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Abstract RDF has seen increased adoption in recent years,
prompting the standardization of the SPARQL query lan-
guage for RDF, and the development of local and distributed
engines for processing SPARQL queries. This survey paper
provides a comprehensive review of techniques and systems
for querying RDF knowledge graphs. While other reviews
on this topic tend to focus on the distributed setting, the
main focus of the work is on providing a comprehensive sur-
vey of state-of-the-art storage, indexing and query process-
ing techniques for efficiently evaluating SPARQL queries in
a local setting (on one machine). To keep the survey self-
contained, we also provide a short discussion on graph par-
titioning techniques used in the distributed setting. We con-
clude by discussing contemporary research challenges for
further improving SPARQL query engines. This extended
version also provides a survey of over one hundred SPARQL
query engines and the techniques they use, along with twelve
benchmarks and their features.
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1 Introduction

The Resource Description Framework (RDF) is a graph-
based data model where triples of the form (s, p, o) denote
directed labeled edges s

p−→ o in a graph. RDF has gained
significant adoption in the past years, particularly on the
Web. As of 2019, over 5 million websites publish RDF data
embedded in their webpages [34]. RDF has also become
a popular format for publishing knowledge graphs on the
Web, the largest of which – including Bio2RDF, DBpedia,
PubChemRDF, UniProt, and Wikidata – contain billions of
triples. These developments have brought about the need for
optimized techniques and engines for querying large RDF
graphs. We refer to engines that allow for storing, indexing
and processing joins over RDF as RDF stores.

While various query languages have historically been
proposed for RDF, the SPARQL Protocol and RDF Query
Language (SPARQL) has become the standard [92]. The
first version of SPARQL was standardized in 2008, while
SPARQL 1.1 was released in 2013 [92]. SPARQL is an ex-
pressive language that supports not only joins, but also vari-
ants of the broader relational algebra (projection, selection,
union, difference, etc.). Various new features were added in
SPARQL 1.1, such as property paths for matching arbitrary-
length paths in the RDF graph. Hundreds of SPARQL query
services, called endpoints, have emerged on the Web [43],
with the most popular endpoints receiving millions of queries
per day [197,148]. We refer to engines that support storing,
indexing and processing SPARQL (1.1) queries over RDF
as SPARQL engines. Since SPARQL supports joins, we con-
sider any SPARQL engine to also be an RDF store.

Efficient data storage, indexing and join processing are
key to RDF stores (and thus, to SPARQL engines):

– Storage. Different engines store RDF data using differ-
ent structures (tables, graphs, etc.), encodings (integer
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IDs, string compression, etc.) and media (main memory,
disk, etc.). Which storage to use may depend on the scale
of the data, the types of query features supported, etc.

– Indexing. Indexes are used in RDF stores for fast lookups
and query execution. Different index types can support
different operations with varying time–space trade-offs.

– Join Processing. At the core of evaluating queries lie ef-
ficient methods for processing joins. Aside from tradi-
tional pairwise joins, recent years have seen the emer-
gence of novel techniques, such as multiway and worst-
case optimal joins, as well as GPU-based join process-
ing. Optimizing the order of evaluation of joins can also
be important to ensure efficient processing.

Beyond processing joins, SPARQL engines must offer
efficient support for more expressive query features:

– Query Processing. SPARQL is an expressive language
containing a variety of query features beyond joins that
need to be supported efficiently, such as filter expres-
sions, optionals, path queries, etc.

RDF stores can further be divided into two categories:
(1) local stores (also called single-node stores) that manage
RDF data on one machine and (2) distributed stores that par-
tition RDF data over multiple machines. While local stores
are more lightweight, the resources of one machine limit
scalability [249,175,104]. Various kinds of distributed RDF
stores have thus been proposed [88,104,203,204] that typi-
cally run on clusters of shared-nothing machines.

In this survey, we describe storage, indexing, join pro-
cessing and query processing techniques employed by local
RDF stores, as well as high-level strategies for partitioning
RDF graphs as needed for distributed storage. An appendix
in this extended version further compares 135 local and dis-
tributed RDF engines in terms of the techniques they use,
as well as 12 benchmarks in terms of the types of data and
queries they contain. The goal of this survey is to give a suc-
cinct introduction of the different techniques used by RDF
query engines, and also to help users to choose the appropri-
ate engine or benchmark for a given use case.

The rest of the paper is structured as follows. Section 2
discusses and contrasts this survey with related literature.
Section 3 provides preliminaries for RDF and SPARQL. Sec-
tions 4, 5, 6 and 7 review techniques for storage, index-
ing, join processing and query processing, respectively. Sec-
tion 8 explains different graph partitioning techniques for
distributing storage over multiple machines. Section 9 in-
troduces additional content available in the appendix of this
extended version, which surveys 135 local and distributed
RDF engines, along with 12 SPARQL benchmarks. Sec-
tion 10 concludes the paper with subsections for current
trends and research challenges regarding efficient RDF-based
data management and query processing.

2 Literature Review

We first discuss related studies. More specifically, we sum-
marize peer-reviewed tertiary literature (surveys in journals,
short surveys in proceedings, book chapters, surveys with
empirical comparisons, etc.) from the last 10 years collating
techniques, engines and/or benchmarks for querying RDF.
We summarize the topics covered by these works in Table 1.
We use 3,∼ and blank cells to denote detailed, partial or lit-
tle/no discussion, respectively, when compared with the cur-
rent survey (the bottom row). We also present the number of
engines and benchmarks included in the extended version of
this survey. If the respective publication does not formally
list all systems/benchmarks (e.g., as a table), we may write
n+ as an estimate for the number discussed in the text.

Sakr et al. [196] present three schemes for storing RDF
data in relational databases, surveying works that use the
different schemes. Svoboda et al. [221] provide a brief sur-
vey on indexing schemes for RDF divided into three cate-
gories: local, distributed and global. Faye et al. [70] focus
on both storage and indexing schemes for local RDF en-
gines, divided into native and non-native storage schemes.
Luo et al. [141] also focus on RDF storage and indexing
schemes under the relational-, entity-, and graph-based per-
spectives in local RDF engines. Compared to these works,
we present join processing, query processing and partition-
ing techniques; furthermore, these works predate the stan-
dardization of SPARQL 1.1, and thus our discussion includes
more recent storage and indexing techniques, as well as sup-
port for new features such as property paths.

Later surveys began to focus on distributed RDF stores.
Kaoudi et al. [116] present a survey of RDF stores explicitly
designed for a cloud-based environment. Ma et al. [144] pro-
vide an overview of RDF storage in relational and NoSQL
databases. Özsu [174] presents a survey that focuses on stor-
age techniques for RDF within local and distributed stores,
with a brief overview of query processing techniques in dis-
tributed and decentralized (Linked Data) settings. Abdelaziz
et al. [3] survey 22 distributed RDF stores, and compare 12
experimentally in terms of pre-processing cost, query per-
formance, scalability, and workload adaptability. Elzein et
al. [67] present a survey on the storage and query process-
ing techniques used by RDF stores on the cloud. Janke &
Staab [111] present lecture notes discussing RDF graph par-
titioning, indexing, and query processing techniques, with a
focus on distributed and cloud-based RDF engines. Pan et
al. [175] provide an overview of local and distributed stor-
age schemes for RDF. Yasin et al. [255] discussed SPARQL
(1.1) query processing in the context of distributed RDF
stores. Wylot et al. [249] present a comprehensive survey of
storage and indexing techniques for local (centralized) and
distributed RDF stores, along with a discussion of bench-
marks; most of their survey is dedicated to distributed and
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Table 1: Prior tertiary literature on RDF query engines; the abbreviations are: Sto./Storage, Ind./Indexing, J.Pr./Join Pro-
cessing, Q.Pr./Query Processing, Dis./Distribution, Eng./Engines, Ben./Benchmarks

Study Year Techniques Eng. Bench.Sto. Ind. J.Pr. Q.Pr. Dis.

Sakr et al. [196] 2010 3 ∼ 10+
Svoboda et al. [221] 2011 ∼ ∼ ∼ 14 6
Faye et al. [70] 2012 3 ∼ ∼ 13
Luo et al. [141] 2012 3 3 20+
Kaoudi et al. [116] 2015 3 ∼ ∼ ∼ 3 17
Ma et al. [144] 2016 3 ∼ ∼ 17 6
Özsu [174] 2016 3 ∼ ∼ ∼ 35+
Abdelaziz et al. [3] 2017 3 ∼ ∼ ∼ 3 21 4
Elzein et al. [67] 2018 3 ∼ ∼ ∼ 15+
Janke & Staab [111] 2018 ∼ ∼ ∼ ∼ 3 50+ 9
Pan et al. [175] 2018 3 ∼ ∼ ∼ 25+ 4
Wylot et. al [249] 2018 3 ∼ ∼ ∼ 3 24 8
Yasin et al. [255] 2018 ∼ 3 ∼ 14
Alaoui [9] 2019 3 ∼ 30+
Chawla et al. [50] 2020 3 ∼ ∼ ∼ 46 9
Zambom et al. [257] 2020 ∼ ∼ 3 24

Ali et al. 3 3 3 3 3 135 12

federated stores. Alaoui [9] proposes a categorization scheme
for RDF engines, including memory-, cloud-, graph- and
binary-bases stores. The survey by Chawla et al. [50] re-
views distributed RDF engines in terms of storage, partition-
ing, indexing, and retrieval. The short survey by Zambom &
dos Santos [257] discusses mapping RDF data into NoSQL
databases. All of these works focus on techniques for stor-
ing RDF, particularly in distributed settings, where our sur-
vey is more detailed in terms of join and query processing
techniques, particularly in local settings.

Local RDF stores are those most commonly found in
practice [43]. To the best of our knowledge, our survey pro-
vides the most comprehensive discussion thus far on stor-
age, indexing, join processing and querying processing tech-
niques for SPARQL in a local setting, where, for example,
we discuss novel techniques for established features – such
as novel indexing techniques based on compact data struc-
tures, worst-case optimal and matrix-based join processing
techniques, multi-query optimization, etc. – as well as tech-
niques for novel features in SPARQL 1.1 – such as index-
ing and query processing techniques for evaluating property
paths – that are not well-represented in the existing litera-
ture. To keep our survey self-contained, we also present par-
titioning techniques for RDF graphs, and include distributed
stores and benchmarks in our survey. Per Table 1, the sur-
vey of engines and benchmarks found in the online version
is more comprehensive than seen in previous works [10].
Conversely, some of the aforementioned works are more de-
tailed in certain aspects, particularly distributed stores; we
refer to this literature for further details as appropriate.

3 Preliminaries

Before beginning the core of the survey, we first introduce
some preliminaries regarding RDF and SPARQL.

3.1 RDF

The RDF data model [208] uses RDF terms from three pair-
wise disjoint sets: the set I of Internationalized Resource
Identifiers (IRIs) [66] used to identify resources; the set L
of literals used for (language-tagged or plain) strings and
datatype values; and the set B of blank nodes, interpreted as
existential variables. An RDF triple (s, p, o) ∈ IB×I×IBL

contains a subject s, a predicate p and an object o.1 A set
of RDF terms is called an RDF graph G, where each triple
(s, p, o) ∈ G represents a directed labeled edge s

p−→ o. The
sets s(G), p(G) and o(G) stand for the set of subjects, pred-
icates and objects in G, respectively. We further denote the
set of nodes in G by so(G) := s(G) ∪ o(G).

An example RDF graph, representing information about
two university students, is shown in Figure 1. We include
both a graphical representation and a triple-based represen-
tation. RDF terms such as :DB, foaf:age, etc., denote pre-
fixed IRIs.2 For example, foaf:age stands for the full IRI
http://xmlns.com/foaf/0.1/age if we define the pre-
fix foaf as http://xmlns.com/foaf/0.1/. Terms such
as "Motor RDF"@es denote strings with (optional) language

1 In this paper, we abbreviate the union of setsM1∪ . . .∪Mn with
M1 . . .Mn. Hence, IBL stands for I ∪B ∪ L.

2 We use the blank prefix (e.g., :DB) as an arbitrary example. Other
prefixes used can be retrieved at http://prefix.cc/.

http://xmlns.com/foaf/0.1/age
http://xmlns.com/foaf/0.1/
http://prefix.cc/
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tags, and terms such as "21"^^xsd:int denote datatype val-
ues. Finally we denote blank nodes with the underscore pre-
fix, where _:p refers to the existence of a project shared by
Alice and Bob. Terms used in the predicate position (e.g.,
foaf:age, skos:broader) are known as properties. RDF
defines the special property rdf:type, which indicates the
class (e.g., foaf:Person, foaf:Project) of a resource.

The semantics of RDF can be defined using RDF Schema
(RDFS) [37], covering class and property hierarchies, prop-
erty domains and ranges, etc. Further semantics can be cap-
tured with the Web Ontology Language (OWL) [97], such as
class and property equivalence; inverse, transitive, symmet-
ric and reflexive properties; set- and restriction-based class
definitions; and more besides. Since our focus is on querying
RDF graphs, we do not discuss these standards in detail.

3.2 SPARQL

Various query languages for RDF have been proposed down
through the years, such as RQL [118], SeRQL [218], etc.
We focus our discussion on SPARQL [92], which is now the
standard language for querying RDF, and refer to the work
by Haase et al. [87] for information on its predecessors.

