
Lab 4 – Hello Hadoop

CC5212-1

April 9, 2015

We’re going to get a simple word count up and running on Hadoop (an open-source implementation of
the MapReduce distributed processing abstraction). The core goal in this lab is for you to learn how to
interact with HDFS (the Hadoop Distributed File System), upload some data, code a basic Hadoop job in
Java, launch it on the cluster, and get the results back.

These instructions are for Windows. But if you prefer Linux and are familiar with commands like ssh

and scp/sftp, feel free to use Linux.

• First we want to SSH onto the server:

– Head to http://aidanhogan.com/teaching/cc5212-1/tools and download the tools found there. These
are standalone Windows tools for SSH and SFTP/SCP.

– Open PuTTy. In host-name type cluster.dcc.uchile.cl. Click Save. Click Open.

– If the above doesn’t work just try cluster or the IP: 172.17.69.99.

– Username and password will be provided on the board.

– You are now on the master server of a five-server cluster.
– Since you are all using one username, please, please be considerate. Think twice before typing

rm -r, kill and similar commands. Please.

• Next we want to look at the distributed file server and upload some data to it:

– Type hdfs dfs.1 This shows you the options to interact with HDFS.

– Type hdfs dfs -ls / to see the root contents. These files are stored across the servers.

– Next create a sub-folder of /uhadoop for your stuff. Type hdfs dfs -ls /uhadoop to see the
contents. Then think up a user-name (use first letter of first name, full last name: e.g., ahogan for
me). Type hdfs dfs -mkdir /uhadoop/[username] replacing [username] with your username,
e.g., hdfs dfs -mkdir /uhadoop/ahogan.2 This is now your personal folder ... please keep your
files on the DFS in this folder. Also beware that anyone can look at your data. Don’t upload
sensitive medical records.

– Now on the local file system, go to the directory cd /data/2014/uhadoop/. Make a directory for
yourself mkdir /data/2014/uhadoop/[username] with the same username as before.

– Go to directory cd /data/2014/uhadoop/shared. Here you’ll find the file we want to do a
word-count on stored locally. You need to get that onto DFS. Type hdfs dfs -copyFromLocal

/data/2014/uhadoop/shared/es-abstracts.txt /uhadoop/[username]/es-abstracts.txt

– Check that it’s there now: type hdfs dfs -ls /uhadoop/[username].

• Now that we’ve gotten the data on the DFS, we need to code the Hadoop job to do the word count.
Since this is your first time coding a Hadoop job, you can follow the slides from Monday’s lecture as
“inspiration”. Grab them from the homepage.

1One can also type hadoop fs but it seems hdfs fs is preferred.
2Yes, people last year did create a folder literally called username, hence the careful instructions this time. If you wish to

honour that tradition, feel free! But afterwards create a meaningful folder as well and use that.

1

http://aidanhogan.com/teaching/cc5212-1/tools


– Download the project from http://aidanhogan.com/teaching/cc5212-1/code/mdp-lab4.zip

and open it in Eclipse.

– Open up the WordCount class. Here we’re going to put the mapper class, the reducer class and
the main method.

– To start with, implement the WordCountMapper class. This class decides how the data should
be split across machines. You will find a very similar example in Monday’s slides (2. Map). (In
this case, you include all the classes into one class file, but the code is otherwise very similar.
To parse the input line, use String[] rawWords = value.toString().split(SPLIT REGEX);.
Make sure the words are not empty and to lowercase each one. For each word in that array,
output the word with a value containing 1.)

– We don’t need to do anything special with comparisons, sorts, partitioning, etc. All the default
settings will work fine for us so we can skip to ...

– ... implementing the WordCountReducer. Again, the example in Monday’s slides (6. Reduce) is
nearly identical to what you need.

– Finally we need a main method that sets the job configuration and the control flow. Again, you
will find a near -identical version in Monday’s slides (Control Flow). The first argument should be
then In this case, can we use WordCountReducer as a combiner?

• Finally we need to package and run the code.

– In the project in Eclipse, right click on build.xml, then Run As ..., then make sure dist is
clicked and hit Run. If it fails, you may need to manually make a new dist folder in the project
root. Refresh the project (F5) and make sure you have the JAR file.

∗ If you get an error mentioning javac1.8 or similar, you need to right click on the build.xml,
go to External Tools Configurations and add the line -Dbuild.compiler=javac1.7 to argu-
ments.

∗ If you get a new error saying something about JAVA HOME not found, follow: Window >

Preferences > Expand Ant tree > Runtime > Highlight Global Entries > Add External

Jars > Then find and add tools.jar in the lib/ folder of (e.g.,
C:/Program Files (x86)/Java/jdk.../lib/tools.jar).

– We need to copy the JAR file to the server. Head to WinSCP. Set SFTP. For the hostname,
enter cluster.dcc.uchile.cl. Enter uhadoop as username. Don’t enter the password yet.
Click save. When it prompts, enter same password as for PuTTy. Copy your .jar file into
/data/2014/uhadoop/[username].

– Now we just need to call the Hadoop job. Go back to PuTTy. Run (all one command):
hadoop jar /data/2014/uhadoop/[username]/mdp-lab4.jar WordCount

/uhadoop/[username]/es-abstracts.txt /uhadoop/[username]/wc/.3 Hopefully you will see
the Map/Reduce progress as it happens. Likewise you should see the results of the counter.

– When it’s finished, it’s time to look at the results.

∗ Run hadoop fs -ls /uhadoop/[username]/wc/ to see the output.

∗ Run hadoop fs -cat /uhadoop/[username]/wc/part-0000 | more to look into the file.

∗ Try find the count for “de”: run hdfs dfs -cat /uhadoop/[username]/wc/part-00000 |

grep -P "^de\t" | more. Did you get 4,575,144?

• OPTIONAL: now try code a second MapReduce job to sort the words by occurrence. ,

• Submit the WordCount class to u-cursos before the lecture on Monday.

3The output directory must not exist prior to running the job!

2


