify a movie. To make a unique
key for a movie, you’ll need to concatenate the values of these three columns. We only want to
consider movies: specifically you should only consider input lines where the Movie Type is equal to
THEATRICAL MOVIE; if it is something else, skip it. Let’s look for info about a specific actor: type
hdfs dfs -cat /uhadoop/shared/imdb/imdb-stars.tsv | grep -e "“Pacino, Al" | more, flick
through some results with spacebar, Ctrl+C to end.

e Download the code project from http://aidanhogan.com/teaching/cc5212-1/code/mdp-labb.zip
and open it in Eclipse. In this project there is a Main class, an example of the WordCount for you to
adapt, and the class ActorMovieParser, which was used to parse the raw data from IMDbE| You do
not need to do anything with Main or ActorMovieParser ... feel free to ignore them.

e The exercise for today is to adapt the WordCount example provided in the packagdﬂ to count the number
of movies that each pair of actors/actresses have co-starred in. The output should look something like:

De Niro, Robert##Pacino, Al x
Cage, Nicholas##Kidman, Nicole vy

. where z is the number of theatrical movies that both Robert De Niro and Al Pacino star in, etc.
(## is just a delimiter; you can use a tab or anything unambiguous). Some tips:

— You will have to create your own classes today. Follow the WordCount example.

— As mentioned previously, only include theatrical movies and make sure the movie key you use is
unique (see above).

— If you need multiple jobs, it’s okay to run them manually one-by-one. Check the output of one
before moving onto the next. The output of one task becomes the input of the next.

— When you're calling your jar from the command line, the first argument is the name of the class
with the main method you need. The second argument should be the location of the input file.
The third argument should be the location of the output file.

— Do not copy the input data into your personal folder ... it’s too big to make 30-35 copies. Just
pass the input location /uhadoop/shared/imdb/imdb-stars.tsv. But do write the output to
your personal folder on HDFS (e.g., /uhadoop/ [username]/imdb/out1/).

e OPTIONAL: if you have the time, try using MapReduce to get the top-10 most frequent co-stars. You
can do this by sorting everything and taking the head of the results, or by implementing the top-k
pattern we spoke about in the lecture on Monday.

e Add the new class files that you created to a ZIP and submit to u-cursos before the lecture on Monday.

4See the actors.1k.list file in the project root folder for a small example of the raw format that came from IMDb. This
would be really hard to work with. The ActorMovieParser class converts the raw IMDb data into the tabular format that you
will work with.

5Note that this class uses a newer version of the Hadoop API so there might be minor differences from last week.