We define the core of SPARQL in terms of basic graph
patterns that express the core pattern matched against an
RDF graph; navigational graph patterns that match arbitrary-
length paths; complex graph patterns that introduce vari-
ous language features, such as OPTIONAL, UNION, MINUS,
etc. [16]; and query types that specify what result to return.

Basic Graph Patterns (BGPs) At the core of SPARQL lie
triple patterns, which are RDF triples that allow variables
from the set V (disjoint with IBL) in any position. A basic
graph pattern (BGP) is a set of triple patterns. Since blank
nodes in BGPs act as variables, we assume they have been
replaced with variables. We use vars(B) to denote the set of
variables in the BGP B. Given an RDF graph G, the evalu-
ation of a BGP B, denoted B(G), returns a set of solution
mappings. A solution mapping µ is a partial mapping from
the set V of variables to the set of RDF terms IBL. We
write dm(µ) to denote the set of variables for which µ is
defined. Given a triple pattern t, we use µ(t) to refer to the
image of t under µ, i.e., the result of replacing any variable
v ∈ dm(µ) appearing in t with µ(v). µ(B) stands for the
image of the BGP B under µ; i.e., µ(B) := {µ(t) | t ∈ B}.
The evaluation of a BGPB on an RDF graphG is then given
as B(G) := {µ | µ(B) ⊆ G and dm(µ) = vars(B)}. In the
case of a singleton BGP {t}, we may write {t}(G) as t(G).

In Figure 2, we provide an example of a BGP along
with its evaluation. Each row of the results refers to a so-
lution mapping. Some solutions map different variables to
the same term; each such solution is thus a homomorphism
from the BGP to the RDF graph.

Table 2: Evaluation of path expressions

p(G):={(s, o) | (s, p, o) ∈ G}

^e(G):={(s, o) | (o, s) ∈ e(G)}
e+(G):={(y1, yn) | for 1 ≤ i < n : ∃(yi, yi+1) ∈ e(G)}
e?(G):=e(G) ∪ {(x, x) | x ∈ so(G)}
e*(G):=(e+)?(G)

e1/e2(G):={(x, z) | ∃y : (x, y) ∈ e1(G) ∧ (y, z) ∈ e2(G)}
e1|e2(G):=e1(G) ∪ e2(G)

!P (G):={(s, o) | (s, p, o) ∈ G ∧ p /∈ P}
!^P (G):={(s, o) | (o, p, s) ∈ G ∧ p /∈ P}

Navigational Graph Patterns (NGPs) A key feature of graph
query languages is the ability to match paths of arbitrary
length [16]. In SPARQL (1.1), this ability is captured by
property paths [92], which are regular expressions E that
paths should match, defined recursively as follows:

– if p is an IRI, then p is a path expression (property);
– if e is a path expression, then ^e (inverse), e* (zero-or-

more, aka. Kleene star), e+ (one-or-more), and e? (zero-
or-one) are path expressions.

– If e1, e2 are path expressions, then e1/e2 (concatena-
tion) and e1|e2 (disjunction) are path expressions.

– if P is a set of IRIs, then !P and !^P are path expressions
(negated property set);3

The evaluation of path expressions on an RDF graph G
returns pairs of nodes inG connected by paths that match the
expression, as defined in Table 2. These path expressions are
akin to 2-way regular path queries (2RPQs) extended with
negated property sets [128,16].

We call a triple pattern (s, e, o) that further allows a path
expression as the predicate (i.e., e ∈ EV) a path pattern. A
navigational graph pattern (NGP) is then a set of path pat-
terns. Given a navigational graph patternN , let paths(N) :=

p(N) ∩ E denote the set of path expressions used in N .
Given an RDF graphG and a set of path expressionsE ⊆ E,
we denote by GE := G∪ (

⋃
e∈E{(s, e, o) | (s, o) ∈ e(G)})

the result of materializing all paths matching E in G. The
evaluation of the navigational graph pattern N on G is then
N(G) :={µ | µ(N) ⊆ Gpaths(N) and dm(µ) = vars(N)}.

We provide an example of a navigational graph pattern
and its evaluation in Figure 3.

Complex Graph Patterns (CGPs) Complex graph patterns
(CGPs) introduce additional language features that can com-
bine and transform the results of one or more graph patterns.
More specifically, evaluating BGPs and NGPs returns solu-
tion mappings that can be viewed as relations, (i.e., tables),

3 SPARQL uses the syntax !(p1|. . .|pk|pk+1|. . .|pn) which
can be written as !P |!^P ′, where P = {p1, . . . , pk} and P ′ =
{pk+1, . . . , pn} [92,128].
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foaf:Person:Alice rdf:type

"26"^^xsd:int

foaf:age

:Bob

foaf:knows

foaf:knows

rdf:type

"21"^^xsd:int

foaf:age

_:p

foaf:pastProjectfoaf:currentProject

foaf:Project

rdf:type

"RDF Engine"@en

rdfs:label

"Motor RDF"@es

rdfs:label

:SW

foaf:topic_interest

:DB

foaf:topic_interest

skos:related

foaf:topic_interest

:Web

skos:broader

:CS

skos:broader

skos:broader

Subject Predicate Object

:Alice rdf:type foaf:Person
:Alice foaf:age "26"^^xsd:int
:Alice foaf:topic_interest :DB
:Alice foaf:topic_interest :SW
:Alice foaf:knows :Bob
:Alice foaf:currentProject _:p
:Bob rdf:type foaf:Person
:Bob foaf:age "21"^^xsd:int
:Bob foaf:topic_interest :DB
:Bob foaf:knows :Alice
:Bob foaf:pastProject _:p
_:p rdf:type foaf:Project
_:p rdfs:label "RDF Engine"@en
_:p rdfs:label "Motor RDF"@es
:SW skos:broader :Web
:SW skos:related :DB
:Web skos:broader :CS
:DB skos:broader :CS

Fig. 1: Graphical (left) and triple-based representation (right) of an example RDF graph

SELECT * WHERE {
?a a foaf:Person ; foaf:knows ?b ; foaf:topic_interest ?ia .
?b a foaf:Person ; foaf:knows ?a ; foaf:topic_interest ?ib .

}

foaf:Person?a rdf:type ?b

foaf:knows

foaf:knows

rdf:type

?ia

foaf:topic_interest

?ib

foaf:topic_interest

?a ?b ?ia ?ib

:Alice :Bob :DB :DB
:Alice :Bob :SW :DB
:Bob :Alice :DB :DB
:Bob :Alice :DB :SW

Fig. 2: A BGP in SPARQL syntax and as a graph (above),
with its evaluation over the graph of Figure 1 (below)

where variables are attributes (i.e., column names) and tu-
ples (i.e., rows) contain the RDF terms bound by each so-
lution mapping (see Figures 2–4). CGPs support combining
and transforming the results of BGPs/NGPs with language
features that include FILTER (selection: σ), SELECT (projec-
tion: π), UNION (union: ∪), EXISTS (semi-join: n), MINUS
(anti-join: B4) and OPTIONAL (left-join: ./). These language
features correspond to the relational algebra defined in Ta-
ble 3. The default operator is a natural inner join (./). Fig-
ure 4 provides an example of a CGP combining two BGPs
and an NGP using union, join and projection.

4 The definition of MINUS is slightly different from anti-join in that
mappings with no overlapping variables on the right are ignored.

SELECT * WHERE {
?a a foaf:Person ; foaf:knows ?b ;
foaf:topic_interest/skos:related*/foaf:topic_interest ?b .

?b a foaf:Person ; foaf:knows ?a .
}

foaf:Person?a rdf:type ?b

foaf:knows

foaf:knows

foaf:topic_interest/skos:related*/^foaf:topic_interest

rdf:type

?a ?b

:Alice :Alice
:Alice :Bob
:Bob :Alice
:Bob :Bob

Fig. 3: Example NGP (above) and its evaluation over the
graph of Figure 1 (below)

Table 3: Core relational algebra of SPARQL

σR(M) := { µ ∈M | R(µ)}
πV (M) := { µ′ | ∃µ ∈M :µ ∼ µ′ ∧dm(µ′)=V ∩dm(µ)}

M1 ./ M2 := { µ1 ∪ µ2 | µ1 ∈M1 ∧ µ2 ∈M2 ∧ µ1 ∼ µ2}
M1 ∪M2 := { µ | µ ∈M1 ∨ µ ∈M2}
M1 nM2 := {µ1 ∈M1 | ∃µ2 ∈M2 : µ1 ∼ µ2}
M1 BM2 := { µ1 ∈M1 | @µ2 ∈M2 : µ1 ∼ µ2}
M1 ./ M2 := (M1 ./ M2) ∪ (M1 BM2)

Named graphs SPARQL allows for querying multiple RDF
graphs through the notion of a SPARQL dataset, defined as
D := {G, (n1, G1), . . . , (nk, Gk))} where G,G1 . . . , Gn
are RDF graphs; n1, . . . , nk are pairwise distinct IRIs; G
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SELECT ?x ?z WHERE {
{ ?x foaf:currentProject ?y . ?y rdfs:label ?z . }
UNION { ?x foaf:pastProject ?y . ?y rdfs:label ?z . }
?x foaf:topic_interest/skos:broader* :SW .

}

π?x,?z(( ?x ?yfoaf:currentProject ?zrdfs:label ∪
?x ?yfoaf:pastProject ?zrdfs:label ) ./
?x :SWfoaf:topic_interest/skos:broader* )

?x ?z

:Alice "Motor RDF"@es
:Alice "RDF Engine"@en

Fig. 4: Example CGP (above) and its evaluation over the
graph of Figure 1 (below)

is known as the default graph; and each pair (n1, G1) (for
1 ≤ i ≤ n) is known as a named graph. Letting N ′, N ′′ de-
note sets of IRIs, n′, n′′ IRIs and v a variable, SPARQL then
provides a number of features for querying different graphs:

– FROM N ′ FROM NAMED N ′′: activates a dataset with a de-
fault graph composed of the merge of all graphs G′ such
that (n′, G′) ∈ D and n′ ∈ N ′, and the set of all named
graphs (n′′, G′′) ∈ D such that n′′ ∈ N ′′;

– GRAPH n′: evaluates a graph pattern on the graph G′ if
the named graph (n′, G′) is active;

– GRAPH v: takes the union of the evaluation of a graph
pattern over each G′ such that (n′, G′) is active, binding
v to n′ for each solution generated from G′;

Without FROM or FROM NAMED, the active dataset is the in-
dexed dataset D. Without GRAPH, graph patterns are evalu-
ated on the active default graph. Quad stores disallow empty
named graphs, such thatD := {G, (n1, G1), . . . , (nk, Gk))}
is viewed as D = G×{?}∪ (

⋃
(ni,Gi)∈D Gi×{ni}), i.e., a

set of quads using ? 6∈ IBL as a special symbol for the de-
fault graph. In this case, a quad (s, p, o, n) denotes a triple
(s, p, o) in the default graph if n = ?, or a triple in the named
graph G′ such that (n,G′) ∈ D if n ∈ I. We can define
CGPs involving quad patterns analogously.

Other SPARQL features SPARQL supports features beyond
CGPs, which include aggregation (group-by with count, sum,
etc.), solution modifiers (ordering and slicing solutions), bag
semantics (preserving result multiplicity), federation (fetch-
ing solutions from remote services), entailment and more
besides. SPARQL also supports different query types, such
as SELECT, which returns a sequence of solution mappings;
CONSTRUCT, which returns an RDF graph based on the solu-
tion mappings; DESCRIBE, which returns an RDF graph de-
scribing indicated RDF terms; and ASK, which returns true if
some solution mapping is found, or false otherwise.

4 Storage

Data storage refers to how data are represented in mem-
ory. Different storage mechanisms store different elements
of data contiguously in memory, offering trade-offs in terms
of compression and efficient data access. This section re-
views various categories of RDF storage.

4.1 Triple table

A triple table stores an RDF graphG as a single ternary rela-
tion. Figure 1 shows an RDF graph with its triple table on the
right-hand side. One complication when storing triple tables
in relational databases is that such systems assume a column
to have a single type, which may not be true for RDF objects
in particular; a workaround is to store a string encoding of
the terms, though this may complicate their ordering.

Rather than storing full RDF terms in the triple table,
stores may apply dictionary encoding, where RDF terms are
mapped one-to-one with numeric object identifiers (OIDs),
with OIDs being stored in the table and decoded using the
dictionary as needed. Since OIDs consume less memory and
are faster to process than strings, such an approach works
better for queries that involve many intermediate results but
generate few final results; on the other hand, such an ap-
proach suffers when queries are simple and return many re-
sults, or when selective filters are specified that require de-
coding the term before filtering. To find a better trade-off,
some RDF engines (e.g., Jena 2 [241]) only use OIDs for
strings with lengths above a threshold.

The most obvious physical storage is to store triples con-
tiguously (row-wise). This allows for quickly retrieving the
full triples that match (e.g.) a given triple pattern. However,
some RDF engines based on relational storage (e.g., Virtu-
oso [69]) rather use (or provide an option for) column-wise
storage, where the values along a column are stored contigu-
ously, often following a particular order. Such column-wise
storage allows for better compression, and for quickly read-
ing many values from a single column.

Triple tables can be straightforwardly extended to quad
tables in order to support SPARQL datasets [69,91].

4.2 Vertical partitioning

The vertical partitioning approach [1] uses a binary relation
for each property p ∈ p(G) whose tuples encode subject–
object pairs for that property. In Figure 5 we exemplify two
such binary relations. Physical storage can again use OIDs,
row-based or column-based storage, etc.

When compared with triple tables, vertical partitioning
generates relations with fewer rows, and more specific do-
mains for columns (e.g., the object column for foaf:age



A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs 7

rdf:type

Subject Object

:Alice foaf:Person
:Bob foaf:Person
_:p foaf:Project

foaf:age

Subject Object

:Alice 26
:Bob 21

Fig. 5: Vertical partitioning for two properties in Figure 1

can be defined as an integer type). However, triple patterns
with variable predicates may require applying a union on all
relations. Also, RDF graphs may have thousands of proper-
ties [233], which may lead to a schema with many relations.

Vertical partitioning can be used to store quads by adding
a Graph column to each table [69,91].

4.3 Extended vertical partitioning

S2RDF [204] uses extended vertical partitioning based on
semi-join reductions (we recall from Table 3 that a semi-join
M1nM2, aka. FILTER EXISTS, returns the tuples inM1 that
are “joinable”withM2). Letting x,y, z denote variables and
p, q denote RDF terms, then for each property pair (p, q) ∈
p(G)×p(G) such that p 6= q, extended vertical partitioning
stores three semi-join reductions:

1. (x, p,y)(G)n (y, q, z)(G) (O–S),
2. (x, p,y)(G)n (x, q, z)(G) (S–S),
3. (x, p,y)(G)n (z, q,x)(G) (S–O).

The semi-join (x, p,y)(G)n(z, q,y)(G) (O–O) is not stored
as most O–O joins have the same predicate, and thus would
occur in the same relation. In Figure 6 we give an example
of a semi-join reduction for two predicates from the running
example; empty semi-joins are omitted.

In comparison with vertical partitioning, observing that
(M1nM2) on (M2nM1) ≡M1 onM2, we can apply joins
over the corresponding semi-join reductions knowing that
each tuple read from each side will contribute to the join,
thus reducing I/O. The cost involves storing (and updating)
each tuple in up to 3(|p(G)| − 1) additional relations; omit-
ting empty semi-joins can help to mitigate this issue [204].
Extended vertical partitioning also presents complications
for variable predicates, graphs with many properties, etc.

4.4 Property table

Property tables aim to emulate the n-ary relations typical of
relational databases. A property table usually contains one
subject column, and n further columns to store objects for
the corresponding properties of the given subject. The sub-
ject column then forms a primary key for the table. The ta-
bles to define can be based on classes, clustering [184], col-
oring [36], etc., to group subjects with common properties.

skos:broader
nS–S skos:related

Subject Object

:SW :Web

skos:broader
nS–O skos:related

Subject Object

:DB :CS

skos:related
nO–S skos:broader

Subject Object

:SW :DB

skos:related
nS–S skos:broader

Subject Object

:SW :DB

Fig. 6: Example semi-join reduction for two properties

foaf:Person

Subject age topic knows cProj pProj

:Alice 26 :DB :Bob _:p NULL
:Bob 21 :DB :Alice NULL _:p

Fig. 7: Example property table for people

We provide an example of a property table based on the class
foaf:Person in Figure 7 for the RDF graph of Figure 1.

Property tables can store and retrieve multiple triples
with a given subject as one tuple (e.g., to find people with
age < 30 and interest = :SW) without needing joins. Prop-
erty tables often store terms of the same type in the same col-
umn, enabling better compression. Complications arise for
multi-valued (. . . -to-many) or optional (zero-to-. . . ) proper-
ties. In the example of Figure 1, Alice is also interested in
SW, which does not fit in the cell. Furthermore, Alice has no
past project, and Bob has no current project, leading to nulls.
Changes to the graph may also require re-normalization;
for example, even though each person currently has only
one value for knows, adding that Alice knows another per-
son would require renormalizing the tables. Complications
also arise when considering variable predicates, RDF graphs
with many properties or classes, quads, etc.

4.5 Graph-based storage

While the previous three storage mechanisms rely on rela-
tional storage, graph-based storage is adapted specifically
for the graph-based model of RDF. Key characteristics of
such models that can be exploited for storage include the
adjacency of nodes, the fixed arity of graphs, etc.

Graphs have bounded arity (3 for triples, 4 for quads),
which can be exploited for specialized storage. Engines like
4store [91] and YARS2 [94] build native triple/quad tables,
which differ from relational triple/quad tables in that they
have fixed arity, fixed attributes (S,P,O(,G)), and more gen-
eral domains (e.g., the O column can contain any RDF term).

Graphs often feature local repetitions that are compress-
ible with adjacency lists (e.g., Hexastore [238], gStore [263],
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s

:Alice

:Bob

...

(s)p

foaf:age

foaf:currentProject

foaf:knows

.foaf:topic_interest.

rdf:type

(sp)o

."26"^^xsd:int.

_:p

:Bob

:DB

:SW

foaf:Person

(s)p

foaf:age

foaf:knows

foaf:pastProject

.foaf:topic_interest.

rdf:type

(sp)o

."21"^^xsd:int.

:Alice

_:p

:DB

foaf:Person

Fig. 8: Example adjacency list for two subjects with dashed
links indicating index-free adjacency pointers

LE :

Edge Label

(:Alice,:Bob) {foaf:knows}
(:Alice,:DB) {foaf:topic_interest}
(:Bob,:Alice) {foaf:knows}
. . . . . .

LV :

Node Attributes

:Alice {(foaf:age, "26"^^xsd:int)}
:Bob {(foaf:age, "21"^^xsd:int)}
:DB {}
. . . . . .

Fig. 9: Example of the multi-graph representation

SpiderStore [32], Trinity.RDF [258], GRaSS [142]). These
lists are akin to tries, where subject or subject–predicate pre-
fixes are followed by the rest of the triple. Such tries can be
stored row-wise in blocks of triples; or column-wise, where
blocks elements from one column point to blocks of ele-
ments from the next column. Index-free adjacency can en-
able efficient navigation, where terms in the suffix directly
point to the location on disk of their associated prefix. We
refer to Figure 8 for an example. Such structures can also in-
clude inverse edges (e.g., Trinity.RDF [258], GRaSS [142]).

An alternative is to decompose an RDF graph into its
constituent components for storage. AMBER [105] uses a
multigraph representation where an RDF graphG is decom-
posed into a set of (non-literal) nodes V := so(G) ∩ IB, a
set of edges E := {(s, o) ∈ V × V | ∃p : (s, p, o) ∈ G},
an edge-labeling function of the form LE : V → 2I such
that LE(s, o) := {p | (s, p, o) ∈ G}, and an attribute-
labeling function of the form LV : IB → 2I×L such that
LV (s) := {(p, o) | (s, p, o) ∈ G ∧ o ∈ L}, as seen in
Figure 9 (in practice, AMBER uses dictionary-encoding).

skos:broader

:CS :DB :SW :Web
:CS 0 0 0 0
:DB 1 0 0 0
:SW 0 0 0 1
:Web 1 0 0 0

Fig. 10: Example bit matrix for skos:broader

4.6 Tensor-based storage

Another type of native graph storage uses tensors, viewing a
dictionary-encoded RDF graph G with m = |so(G)| nodes
and n = |p(G)| predicates as an m × n × m 3-order ten-
sor T of bits such that Ti,j,k = 1 if the ith node links to the
kth node with the jth property, or Ti,j,k = 0 otherwise. A
popular variant uses an adjacency matrix per property (e.g.,
BitMat [21], BMatrix [38], QDags [163]), akin to vertical
partitioning, as seen in Figure 10. A third option (consid-
ered, e.g., by MAGiQ [109]) is to encode the full graph as
an adjacency matrix where each cell indicates the property
id connecting the two nodes; this matrix cannot directly rep-
resent pairs of nodes connected by more than one property.

While abstract tensor-based representations may lead to
highly-sparse matrices or tensors, compact data structures
offer compressed representations that support efficient op-
erations [21,109,38,163]. Often such matrices/tensors are
stored in memory, or loaded into memory when needed. Such
representations may also enable query processing techniques
that leverage hardware acceleration, e.g., for processing joins
on GPUs (as we will discuss in Section 6.4).

4.7 Miscellaneous storage

Aside from relational-based and graph-based storage, other
engines have proposed to leverage other forms of storage
as implemented by existing systems. A common example is
the use of NoSQL key-value, tabular or document stores for
distributed storage (see [111,257,249] for more details).

4.8 Discussion

Early works on storing RDF tended to rely on relational stor-
age, which had been subject to decades of developments
and optimizations before the advent of RDF (e.g., [241,1,
69]). Though such an approach still has broad adoption [69],
more recent storage techniques aim to exploit the graph-
based characteristics of RDF – and SPARQL – in order to
develop dedicated storage techniques (e.g., [21,238,263]),
including those based on tensors/matrices [21,109,38,163].
A recent trend is to leverage NoSQL storage (e.g., [131,177,
25]) in order to distribute the management of RDF data.
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5 Indexing

Indexing enables efficient lookup operations on RDF graphs
(i.e., O(1) or O(log |G|) time to return the first result or an
empty result). The most common such operation is to find
triples that match a given triple pattern. However, indexes
can also be used to match non-singleton BGPs (with more
than one triple pattern), to match path expressions, etc. We
now discuss indexing techniques proposed for RDF graphs.

5.1 Triple indexes

The goal of triple indexes is to efficiently find triples match-
ing a triple pattern. Letting s, p, o denote RDF terms and
s,p,o variables, there are 23 = 8 abstract patterns: (s,p,o),
(s,p, o), (s, p,o), (s,p,o), (s, p, o), (s,p, o), (s, p,o) and
(s, p, o). Unlike relational databases, where often only the
primary key of a relation will be indexed by default and fur-
ther indexes must be manually specified, most RDF stores
aim to have a complete index by default, covering all eight
possible triple patterns. However, depending on the type of
storage chosen, this might not always be feasible.

When a storage scheme such as vertical partitioning is
used [1], only the five patterns where the predicate is con-
stant can be efficiently supported (by indexing the subject
and object columns). If the RDF graph is stored as a (bi-
nary) adjacency matrix for each property [21,163], again
only constant-predicate patterns can be efficiently supported.
Specialized indexes can be used to quickly evaluate such
patterns, where QDags [163] uses quadtrees: a hierarchi-
cal index structure that recursively divides the matrix into
four sub-matrices; we provide an example quadtree in Fig-
ure 11. A similar structure, namely a k2-tree, is used by
BMatrix [38].

Otherwise, in triple tables, or similar forms of graph-
based storage, all triple patterns can be efficiently supported
with triple permutations. Figure 8 illustrates a single SPO

permutation. A total of 3! = 6 permutations are possible and
suffice to cover all eight abstract triple patterns if the index
structure permits prefix lookups; for example, in an SPO per-
mutation we can efficiently support four abstract triple pat-
terns (s,p,o), (s,p,o), (s, p,o) and (s, p, o) as we require
the leftmost terms of the permutation to be filled. In fact,
with only

(
3
b3/2c

)
= 3 permutations – e.g., SPO, POS and

OSP – we can cover all eight abstract triple patterns. Such
index permutations can be implemented using standard data
structures such as ISAM files [94], B(+)Trees [168], AVL
trees [243], as well as compact data structures, such as adja-
cency lists [238] (see Figure 8) and tries [185], etc.

Recent works use compact data structures to reduce re-
dundancy for index permutations, and thus the space re-
quired for triple indexing. Perego et al. [185] use tries to


0 0 0 0
1 0 0 0
0 0 0 1
1 0 0 0


Fig. 11: A quadtree index based on the bit matrix of Fig-
ure 10; the root represents the full matrix, while children de-
note four sub-matrices of the parent; a node is colored black
if it contains only 1’s, white if it contains only 0’s, and gray
if it contains both; only gray nodes require children

index multiple permutations, over which they apply cross-
compression, whereby the order of the triples given by one
permutation is used to compress another permutation. Other
approaches remove the need for multiple permutations. RD-
FCSA [40] and Ring [19] use a compact suffix-array (CSA)
such that one permutation suffices to efficiently support all
triple patterns. Intuitively speaking, triples can be indexed
cyclically in a CSA, such that in an SPO permutation, one
can continue from O back to S, thus covering SPO, POS and
OSP permutations in one CSA index [40]. The Ring indexing
scheme is also bidirectional, where in an SPO permutation,
one can move from O forwards to S or backwards to P.

5.2 Entity-based indexes

Entity-based indexes optimize graph patterns that “center
on” a particular entity. BGPs can be reduced to joins over
their triple patterns; for example, {(x, p,y), (y, q, z)}(G)=
{(x, p,y)}(G) on {(y, p, z)}(G). Star joins are frequently
found in BGPs, defined to be a join on a common subject,
e.g., {(w, p,x), (w, q,y), (w, r, z)}. Star joins may some-
times also include S–O joins on the common variable, e.g.,
{(w, p,x), (w, q,y), (z, r,w)} [142]. Star joins retrieve data
surrounding a particular entity (in this case w). Entity-based
indexes permit efficient evaluation of such joins.

Property tables can enable efficient star joins so long as
the relevant tables can be found efficiently and there are in-
dexes on the relevant columns (e.g., for p, q and/or r).

The EAGRE system [261] uses an index for property
tables where entities with n properties are encoded in n-
dimensional space. A space-filling curve (e.g., a Z-order or
Hilbert curve) is then used for indexing. Figure 12 illus-
trates the idea, where four entities are indexed (abbreviating
:Alice, :Bob, :Carol, :Dave) with respect to two dimen-
sions (say foaf:age for x and integer-encoded values of
foaf:knows for y). We show the first-, second- and third-
order Hilbert curves from left to right. Letting d denote the
number of dimensions, the nth-order Hilbert curve assigns
an ordinal to 2dn regions of the space based on the order in
which it visits the region; e.g., starting with region 1 on the
bottom left and following the curve, :A is in the region of or-
dinal 2, 7 and 26, respectively. The space-filling curve thus
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:A

:B

:C
:D

Fig. 12: Space-filling indexing with a Hilbert curve

“flattens” multidimensional data into one dimension (the or-
dinal), which can be indexed sequentially.

Property tables are complicated by multi-valued prop-
erties, missing values, etc. A more flexible approach is to
index signatures of entities, which are bit-vectors encoding
the property–value pairs of the entity. One such example is
the vertex signature tree of gStore [263], which encodes all
outgoing (p, o) pairs for a given entity s into a bit vector
akin to a Bloom filter, and indexes these bit vectors hierar-
chically allowing for fast, approximate containment checks
that quickly find candidate entities for a subset of such pairs.
GRaSS [142] further optimizes for star subgraphs that in-
clude both outcoming and incoming edges on entities, where
a custom FDD-index allows for efficient retrieval of the sub-
graphs containing a triple that matches a triple pattern.

5.3 Property-based indexes

Returning to the star join {(w, p,x), (w, q,y), (w, r, z)},
another way to quickly return candidate bindings for the
variable w is to index nodes according to their adjacent prop-
erties; then we can find nodes that have at least the adjacent
properties p, q, r. Such an approach is used by RDFBro-
ker [212], which defines the signature of a node s asΣ(s) =

{p | ∃o : (s, p, o) ∈ G}; for example, the signature of :SW
in Figure 1 is Σ(:SW) = {skos:broader, skos:related}
(analogous to characteristic sets proposed later [165]). A
property table is then created for each signature. At query
time, property tables whose signatures subsume {p, q, r} are
found using a lattice of signatures. We provide an example in
Figure 13 with respect to the RDF graph of Figure 1, where
children subsume the signatures of their parent.

AxonDB [155] uses extended characteristic sets where
each triple (s, p, o) in the RDF graph is indexed with the sig-
natures (i.e., characteristic sets) of its subject and object; i.e.,
(Σ(s), Σ(o)). Thus the triple (:SW, skos:related, :DB) of
Figure 1 would be indexed with the extended characteristic
set ({skos:broader, skos:related} , {skos:broader}).
The index then allows for efficiently identifying two star
joins that are connected by a given property p.

{}

{r:t, f:a, f:t, f:k, f:c} {r:t, f:a, f:t, f:k, f:p}{r:t, r:l}{s:b}

{s:b, s:r}

Fig. 13: Lattice of node signatures with abbreviated terms
(e.g., s:b denotes skos:broader)

5.4 Path indexes

A path join involves successive S–O joins between triple
patterns; e.g., {(w, p,x), (x, q,y), (y, r, z)}, where the start
and end nodes (w, z) may be variables or constants. While
path joins have fixed length, navigational graph patterns may
further match arbitrary length paths. A number of indexing
approaches have been proposed to speed up querying paths.

A path can be seen as a string of arbitrary length; e.g.,
a path {(w, p, x), (x, q, y), (y, r, z)} can be seen as a string
wpxqyrz$, where $ indicates the end of the string; alterna-
tively, if intermediate nodes are not of importance, the path
could be represented as the string wpqrz$. The Yaanii sys-
tem [47] builds an index of paths of the form wpxqyrz$

that are clustered according to their template of the form
wpqrz$. Paths are then indexed in B+trees, which are par-
titioned by template. Fletcher et al. [72] also index paths in
B+trees, but rather than partition paths, they apply a max-
imum length of at most k for the paths included. Text in-
dexing techniques can also be applied for paths (viewed as
strings). Maharjan et al. [147] and the HPRD system [139]
both leverage suffix arrays – a common indexing technique
for text – to index paths. The downside of path indexing ap-
proaches is that they may index an exponential number of
paths; in the case of HPRD, for example, users are thus ex-
pected to specify which paths to index [139].

Other path indexes are inspired by prior works for path
queries over trees (e.g., for XPath). Bartoň [26] proposes a
tree-based index based on preorder and postorder traversal.
A preorder traversal starts at the root and traverses children
in a depth-first manner from left to right. A postorder traver-
sal starts at the leftmost leaf and traverses all children, from
left to right, before moving to the parent. We provide an ex-
ample preorder and postorder traversal in Figure 14. Given
two nodes m and n in the tree, a key property is that m is
a descendant of n if and only if m is greater than n for pre-
order and less than n for postorder. Bartoň [26] uses this
property to generate an index on ascending preorder so as
to linearize the tree and quickly find descendants based on
postorder. To support graphs, Bartoň uses a decomposition
of the graph into a forest of trees that are then indexed [26].

Another type of path index, called PLSD, is used in Sys-
tem Π [245] for indexing the transitivity of a single prop-
erty, optimizing for path queries of the form (s, p∗,o), or
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(1, 7) :CS

(5, 4) :DB(2, 3) :AI (6, 6) :Web

(3, 1) :ML (4, 2) :KR (7, 5) :SW

Fig. 14: Preorder and postorder on a skos:narrower tree;
e.g., :CS has preorder 1 and postorder 7

(s, p∗,o), etc. For a given property p, each incident (subject
or object) node x is assigned a triple of numbers (i, j, k) ∈
N3, where i is a unique prime number that identifies the node
x, j is the least common multiple of the i-values of x’s par-
ents (i.e., nodes y such that (y, p, x) ∈ G), and k is the least
common multiple of the k-values of x’s parents and the i-
value of x. We provide an example in Figure 15. PLSD can
further handle cycles by multiplying the k-value of all nodes
by the i value of all nodes in its strongly-connected compo-
nent. Given the i-value of a node, the i-values of its parents
and ancestors can be retrieved by factorizing j and k/i re-
spectively. However, multiplication may give rise to large
numbers, where no polynomial time algorithm is known for
the factorization of binary numbers.

Gubichev et al. [80] use a path index of directed graphs,
called FERRARI [210], for each property in an RDF graph.
First, a condensed graph is computed by merging nodes
of strongly connected components into one “supernode”;
adding an artificial root node (if one does not exist), the re-
sult is a directed acyclic graph (DAG) that preserves reach-
ability. A spanning tree – a subgraph that includes all nodes
and is a tree – of the DAG is computed and labeled with
its postorder. All subtrees thus have contiguous identifiers,
where the maximum identifies the root; e.g., in Figure 14,
the subtree at :AI has the interval [1, 3], where 3 identifies
the root. Then there exists a (directed) path from x to y if
and only if y is in the subtree interval for x. Nodes in a DAG
may, however, be reachable through paths not in the span-
ning tree. Hence each node is assigned a set of intervals for
nodes that can be reached from it, where overlapping and ad-
jacent intervals are merged; we must now check that y is in
one of the intervals of x. To improve time and space at the
cost of precision, approximate intervals are proposed that
merge non-overlapping intervals; e.g., [4, 6], [8, 9] is merged
to [4, 9], which can reject reachability for nodes with id less
than 2 or greater than 9, but has a 1

6 chance of a false positive
for nodes in [4, 9], which must be verified separately.

5.5 Join indexes

The results of joins can also be indexed. Groppe et al. [78]
proposed to construct 6 × 24 = 96 indexes for 6 types of
non-symmetric joins between two triple patterns (S–S, S–

(2, 1, 2) :CS

(5, 2, 10) :DB(3, 2, 6) :AI (7, 2, 14) :Web

(11, 3, 66) :ML (13, 15, 390) :DM (17, 35, 1190) :SW

Fig. 15: PLSD index on an example skos:narrower hierar-
chy; terms (e.g., :CS) are indexed externally

(:Alice, 2)

(_:p, 2) (:CS, 1)

. . . . . . . . . . . .

Fig. 16: Distance-based indexing (GRIN)

P, S–O, P–P, P–O, O–O). Hash maps are used to cover the
24 permutations of the remaining elements (not considering
the join variable). Given the high space cost, only frequently
encountered joins are sometimes indexed [55,152].

5.6 Structural indexes

Another family of indexes – known as structural indexes [141]
– rely on a high-level summary of the RDF graph.

Some structural indexes are based on distance measures.
GRIN [228] divides the graph hierarchically into regions
based on the distance of its nodes to selected centroids. These
regions form a tree, where the non-leaf elements indicate a
node x and a distance d referring to all nodes at most d steps
from x. The root element chooses a node and distance such
that all nodes of the graph are covered. Each non-leaf ele-
ment has two children that capture all nodes of their parent.
Each leaf node contains a set of nodes N , which induces a
subgraph of triples between the nodes of N ; the leaves can
then be seen as partitioning the RDF graph. We provide an
example in Figure 16 for the RDF graph of Figure 1, where
all nodes are within distance two of :Alice, which are then
divided into two regions: one of distance at most two from
_:p, and another of distance at most one from :CS. The in-
dex can continue dividing the graph into regions, and can
then be used to find subgraphs within a particular distance
from a given node (e.g., a node given in a BGP).

Another type of structural index relies on some notion of
a quotient graph [48], where the nodes of a graph so(G) are
partitioned into {X1, . . . , Xn} pairwise-disjoint sets such
that

⋃n
i=1Xi = so(G). Then edges of the form (Xi, p,Xj)

are added if and only if there exists (xi, p, xj) ∈ G such that
xi ∈ Xi and xj ∈ Xj . Intuitively, a quotient graph merges
nodes from the input graph into “supernodes” while main-
taining the input (labeled) edges between the supernodes.
We provide an example of a quotient graph in Figure 17 fea-
turing six supernodes. Any partitioning of nodes can form
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foaf:Person
foaf:Project

:Alice
:Bob

foaf:knows

rdf:type
"21"^^xsd:int
"26"^^xsd:int

foaf:age

_:p

foaf:currentProject
foaf:pastProject

rdf:type

"Motor RDF"@es
"RDF Engine"@en

rdfs:label

:CS
:DB
:SW
:Web

foaf:topic_interest

skos:broader
skos:related

Fig. 17: Quotient graph with six supernodes

a quotient graph, ranging from a single supernode with all
nodes so(G) and loops for all properties in p(G), to the
graph itself replacing each node x ∈ so(G) with the single-
ton {x}. If the input graph yields solutions for a BGP, then
the quotient graph will also yield solutions (with variables
now matching supernodes). For example, taking the BGP of
Figure 2, matching foaf:Person to the supernode contain-
ing foaf:Person in Figure 17, then the variables ?a and
?b will match the supernode containing :Alice and :Bob,
while ?ia and ?ib will match to the supernode containing
:CS, :DB, :SW and :Web; while we do not know the exact so-
lutions for the input graph, we know they must correspond
to elements of the supernodes matched in the quotient graph.

DOGMA [41] partitions an RDF graph into subgraphs,
from which a balanced binary tree is computed, where each
parent node contains a quotient-like graph of both its chil-
dren. The (O)SQP approach [225] creates an in-memory in-
dex graph, which is a quotient graph whose partition is de-
fined according to various notions of bisimulation.

SAINT-DB [186] adopts a similar approach, where su-
pernodes are defined directly as a partition of the triples of
the RDF graph, and edges between supernodes are labeled
with the type of join (S–S, P–O, etc.) between them.

5.7 Quad indexes

Most quad indexes follow the triple index scheme [243,94,
91,69], extending it to add another element. The number of
permutations then grows to 24 = 16 abstract index pat-
terns, 4! = 24 potential permutations, and

(
4
b4/2c

)
= 6

flat (ISAM/B+Tree/AVL tree/trie) permutations or 2 circular
(CSA) permutations to efficiently support all abstract quad
patterns. A practical compromise is to maintain a selection
of permutations that cover the most common patterns [69];
for example, a pattern (s,p, o, g) may be uncommon in prac-

tice, and could be supported reasonably well by evaluating
(e.g.) (s,p, o,g) and filtering on g = g.

The RIQ system [120] proposes a custom index for quads
called a PV-index for finding (named) graphs that match a
BGP. Each graph is indexed by hashing all seven abstract
patterns on triples with some constant, generating seven pat-
tern vectors for each graph. For example, a triple (s, p, o)

in a graph named g will be hashed as (s, p, o), (s, p, ?),
(s, ?, o), (?, p, o), (s, ?, ?), (?, p, ?), (?, ?, o), where ? is an
arbitrary fixed token, and each result will be added to one
of seven pattern vectors for g for that abstract pattern. Ba-
sic graph patterns can be encoded likewise, where locality
sensitive hashing is then used to group and retrieve similar
pattern vectors for a given basic graph pattern.

5.8 Miscellaneous Indexing

RDF stores may use legacy systems, such as NoSQL stores,
for indexing. Since such approaches are not tailored to RDF,
and often correspond conceptually to one of the indexing
schemes already discussed, we refer to more dedicated sur-
veys of such topics for further details [111,257,249]. Other
stores provide specialized indexes for particular types of val-
ues such as spatial or temporal data [232,130]; we do not
discuss such specialized indexes in detail.

5.9 Discussion

While indexing triples or quads is conceptually the most
straightforward approach, a number of systems have shown
positive results with entity- and property-based indexes that
optimize the evaluation of star joins, path indexes that opti-
mize the evaluation of path joins, or structural indexes that
allow for identifying query-relevant regions of the graph.
Different indexing schemes often have different time–space
trade-offs: more comprehensive indexes enable faster queries
at the cost of space and more costly updates.

6 Join Processing

RDF stores employ diverse query processing strategies, but
all require translating logical operators that represent the
query, into “physical operators” that implement algorithms
for efficient evaluation of the operation. The most important
such operators – as we now discuss – are natural joins.

6.1 Pairwise join algorithms

We recall that the evaluation of a BGP {t1, . . . tn}(G) can
be rewritten as t1(G) ./ . . . ./ tn(G), where the evaluation
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of each triple pattern ti (1 ≤ i ≤ n) produces a relation of
arity |vars(ti)|. Thus the evaluation of a BGP B produces
a relation of arity |vars(B)|. The relational algebra – in-
cluding joins – can then be used to combine or transform
the results of one or more BGPs, giving rise to CGPs. The
core of evaluating graph patterns is thus analogous to pro-
cessing relational joins. The simplest and most well-known
such algorithms perform pairwise joins; for example, a pair-
wise strategy for computing {t1, . . . tn}(G) may evaluate
((t1(G) ./ t2(G)) ./ . . .) ./ tn(G).

Without loss of generality, we assume a join of two graph
patterns P1(G) ./ P2(G), where the join variables are de-
noted by V = {v1, . . . , vn} = vars(P1) ∩ vars(P2). Well-
known algorithms for performing pairwise joins include (in-
dex) nested-loop joins, where P1(G) ./ P2(G) is reduced to
evaluating

⋃
µ∈P1(G){µ} ./ µ(P2)(G); hash joins, where

each solution µ ∈ P1(G) is indexed by hashing on the key
(µ(v1), . . . , µ(vn)) and thereafter a key is computed like-
wise for each solution in P2(G) to probe the index with; and
(sort-)merge joins, where P1(G) and P2(G) are (sorted if
necessary and) read in the same order with respect to V , al-
lowing the join to be reduced to a merge sort. Index nested-
loop joins tend to perform well when |P1(G)| � |P2(G)|
(assuming that µ(P2)(G) can use indexes) since it does not
require reading all of P2(G). Otherwise hash or merge joins
can perform well [168]. Pairwise join algorithms are then
used in many RDF stores (e.g., [93,69,168]).

Techniques to optimize pairwise join algorithms include
sideways information passing [29], which passes data across
different parts of the query, often to filter intermediate re-
sults. Neumann and Weikum [167] propose ubiquitous side-
ways information passing (U-SIP) for computing joins over
RDF, which shares global ranges of values for a given query
variable. U-SIP is implemented differently for different join
types. For merge joins, where data are read in order, a max-
imum value for a variable can be shared across pairwise
joins, allowing individual operators to skip ahead to the cur-
rent maximum. For hash joins, a global domain filter is em-
ployed – consisting of a maximum value, a minimum value,
and Bloom filters – for filtering the results of each variable.

6.2 Multiway joins

Multiway join algorithms exploit the commutativity and as-
sociativity of joins to evaluate two or more operands at once.
For example, in order to compute {t1, . . . tn}(G), a multi-
way join algorithm may evaluate (t1(G) ./ . . . ./ tk(G)) ./
(tk+1(G) ./ . . . ./ tn(G)) where k ≥ 2, or it may even sim-
ply evaluate everything at once as (t1(G) ./ . . . ./ tn(G)).

Some of the previous storage and indexing schemes we
have seen lend themselves naturally to processing certain
types of multiway joins in an efficient manner. Entity-based
indexes allow for processing star joins efficiently, while path

indexes allow for processing path joins efficiently (see Sec-
tion 5). A BGP can be decomposed into sub-BGPs that can
be evaluated per the corresponding multiway join, with pair-
wise joins being applied across the sub-BGPs; for exam-
ple: {(w, p,x), (w, q,y), (w, r, z), (x, q,y), (x, r, z)} may
be divided into the sub-BGPs {(w, p,x),(w, q,y),(w, r, z)}
and {(x, q,y), (x, r, z)}, which are evaluated separately as
multiway joins before being themselves joined. Even in the
case of (sorted) triple/quad tables, multiway joins can be ap-
plied taking advantage of the locality of processing, where,
for example, in an SPO index permutation, triples with the
same subject will be grouped together. Similar locality can
be exploited in distributed settings (see, e.g., SMJoin [74]).

6.3 Worst case optimal joins

A new family of join algorithms have arisen due to the AGM
bound [22], which puts an upper bound on the number of
solutions that can be returned from relational join queries.
The result can be adapted straightforwardly to the case of
BGPs. Let B = {t1, . . . , tn} denote a BGP with vars(B) =

V . Now define a fractional edge cover as a mapping λ :

B → R[0,1] that assigns a real value in the interval [0, 1] to
each triple pattern of B such that for all v ∈ V , it holds that∑
t∈Bv

λ(t) ≥ 1, whereBv denotes the set of triple patterns
in B that mention v. The AGM bound tells us that if B has
the fractional edge cover λ, then for any RDF graph it holds
that |B(G)| ≤

∏n
i=1 |ti(G)|λ(ti); this bound is “tight”.

To illustrate the AGM bound, consider the BGP B =

{t1, t2, t3} from Figure 18. There exists a fractional edge
cover λ of B such that λ(t1) = λ(t2) = λ(t3) =

1
2 ; taking

?a, we have thatB?a = {t1, t3}, λ(t1)+λ(t3) = 1, and thus
?a is “covered”, and we can verify the same for ?b and ?c.
Then the AGM bound is given as the inequality |B(G)| ≤∏n
i=1 |ti(G)|λ(ti). For G the graph in Figure 18, |t1(G)| =
|t2(G)| = |t3(G)| = 5, and hence |B(G)| ≤ 5

3
2 . In reality,

for this graph, |B(G)| = 5, thus satisfying the inequality,
but there exists a graph where B =

∏n
i=1 |ti(G)|λ(ti).

Recently, join algorithms have been proposed that can
enumerate the results for a BGP B over a graph G in time
O(agm(B,G)), where agm(B,G) denotes the AGM bound
of B over G. Since such an algorithm must at least spend
O(agm(B,G)) time writing the results in the worst case,
such algorithms are deemed worst-case optimal (wco) [169].
Though such algorithms were initially proposed in a rela-
tional setting [169,230], they have recently been adapted for
processing joins over RDF graphs [115,99,163,19]. Note
that traditional pairwise join algorithms are not wco. If we
try to evaluate {t1, t2}(G) by pairwise join, for example, in
order to later join it with t3(G), the AGM bound becomes
quadratic as λ(t1) = λ(t2) = 1, and thus we have the bound
|t1(G)| · |t2(G)|, which exceeds the AGM bound forB. This
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Fig. 18: Example RDF graph G, BGP B and its evaluation
B(G); the IRIs s:b, s:n and s:r abbreviate skos:broader,
skos:narrower and skos:related, resp.

holds for any pairwise join in B. Note that {t1, t2}(G) will
indeed produce (25) quadratic results, mapping ?a to :CS
and ?b and ?c to {:AI, :DB, :IR, :SW, :Web}2.

Wco join algorithms – including Leapfrog Triejoin (LTJ)
[230] – perform a multiway join that resolves a BGP B

variable-by-variable rather than pattern-by-pattern. First an
ordered sequence of variables is selected; say (?a, ?b, ?c).
Then the set of partial solutions M{?a} = {µ | dm(µ) =

{?a} and µ(B?a)(G) 6= ∅} are computed for the first vari-
able ?a such that each image of B?a under µ ∈ M{?a} has
some solutions forG; e.g.,M{?a} = {{?a/:DB}, {?a/:IR},
{?a/:SW}, {?a/:Web}} in Figure 18, since replacing ?a in
B?a with :DB, :IR, :SW or :Web yields a BGP with solu-
tions over G. Next we compute M{?a,?b} = {µ ∪ µ′ | µ ∈
M{?a},dm(µ′) = {?b} and µ′(µ(B?b))(G) 6= ∅}, “elimi-
nating” the next variable ?b. In the example of Figure 18,
M{?a,?b} = {{?a/:DB, ?b/:CS}, . . . , {?a/:Web, ?b/:CS}},
where each solution µ ∈M{?a} is extended with {?b/:CS}.
Finally,M{?a,?b,?c} is computed analogously, eliminating the
last variable, and yielding the five results seen in Figure 18.

To be wco-compliant, the algorithm must always be able
to efficiently compute M{v}, i.e., solutions µ with dm(µ) =

{v}, such that µ(Bv)(G) 6= ∅. To compute M{?a} in the
running example, we need to efficiently intersect all nodes
with an outgoing s:b edge and an incoming s:r edge. This
is typically addressed by being able to read the results of a
triple pattern, in sorted order, for any variable, which enables
efficient intersection by allowing to seek ahead to the max-
imum current value of all triple patterns involving a given
variable. Jena-LTJ [99], which implements an LTJ-style join
algorithm for SPARQL, enables this by maintaining all six
index permutations over triples, while Ring [19] requires
only one permutation. Wco algorithms often outperform tra-
ditional join algorithms for complex BGPs [115,99].

6.4 Translations to linear algebra

Per Section 4.6, dictionary-encoded RDF graphs are some-
times represented as a bit tensor, or as a bit matrix for each
property (see Figure 10), etc. Viewed in this light, some
query algebra can then be reduced to linear algebra [156];
for example, joins become matrix/tensor multiplication. To
illustrate, we can multiply the bit (adjacency) matrix from
Figure 10 for skos:broader by itself:


0 0 0 0

1 0 0 0

0 0 0 1

1 0 0 0



0 0 0 0

1 0 0 0

0 0 0 1

1 0 0 0

 =


0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0



The result indicates the analogous bit matrix for an O–S join
on skos:broader, with :SW (on row 3) connected to :CS
(on column 1), which we would expect per Figure 1.

Translating joins into linear algebra enables hardware
acceleration, particularly involving GPUs and HPC archi-
tectures, which can process tensors with high levels of par-
allelism. Such an approach is followed by MAGiQ [109],
which represents an RDF graph as a single n×n matrix M,
where n is the number of nodes (n = |so(G)|) and Mi,j

encodes the id of the property connecting the ith node to the
jth node (or 0 if no such property exists). One issue with this
representation is that it does not support two nodes being
connected by multiple edges with different labels, and thus a
coordinate list representation can rather be used. Basic graph
patterns with projection are translated into matrix multipli-
cation, scalar multiplication, transposition, etc., which can
be executed on a variety of hardware, including GPUs.

Other engines that translate SPARQL query features into
linear algebra (or other operations within GPUs) include
Wukong(+G) [211,235], TripleID-Q [49], and gSmart [52].
Wukong+G [235] proposes a number of caching, pipelin-
ing, swapping and prefetching techniques in order to reduce
the GPU memory required when processing large graphs
while maintaining efficiency, and also proposes a partition-
ing technique to distribute computation over multiple CPUs
and GPUs. TripleID-Q [49] represents an RDF graph as a
dictionary-encoded triple table that can be loaded into the
GPU in order to search for solutions to individual triple pat-
terns without indexing, but with high degrees of parallelism.
On top of this GPU-based search, join and union operators
are implemented using GPU libraries. gSmart [52] proposes
a variety of optimizations for evaluating basic graph patterns
in such settings, including a multi-way join optimization for
computing star-like joins more efficiently on GPUs, com-
pact representations for sparse matrices, data partitioning to
enable higher degrees of parallelism, and more besides.
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6.5 Join reordering

The order of join processing can have a dramatic effect on
computational costs. For Figure 18, if we apply pairwise
joins in the order (t1(G) on t2(G)) on t3(G), the first join
(t1(G) on t2(G)) yields 25 intermediate results, with 5 final
results produced with the second join. If we rather evaluate
(t2(G) on t3(G)) on t1(G), the first join (t2(G) on t3(G))

produces only 5 intermediate results, before the second join
produces the 5 final results. The second plan should thus be
more efficient than the first; if considering a graph at larger
scale, the differences may reach orders of magnitude.

A good plan depends not only on the query, but also the
graph. Selecting a good plan thus typically requires some
assumptions or statistics over the graph. As in relational
settings, the most important information relates to cardi-
nalities: how many (distinct) solutions a given pattern re-
turns; and/or selectivity: what percentage of solutions are
kept when restricting variables with constants or filters. Stat-
istics can be used not only to select an ordering for joins,
but also to decide which join algorithm to apply. For ex-
ample, given an arbitrary (sub-)BGP {t1, t2}, if we esti-
mate that |t2(G)| � |t1(G)|, we may prefer to evaluate
t2(G) on t1(G) as an index nested-loop join, rather than
a hash or merge join, to avoid reading t1(G) in full.

While cardinality and selectivity estimates can be man-
aged in a similar way to relational database optimizers, a
number of approaches have proposed custom statistics for
RDF. Stocker et al. [215] collect statistics relating to the
number of triples, the number of unique subjects, and for
each predicate, the number of triples and a histogram of as-
sociated objects. RDF-3X [168] uses a set of aggregated in-
dexes, which store the cardinality of all triple patterns with
one or two constants. RDF-3X [168] further stores the exact
cardinality of frequently encountered joins, while character-
istic sets [165] and extended characteristic sets [155] (dis-
cussed in Section 5.3) capture the cardinality of star joins.

Computing and maintaining such statistics incur costs in
terms of space and updates. An alternative is to apply sam-
pling while evaluating the query. Vidal et al. [231] estimate
the cardinality of star joins by evaluating all solutions for
the first pattern of the join, thereafter computing the full so-
lutions of the star pattern for a sample of the initial solutions;
the full cardinality of the star pattern is then estimated from
the samples. Another alternative is to use syntactic heuris-
tics for reordering. Stocker et al. [215] propose heuristics
such as assuming that triple patterns with fewer variables
have lower cardinality, that subject constants are more selec-
tive than objects and predicates, etc. Tsialiamanis et al. [227]
further propose to prioritize rarer joins (such as P–S and P–O

joins), and to consider literals as more selective than IRIs.
Taking into account such heuristics and statistics, the

simplest strategy to try to find a good join ordering is to ap-

ply a greedy metaheuristic [215,155], starting with the triple
pattern t1 estimated to have the lowest cardinality, and join-
ing it with the triple pattern t2 with the next lowest cardi-
nality; typically a constraint is added such that tn (n > 1)
should have a variable in common with some triple pattern
in {t1, . . . , tn−1} to avoid costly Cartesian products. Aside
from considering the cardinality of triple patterns, Meimaris
and Papastefanatos [154] propose a distance-based planning,
where pairs of triple patterns with more overlapping nodes
and more similar cardinality estimates have lesser distance
between them; the query planner then tries to group and join
triple patterns with the smallest distances first in a greedy
manner. Greedy strategies will not, however, always provide
the best ordering corresponding to an optimal plan.

More generally, reordering joins is an optimization prob-
lem, where classical methods from the relational literature
can be leveraged likewise for BGPs, including dynamic pro-
gramming [209] (used, e.g., by [94,168,82]) and simulated
annealing [106] (used, e.g., by [231]). Other metaheuristics
that have been applied for join reordering in BGPs include
genetic algorithms [102] and ant colony systems [101,114].

6.6 Caching

Another possible route for optimization – based on the ob-
servation that queries in practice may feature overlapping or
similar patterns – is to reuse work done previously for other
queries. Specifically, we can consider caching the results of
queries. In order to increase cache hit rates, we can further
try to reuse the results of subqueries, possibly generalizing
them to increase usability. Ideally the cache should store so-
lutions for subqueries that (a) have a high potential to reduce
the cost of future queries; (b) can reduce costs for many fu-
ture queries; (c) do not have a high space overhead; and (d)
will remain valid for a long time. Some of these aims can be
antagonistic; for example, caching solutions for triple pat-
terns satisfies (b) and (c) but not (a), while caching solutions
for complex BGPs satisfies (a) but not (b), (c) or (d).

Lampo et al. [132] propose caching of solutions for star
joins, which may strike a good balance in terms of reduc-
ing costs, being reusable, and not having a high space over-
head (as they share a common variable). Other caching tech-
niques try to increase cache hit rates by detecting similar
(sub)queries. Stuckenschmidt [217] uses a similarity mea-
sure for caching – based on the edit distance between BGPs
– that estimates the amount of computational effort needed
to compute the solutions for one query given the solutions to
the other. Lorey and Naumann [140] propose a technique for
grouping similar queries, which enables a pre-fetching strat-
egy based on predicting what a user might be interested in
based on their initial queries. Another direction is to normal-
ize (sub)queries to increase cache hit rates. Wu et al. [246]
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propose various algebraic normalizations in order to iden-
tify common subqueries [140], while Papailiou et al. [179]
generalize subqueries by replacing selective constants with
variables and thereafter canonically labeling variables (mod-
ulo isomorphism) to increase cache hit rates. Addressing dy-
namic data, Martin et al. [150] propose a cache where re-
sults for queries are stored in a relational database but are
invalidated when a triple matching a query pattern changes.
Williams and Weaver [242] add last-updated times to their
RDF index to help invalidate cached data.

Given that an arbitrary BGP can produce an exponential
number of results, Zhang et al. [260] propose to cache fre-
quently accessed “hot triples” from the RDF graph in mem-
ory, rather than caching (sub-)query results. This approach
limits the space overhead at the cost of recomputing joins.

6.7 Discussion

Techniques for processing BGPs are often based on tech-
niques for processing relational joins. Beyond standard pair-
wise joins, multiway joins can help to emulate some of the
benefits of property table storage by evaluating star joins
more efficiently. Another recent and promising approach is
to apply wco join algorithms whose runtime is bounded the-
oretically by the number of results that the BGP could gen-
erate. More and more attention has also been dedicated to
computing joins in GPUs by translating relational algebra
(e.g., joins) into linear algebra (e.g., matrix multiplication).
Aside from specific algorithms, the order in which joins are
processed can have a dramatic effect on runtimes. Statis-
tics about the RDF graph help to find a good ordering at
the cost of computing and maintaining those statistics; more
lightweight alternatives include runtime sampling, or syn-
tactic heuristics that consider only the query. To decide the
ordering, options range from simple greedy strategies to com-
plex metaheuristics; while simpler strategies have lower plan-
ning times, more complex strategies may find more efficient
plans. Another optimization is to cache results across BGPs,
for which a time–space trade-off must be considered.

7 Query Processing

While we have defined RDF stores as engines capable of
storing, indexing and processing joins over RDF graphs, SP-
ARQL engines support various features beyond joins. We
describe techniques for efficiently evaluating such features,
including the relational algebra (beyond joins) and property
paths. We further include some general extensions proposed
for SPARQL to support recursion and analytics.

7.1 Relational algebra (beyond joins)

Complex (navigational) graph patterns CGPs introduce ad-
ditional relational operators beyond joins.

Like in relational databases, algebraic rewriting rules
can be applied over CGPs in SPARQL to derive equivalent
but more efficient plans. Schmidt et al. [207] present a set of
such rules for SPARQL under set semantics, such as:

σR1∨R2
(M) ≡ σR1

(M) ∪ σR2
(M)

σR1∧R2
(M) ≡ σR1

(σR2
(M))

σR1(σR2(M)) ≡ σR2(σR1(M))

σR(M1 ∪M2) ≡ σR(M1) ∪ σR(M2)

σR(M
∗
1 ./ M2) ≡ σR(M∗1 ) ./ M2

σR(M
∗
1 ./ M2) ≡ σR(M∗1 ) ./ M2

σR(M
∗
1 BM2) ≡ σR(M∗1 ) BM2

where for each µ ∈ M∗1 , it holds that vars(R) ⊆ dm(µ).
The first two rules split filters, meaning that they can be
pushed further down in a query in order to reduce intermedi-
ary results. The third rule allows the order in which filters are
applied to be swapped. Finally the latter four rules describe
how filters can be pushed “down” inside various operators.

Another feature of importance for querying RDF graphs
are optionals ( ./), as they facilitate returning partial solu-
tions over incomplete data. Given that an optional can be
used to emulate a form of negation (in Table 3 it is de-
fined using an anti-join), it can lead to jumps in computa-
tional complexity [183]. Works have thus studied a fragment
called well-designed patterns, which forbid using a variable
on the right of an optional that does not appear on the left
but does appear elsewhere in the query; taking an example,
the CGP ({(x, p,y)} OPTIONAL {(x, q, z)}) . {(x, r, z)}
is not well designed as the variable z appears on the right of
an OPTIONAL and not on the left, but does appear elsewhere
in the query. Such variables may or may not be left unbound
after the left outer join is evaluated, which leads to com-
plications if they are used outside the optional clause. Most
SPARQL queries using optionals in practice are indeed well-
designed, where rewriting rules have been proposed specifi-
cally to optimize such queries [183,137].

7.2 Property paths

Navigational graph patterns (NGPs) extend BGPs with prop-
erty paths, which are extensions of (2)RPQs that allow for
matching paths of arbitrary length in the graph.

Some approaches evaluate property paths using graph
search algorithms. Though not part of SPARQL, Gubichev
and Neumann [81] implement single-source shortest paths
by applying Dijsktra’s search algorithm over B-Trees. Baier
et al. [23] propose to use the A* search algorithm, where
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search is guided by a heuristic that measures the minimum
distance from the current node to completing a path.

Extending RDF-3X, Gubichev et al. [80] build a FER-
RARI index [210] (see Section 5.4) for each property :p in
the graph that forms a directed path of length at least 2. The
indexes are used to evaluate paths :p* or :p+ . Paths of the
form (:p/:q)∗, (:p|:q)∗, etc., are not directly supported.

Koschmieder and Leser [127], and Nguyen and Kim [170]
optimize property paths by splitting them according to “rare
labels”: given a property path :p ∗ /:q/:r∗, if :q has few
triples in the graph, the path can be split into :p∗/:q (evalu-
ated right-to-left) and :q/:r∗ (evaluated left-to-right), sub-
sequently joining the results. Splitting paths can enable par-
allelism: Miura et al. [158] evaluate such splits on field pro-
grammable gate arrays (FPGAs), enabling hardware accel-
eration. Wadhwa et al. [234] rather use bidirectional random
walks from candidate endpoints on both sides of the path,
returning solutions when walks from each side coincide.

Another way to support property paths is to use recursive
queries. Stuckenschmidt et al. [218] evaluate property paths
such as :p+ using recursive nested-loop and hash joins. Dey
et al. [63], Yakovets et al. [252] and Jachiet et al. [108] pro-
pose translations of more general property paths (or RPQs)
to extensions of the relational algebra with recursive or tran-
sitive operators. Paths can be evaluated by SQL engines us-
ing WITH RECURSIVE; however Yakovets et al. [252] note
that highly nested SQL queries may result, and that popu-
lar relational database engines cannot (efficiently) detect cy-
cles. Dey et al [63] alternatively explore the evaluation of
RPQs via translations to recursive Datalog.

In later work, Yakovets et al. [253] propose Waveguide,
which first converts the property path into a parse tree, from
which plans can be built based on finite automata (FA), or
relational algebra with transitive closure (α-RA, where α
denotes transitive closure). Figure 19 gives an example of a
parse tree and both types of plans. Although there is overlap,
FA can express physical plans that α-RA cannot, and vice
versa. For example, in FA we can express non-deterministic
transitions (see q0 in Figure 19), while in α-RA we can ma-
terialize (cache) a particular relation in order to apply transi-
tive closure over it. Waveguide then uses hybrid waveplans,
where breadth-first search is guided in a similar manner to
FA, but where the results of an FA can be memoized (cached)
and reused multiple times like in α-RA.

Evaluating complex property paths can be costly, but
property paths in practice are often quite simple. Martens
and Trautner [149] propose a class of RPQs called simple
transitive expressions (STEs) that are found to cover 99.99%
of the queries found in Wikidata SPARQL logs, and have de-
sirable theoretical properties. Specifically, they define atomic
expressions of the form p1| . . . |pn, where p1, . . . , pn are
IRIs and n ≥ 0; and also bounded expressions of the form
a1/ . . . /ak or a1?/ . . . /ak? where a1, . . . , ak are atomic

expressions and k ≥ 0. Then an expression of the form
b1/a

∗/b2, is a simple transitive expression (STE), where b1
and b2 are bounded expressions, and a is an atomic expres-
sion. They then show that simple paths for STEs can be enu-
merated more efficiently than arbitrary RPQs.

7.3 Recursion

Property paths offer a limited form of recursion. While ex-
tended forms of property paths have been proposed to in-
clude (for example) path intersection and difference [71],
more general extensions of SPARQL have also been pro-
posed to support graph-based and relation-based recursion.

Reutter et al. [194] propose to extend SPARQL with
graph-based recursion, where a temporary RDF graph is built
by recursively adding triples produced through CONSTRUCT
queries over the base graph and the temporary graph up
to a fixpoint; a SELECT query can then be evaluated over
both graphs. The authors discuss how key features (includ-
ing property paths) can then be supported through linear
recursion, meaning that each new triple only needs to be
joined with the base graph, not the temporary graph, to pro-
duce further triples, leading to better performance. Corby et
al. [59] propose LD-Script: a SPARQL-based scripting lan-
guage supporting various features, including for-loops that
can iterate over the triples returned by a CONSTRUCT query.

Hogan et al. [98] propose SPARQAL: a lightweight lan-
guage that supports relation-based (i.e., SELECT-based) re-
cursion over SPARQL. The results of a SELECT query can
be stored as a variable, and injected into a future query. Do–
until loops can be called until a particular condition is met,
thus enabling recursion over SELECT queries.

7.4 Analytics

SPARQL engines often focus on transactional (OLTP) work-
loads involving selective queries that are efficiently solved
through lookups on indexes. Recently, however, a number
of approaches have looked at addressing analytical (OLAP)
workloads for computing slices, aggregations, etc. [45].

One approach is to rewrite SPARQL queries to languages
executable in processing environments suitable for analyti-
cal workloads, including PigLatin (e.g., PigSPARQL [202],
RAPID+ [193]), Hadoop (e.g., Sempala [203]), Spark (e.g.,
S2RDF [204]), etc. Such frameworks are better able to han-
dle analytical (OLAP) workloads, but not all SPARQL fea-
tures are easily supported on existing distributed frameworks.

Conversely, one can also translate from analytical lan-
guages to SPARQL queries, allowing for in-database ana-
lytics, where analytical workloads are translated into queries
run by the SPARQL engine/database. Papadaki et al. [176]
propose the high-level functional query language HIFUN for
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Fig. 19: An example property path with its parse tree (PT) and three plans based on finite automata (FA), relational algebra
with transitive closure (α-RA), and a waveplan (WP) that uses a memoized waveplan (WP′)

applying analytics over RDF data. Rules for translating an-
alytical HIFUN queries to SPARQL are then presented.

There has also been growing interest in combining graph
analytics – such as centrality measures, shortest paths, graph
clustering, etc. – with SPARQL. In this way, SPARQL can
be used as a declarative language to construct sub-graphs
over which analytics are applied, and can further express
queries involving the results of analytics. Unlike OLAP-style
analytics, graph analytics often require recursion. One ap-
proach is to extend SPARQL to include imperative func-
tions for invoking common graph algorithms. Abdelaziz et
al. [4] propose Spartex: an extension of SPARQL that allows
for invoking common graph algorithms – such as PageR-
ank, shortest paths, etc. – as well as user-defined procedures
(UDPs) written in a custom procedural language. An alter-
native approach is to support graph analytics through a more
general recursive language based on SPARQL (as discussed
in Section 7.3). Hogan et al. [98] show how the recursive
language SPARQAL allows for expressing and evaluating
in-database graph analytics, including breadth-first search,
PageRank, local clustering coefficient, etc.

7.5 Graph query rewriting

We have seen approaches that rewrite SPARQL queries into
languages such as SQL [69,252], PigLatin [202,193], etc.
Other works rewrite SPARQL into the query languages of
(other) graph databases. SPARQL–Gremlin [223] rewrites
SPARQL to Gremlin, allowing SPARQL queries to be eval-
uated on graph database engines that support Gremlin, while
Semantic Property Graph [190] describes how reified RDF
graphs can be projected into the property graph model sup-
ported by many graph database engines.

7.6 Multi-query optimization

While the techniques discussed thus far optimize queries
individually, multi-query optimization evaluates batches of
queries efficiently by exploiting their commonalities. Le et
al. [133] propose to first cluster a set of queries into groups
with maximal common edge subgraphs; for example, the

BGP {(w1, p,x1), (w1, q,y1), (w1, r, z1), (y1, s, z1)} and
the BGP {(w2, p,x2), (w2, q,y2), (z2, r,w2)} may form a
cluster. A query is then constructed for each cluster by ex-
tending its maximal common sub-BGP with optional pat-
terns needed by a proper subset of the queries; for example,
({(w, p,x), (w, q,y)} ./{(w, r, z), (y, s, z)}) ./{(z, r,w)}
would be used for the previous cluster. Individual query re-
sults are then computed from the cluster-level results. Op-
timizing for multiple property paths, Abul-Basher [7] pro-
poses to find a maximum common sub-automaton that can
be evaluated and reused across multiple queries. More recent
works further address multi-query optimization in specific
settings, including federated systems [180], and continuous
querying over streaming RDF data [259].

7.7 Discussion

SPARQL supports various features beyond joins that ideally
should be implemented in an efficient manner. One option is
to rewrite SPARQL queries into a target language and eval-
uate them using an existing engine for that language. How-
ever, it is unlikely that an existing language/engine will sup-
port all features of SPARQL in an efficient manner. Better
performance for a wider range of features can be achieved
with custom implementations and optimizations, where prop-
erty paths have been the focus of many works. Other fea-
tures that have been targeted for optimization are filters and
optionals, noting that optionals are quite frequently used in
the context of querying incomplete RDF data. Multi-query
optimization can further help to evaluate multiple queries at
once. More recent works have addressed recursion and ana-
lytics for SPARQL in order to support additional RDF data
management scenarios and knowledge graph use-cases.

8 Partitioning

In distributed RDF stores and SPARQL engines, the data are
partitioned over a cluster of machines in order to enable hor-
izontal scale, where additional machines can be allocated to
the cluster to handle larger volumes of data. However, hori-
zontal scaling comes at the cost of network communication
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costs. Thus a key optimization is to choose a partitioning
scheme that reduces communication costs by enforcing var-
ious forms of locality, principally allowing certain types of
(intermediate) joins to be processed on each individual ma-
chine [8]. Formally, given an RDF graph G and n machines,
an n-partition of G is a tuple of subgraphs (G1, . . . , Gn)

such that G =
n⋃
i=1

Gi, with the idea that each subgraph Gi

will be stored on machine i.5 We now discuss different high-
level alternatives for partitioning.

8.1 Triple/Quad-based Partitioning

A first option is to partition based on individual triples or
quads without considering the rest of the graph. For sim-
plicity we will speak about triples as the discussion gener-
alizes straightforwardly to quads. The simplest option is to
use round robin or random partitioning, which effectively
places triples on an arbitrary machine. This ensures even
load balancing, but does not support any locality of process-
ing, and does not allow for finding the particular machine
storing triples that match a given pattern.

An alternative is to partition according to a determinis-
tic function over a given key; for example, a partition key
of S considers only the subject, while a partition key of PO

considers both the predicate and object. Later given a triple
pattern that covers the partition key (e.g., with a constant
subject if the key is S), we can find the machine(s) stor-
ing all triples that match that pattern. We show some ex-
amples using different functions and partition keys in Fig-
ure 20 considering four machines. Range-based partitioning
assigns a range over the partition key to each function, where
the example of Figure 20 splits S into [a:1,a:3], [a:4,a:6],
[b:1,b:3], [c:1,d:1]. This approach allows for range-based
queries to be pushed to one machine, but requires maintain-
ing a mapping of ranges to machines, and can be compli-
cated to keep balanced. An alternative is hash-based par-
titioning where we compute the hash of the partition key
modulo the number of machines, where the second example
of Figure 20 splits P by hash. This does not require storing
any mapping, and techniques such as consistent hashing can
be used to rebalance load when a machine enters or leaves;
however, if partition keys are skewed (e.g., one predicate is
very common), it may lead to an unbalanced partition. A
third option is to apply a hierarchical-based partition based
on prefixes, where the third example of Figure 20 partitions
O by their namespace. This may lead to increased locality
of data with the same prefix [113], where different levels of
prefix can be chosen to enable balancing, but choosing pre-
fixes that offer balanced partitions is non-trivial.

5 We relax the typical requirement for a set partition thatGi∩Gj =
∅ for all 1 ≤ i < j ≤ n to allow for the possibility of replication or
other forms of redundancy.

Any such partitioning function will send any triple with
the same partition key to the same machine, which ensures
that (equi-)joins on partition keys can be pushed to individ-
ual machines. Hash-based partitioning is perhaps the most
popular among distributed RDF stores (e.g., YARS2 [94],
SHARD [195], etc.). Often triples will be hashed according
to multiple partition keys in order to support different index
permutations, triple patterns, and joins (e.g, with S and O

as two partition keys, we can push S–S, O–O and S–O joins
to each machine). Care must be taken to avoid imbalances
caused by frequent terms, such as the rdf:type predicate,
or frequent objects such as classes, countries, etc. Omitting
partitioning on highly-skewed partition keys may be advan-
tageous for balancing purposes [94].

8.2 Graph-based Partitioning

Graph-based partitioning takes into consideration the entire
graph when computing a partition. A common strategy is to
apply a k-way partition of the RDF graphG [119]. Formally,
letting V = so(G) denote the nodes of G, the goal is to

compute a node partition V1, . . . , Vn such that V =
k⋃
i=1

Vn,

Vi∩Vj = ∅ for all 1 ≤ i < j ≤ k, b |V |k c ≤ |Vi| ≤ d
|V |
k e for

all 1 ≤ i ≤ k, and the number of triples (s, p, o) ∈ G such
that s and o are in different node partitions is minimized.
In Figure 21, we show the optimal 4-way partitioning of
the graph seen previously, where each partition has 3 nodes,
there are 10 edges between partitions (shown dashed), and
no other such partition leads to fewer edges (<10) between
partitions. Edges between partitions may be replicated in the
partitions they connect. Another alternative is to k-way par-
tition the line graph of the RDF graph: an undirected graph
where each triple is a node, and triples sharing a subject or
object have an edge between them.

Finding an optimal k-way partition is intractable6, where
approximations are thus necessary for large-scale graphs,
including spectral methods, which use the eigenvectors of
the graph’s Laplacian matrix to partition it; recursive bisec-
tion, which recursively partitions the graph into two; multi-
level partitioning, which “coarsens” the graph by computes
a hierarchical graph summary (similar to a multilevel quo-
tient graph, per Figure 17), then partitions the smaller graph
summary (using, e.g., spectral methods), and finally “un-
coarsens” by expanding back out to the original graph main-
taining the partitions; etc. We refer for more details to Buluç
et al. [44], who argue that multilevel partitioning is “clearly
the most successful heuristic for partitioning large graphs”.
Such techniques have been used by H-RDF-3x [104], EA-
GRE [261], Koral [112], and more besides.

6 Given a graph, deciding if there is a k-way partition with fewer
than n edges between partitions is NP-complete.
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Fig. 20: Examples of triple-based partitioning schemes

8.3 Query-based Partitioning

While the previous partitioning schemes only consider the
data, other partitioning methods are (also) based on queries.
Workload-based partitioning schemes identify common joins
in query logs that can be used to partition or replicate parts
of the graph in order to ensure that high-demand joins can
be pushed to individual machines. Partitioning can then be
a priori, for example, based on a query log; or dynamic
(aka. adaptive), where the partitions change as queries are
received. Such strategies are used by systems that include
WARP [103], Partout [73], WORQ [146], and AdPart [89].

8.4 Replication

Rather than partitioning data, data can also be replicated
across partitions. This may vary from replicating the full
graph on each machine, such that queries can be answered in
full by any machine to increase query throughput (used, e.g.,
by DREAM [88]), to replicating partitions that are in high-
demand (e.g., containing schema data, central nodes, etc.) so
that more queries can be evaluated on individual machines
and/or machines have equal workloads that avoid hot-spots
(used, e.g., by Blazegraph [224] and Virtuoso [69]).

8.5 Discussion

Triple/quad-based partitioning is the simplest to compute
and maintain, being dependent only on the data present in an
individual tuple, allowing joins on the same partition key to
be pushed to individual machines. Graph-based partitions al-
low for evaluating more complex graph patterns on individ-
ual machines, but are more costly to compute and maintain
(considering, e.g., dynamic data). Information about queries,
where available, can be used for the purposes of workload-
based partitioning, which partitions or replicates data in or-
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Fig. 21: Example of optimal k-way partitioning (k = 4)

der to enable locality for common sub-patterns. Replica-
tion can further improve load balancing, locality and fault-
tolerance at the cost of redundant storage.

9 Systems and Benchmarks

In Appendix A we present a comprehensive survey of 135
individual RDF stores and SPARQL query engines – both
distributed and local – in terms of the techniques discussed
herein that they use. In Appendix B, we further present the
synthetic and real-world benchmarks available for evaluat-
ing these systems under a variety of criteria.

10 Summary

In order to conclude this survey paper, we first summarize
some of the current high-level trends that we have observed
while preparing this survey, and then summarize the open
research challenges that are left to address.
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10.1 Current trends

While RDF stores and SPARQL engines have traditionally
relied on relational databases and relational-style optimiza-
tions to ensure scalability and efficiency, we see a growing
trend towards (1) native graph-based storage, indexing and
query processing techniques, along with (2) exploiting mod-
ern hardware and data management/processing.

Native storage techniques for graphs move away from
relational-style schemata for RDF, and rather focus on op-
timizing for the compression and navigation of RDF as a
graph, with techniques such as index-free adjacency, tensor-
based storage, and other graph-based representations. Index-
ing likewise has evolved to consider entity-based (i.e., node-
based) schemes, path indexes, and structural indexes based
on summarizing the graph structure of RDF data. While join
processing over RDF is still largely inspired by techniques
for relational databases, algorithms based on sideways infor-
mation passing, multi-way joins, worst-case optimal joins,
etc., have been shown to work particularly well on RDF
graphs (e.g., given their fixed arity). In terms of query pro-
cessing, features such as property paths and graph-based re-
cursion go beyond what is considered in typical relational
database management, with increased attention being paid
to supporting graph analytics in the RDF/SPARQL setting.

Regarding modern hardware, following broader trends,
many works now leverage NoSQL systems and distributed
processing frameworks in order to scale RDF stores across
multiple machines and handle new types of workloads. A
similar trend is to better exploit modern hardware, where a
variety of compact data structures have been proposed for
storing RDF graphs in main memory, possibly across mul-
tiple machines, following a general trend of exploiting the
growing RAM capacity of modern hardware. Recent tech-
niques for processing graphs – represented as matrices/ten-
sors – further enable hardware acceleration by leveraging
GPUs and HPC architectures, per machine learning.

Such trends seem set to continue, where we expect to see
further proposals of “native” techniques for RDF/SPARQL,
further works that bridge from the RDF/SPARQL setting to
related data management and processing settings in order
to better support other types of workloads, as well as tech-
niques that better leverage modern hardware, including in-
creased RAM capacity, solid-state disks, GPUs, clusters of
machines, and HPC architectures.

10.2 Research Challenges and Future Directions

Though major advances have been made in terms of the
scale and efficiency of RDF stores in recent years, these will
remain central challenges as the scale of RDF graphs and
demand for querying them in more complex ways increases.

Other challenges have only been occasionally or partially
addressed by the literature, where we highlight:

Dynamics: Many of the surveyed works assume static
data, and do not handle updates gracefully. Thus, more work
is needed on efficiently querying dynamic RDF graphs with
SPARQL, including storage that efficiently supports reads
and writes, incremental indexing, caching, etc.

Query optimizations (beyond joins): Most works focus
on optimizing joins and basic graph patterns. We found rel-
atively few works optimizing features of SPARQL 1.1, such
as property paths, negation, etc., where more work is needed.
The expressivity of the SPARQL language is sure to grow
(e.g., in the context of SPARQL 1.2), where these new fea-
tures will likewise call for new techniques.

Query volume: Leading SPARQL endpoints process mil-
lions of queries per day. This challenge motivates further
research on workload-aware or caching strategies that lever-
age frequent sub-queries. Another research challenge is on
how to ensure effective policies for serving many clients
while avoiding server overload, where methods such as pre-
emption [157], which allows for pausing and resuming costly
query requests, are promising ideas for further development.

Evaluation: Various benchmarks are now available for
comparing different RDF stores, but they tend to focus on
system-level comparisons, thus conflating techniques. More
fine-grained evaluation at the level of individual techniques
in the RDF/SPARQL setting would be very useful to under-
stand the different trade-offs that exist. Also many bench-
marks were proposed for SPARQL 1.0, where there is a lack
of benchmarks including features such as property paths.

Integration: RDF and SPARQL are widely adopted on
the Web, and for managing and querying knowledge graphs.
However, in such settings, additional types of tasks are of-
ten considered, including federated querying, reasoning, en-
richment, refinement, learning, analytics, etc. More work is
needed on supporting or integrating features for these tasks
in SPARQL. Interesting questions relate to efficiently sup-
porting RDFS/OWL/Datalog reasoning, graph algorithms,
knowledge graph embeddings, graph neural networks, etc.,
for RDF graphs within SPARQL engines.
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A Survey of RDF Stores

We now present a survey of local and distributed RDF stores,
and how they use the aforementioned techniques. At the
end of this section, we will discuss some general trends for
RDF stores. We include here systems for which we could
find technical details regarding (at least) the storage, index-
ing and processing of joins over RDF graphs.7 In the case
of distributed RDF stores, we expect similar technical de-
tails, along with the type of partitioning and/or replication
used. We include systems with associated publications, as
well as systems that are unpublished but widely known in
practice. Both local and distributed systems are presented in
approximate chronological order, based on the year of pub-
lication, or an approximate year in which the system was
released. For unpublished local stores, we include the year
where RDF was first supported. For unpublished distributed
stores, we include the approximate year when distributed
features were added. Some stores that are often deployed
in local environments also support distribution; they are in-
cluded in both sections. Some systems are unnamed; if it is
a distributed store that extends an existing local store, we
append the suffix “-D” or “-D2” to the local store’s name;
otherwise we use an abbreviation based on authors and year.
Where systems change name, we prefer the more modern
name. The papers sometimes use different terminology to
refer to similar concepts; we often map the original termi-
nology to that used in the body of the survey in order to
increase coherency and improve readability.

A.1 Local RDF Stores

The local RDF stores we include, and the techniques they
use, are summarized in Table 4.

Redland [28] (2001) is a set of RDF libraries for native
RDF storage that has seen various developments over the
years. The original paper describes triple-table like storage
based on creating three hash maps – SP→O, PO→S, SO→P

– which, given two elements of an RDF triple, allow for
finding the third element; for example, using PO→S, we can
find the subjects of triples with a given predicate and object.
The hash maps can be stored either in-memory or on per-
sistent storage. Support for the RDQL and SPARQL query
languages were later added with the Rasqal query library.

7 We thus exclude systems – such as TPF-based systems, and stores
such as Fabric, Fluree, and TriplePlace [18] – that do not (yet) describe
direct support for joins or basic graph patterns. We also exclude sys-
tems – such as Attean, Kineo, KiWi, librdf.sqlite, NitroBase, Oxigraph,
Pointrel, Profium Sense, RedStore, RDF::Trine, TerminusDB [229]
and TriplyDB – for which we could not find key technical details (e.g.,
indexes or join algorithms supported) at the time of writing.

Jena [151] (2002) uses relational databases to store RDF
graphs as triple tables, with entries for subject, predicate,
object IRIs, and object literals. IRIs and literals are encoded
as IDs and two separate dictionaries are created for both. In-
dexing is delegated to an underlying relational DBMS (e.g.,
Postgresql, MySQL, Oracle, etc.). RDQL is used as a query
language and is translated into SQL and run against the un-
derlying relational DBMS. The Jena store would later be ex-
tended in various directions, with SDB referring to the use of
relational-style storage (per the original system), and TDB
referring to the use of native storage.

RDF4J [42] (2002), known originally as Sesame, provides
persistent storage and querying of RDF data. RDF4J pro-
vides storage-independent solutions and can be deployed on
top of a variety of storage engines such as RDBMSs and
object-oriented databases. Graph queries can be expressed
with the RQL language. The storage, indexing, and query
processing techniques depend on the underlying storage en-
gine used by RDF4J. Recent versions of RDF4J features
improved functionalities such as both in-memory and per-
sistent data storage, SeRQL and SPARQL support, etc.

RSSDB [117,118] (2002) stores an RDF graph using a ver-
tical partitioning approach with Postgres as the underlying
database. Two variants are considered for class instances:
creating a unary table per class (named after the class, with
rows indicating instances), or creating one binary table called
instances (with rows containing both the instance and the
class) in order to reduce the number of tables. Four tables are
also added to model RDFS definitions (classes, properties
with their domain and range, sub-classes and sub-properties).
The system supports queries in RQL (proposed in the same
paper [118]), which are translated to SQL by an RQL inter-
preter and evaluated over Postgres.

3store [90] (2003) uses MySQL as a back-end, sorting RDF
graphs in four tables, namely a triple table, a models table,
a resource table, and a literal table. The triple table stores
RDF triples (one per row) with additional information: (1)
the model the triple belongs to, (2) a boolean value to indi-
cate if the object is a literal, and (3) a boolean value to indi-
cate if this triple is inferred. The models, resource, and literal
tables are two-column tables that dictionary encode mod-
els, resources, and literals, respectively. Queries expressed
in RDQL are rewritten to SQL for execution over MySQL.

AllegroGraph 8 (2003) is a general purpose store for semi-
structured data that can be used to query documents (e.g.,
JSON) and graph data (e.g., RDF). RDF data is stored and
indexed in six permutations as quads, which are addition-
ally associated with a triple identifier. SPARQL queries are

8 https://franz.com/agraph/allegrograph/

https://franz.com/agraph/allegrograph/
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Table 4: Categorization of local RDF Engines.
Storage: T = Triple Table, Q = Quad Table, V = Vertical Partitioning, P = Property table, G = Graph-based, E = Matrix/Tensor-based, M = Miscellaneous
Indexing: T = Triple, Q = Quad, E = Entity, P = Property, N = Path/Navigational, J = Join, S = Structural, M = Miscellaneous
Join P.: P = Pairwise, M = Multiway, W = Worst case optimal, L = Linear algebra
Query P.: R = Relational, N = Paths/Navigational, Q = Query rewriting

Storage Indexing Join P. Query P.Engine Year
T Q V P G E M T Q E P N J S M P M W L R N Q

Redland [28] 2001 3 3

Jena [151] 2002 3 3 3 3

RDF4J [42] 2002 3 3 3 3 3

RSSDB [117,118] 2002 3 3 3 3

3store [90] 2003 3 3 3 3

AllegroGraph 2003 3 3 3 3 3

Jena2 [241] 2003 3 3 3 3 3 3

CORESE [57,58] 2004 3 3 3 3

Jena TDB 2004 3 3 3 3 3 3 3

RStar [143] 2004 3 3 3 3

BRAHMS [110] 2005 3 3 3

GraphDB [125,33] 2005 3 3 3 3 3 3 3

Mulgara [243] 2005 3 3 3 3 3

RAP [172] 2005 3 3 3 3 3 3

RDF_MATCH [55] 2005 3 3 3 3 3 3 3 3 3

YARS [93] 2005 3 3 3 3

ARC [171] 2006 3 3 3 3 3 3 3

RDFBroker [212] 2006 3 3 3 3 3

Virtuoso [69] 2006 3 3 3 3 3 3

GRIN [228] 2007 3 3 3

SW-Store [1] 2007 3

Blazegraph [224] 2008 3 3 3 3 3 3 3 3

Hexastore [238] 2008 3 3 3 3

RDF-3X [168] 2008 3 3 3 3 3

BitMat [21] 2009 3 3 3 3

DOGMA [41] 2009 3 3 3 3

LuposDate [77] 2009 3 3 3

Parliament [126] 2009 3 3 3 3

RDFJoin 2009 3 3 3 3 3 3 3

SystemΠ [245] 2009 3 3 3 3 3

HPRD [139] 2010 3 3 3 3 3 3 3

Stardog 2010 3 3 3 3 3

StrixDB 2010 3 3 3

dipLODocus [250] 2011 3 3 3 3 3

gStore [263] 2011 3 3 3 3

SpiderStore [164] 2011 3 3

SAINT-DB [186] 2012 3 3 3

Strabon [130] 2012 3 3 3 3 3 3

BrightstarDB 2013 3 3 3 3 3 3 3

DB2RDF [36] 2013 3 3 3 3 3 3

OntoQuad [187] 2013 3 3 3 3 3

OSQP [225] 2013 3 3 3 3

Triplebit [256] 2013 3 3 3 3

R3F [123,124] 2014 3 3 3 3 3 3

RQ-RDF-3X [135] 2014 3 3 3 3

SQBC [262] 2014 3 3 3

WaterFowl [61] 2014 3 3 3 3

GraSS [142] 2015 3 3 3 3

k2-triples [13] 2015 3 3 3

RDFCSA [40,39] 2015 3 3 3

RDFox [164] 2015 3 3 3 3 3

TurboHOM++ [122] 2015 3 3 3

ClioPatria [240] 2016 3 3 3 3 3

LevelGraph [145] 2016 3 3 3 3

RIQ [120] 2016 3 3 3 3 3

axonDB [154] 2017 3 3 3 3 3

HTStore [138] 2017 3 3

Ontop [46,251] 2017 3 3 3 3

Quadstore 2017 3 3 3 3 3 3

AMBER [105] 2018 3 3

TripleID-Q [49] 2018 3 3 3 3

Jena-LTJ [99] 2019 3 3 3

MAGiQ [109] 2019 3 3

BMatrix [38] 2020 3 3 3

Tentris [31] 2020 3 3 3 3 3

Ring [19] 2021 3 3 3
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supported, where the most recent version provides an op-
tion for two query engines: SBQE, which is optimized for
SPARQL 1.0-style queries, and MJQE, which features merge
joins and caching techniques optimized for property paths.

Jena2 [241] (2003) is a revised version of the original Jena
database schema, with support for both triple and property
tables. Unlike the original version, IRIs and literals are stored
directly in the tables, unless they exceed a certain length, in
which case they are dictionary encoded by two separate ta-
bles; this allows filter operations to be directly performed
on the triple and property tables, thus reducing dictionary
lookups, but increasing storage sizes as string values are
stored multiple times. Indexing is handled by an underlying
relational database, and graph queries in RDQL are rewrit-
ten to SQL queries evaluated over the database.

CORESE [57,58] (2004) began as a search engine with path-
finding functionality and inference [57], but was extended
to support SPARQL query features [58]. CORESE models
RDF graphs as conceptual graphs; for simplicity we discuss
their methods in terms of the RDF model. RDF graphs are
indexed according to the terms, enabling the efficient evalu-
ation of triple patterns. Given a basic graph pattern, the triple
patterns are reordered based on heuristics – such as the num-
ber of constants or filters associated with the triple pattern,
or the number of variables bound by previous triple patterns
in the order – as well as cardinality estimates. A nested-loop
style algorithm is then applied to perform joins. Filters are
evaluated as soon as possible to reduce intermediate results.

Jena TDB 9 (2004) is a native RDF store that has seen con-
tinuous development in the past decades. A TDB instance
consists of three tables: a node table (a dictionary, allowing
to encode/decode RDF terms to/from 8-byte identifiers), a
triple/quad table (with dictionary-encoded terms), and a pre-
fixes table (used to store common prefixes used for abbrevi-
ations). Storage is based on custom B+trees used to build in-
dexes for various triple/quad permutations. Join processing
uses pairwise (nested-loop) joins, with a variety of statistic-
and heuristic-based methods available for join reordering.
SPARQL 1.1 query processing is implemented in the custom
Jena ARQ query processor. Jena TDB has become the rec-
ommended RDF store for Jena, with older relational-based
storage (later named Jena SDB) having been deprecated.

RStar [143] (2004) stores (RDFS-style) ontology informa-
tion and instance data using multiple relations in the IBM
DB2 RDBMS. Five two-column tables are used to store on-
tological data (property dictionary, sub-property relations,
class dictionary, sub-class relations, and domain and range
relations). Another five two-column tables are used to store

9 https://jena.apache.org/documentation/tdb/

instance-related data (literal dictionary, IRI dictionary, triples,
class instances, namespace dictionary). RStar pushes index-
ing and other tasks to the underlying database. The RStar
Query Language (RSQL) is used and translated into SQL.

BRAHMS [110] (2005) is an in-memory RDF store. The
RDF graph is indexed in three hash tables – S→PO, O→SP,
P→SO – which allow for finding triples that use a particular
constant. The motivating use-case of BRAHMS is to find se-
mantic associations – i.e., paths between two subject/object
nodes – in large RDF graphs. This path-search functionality
was implemented in BRAHMS using depth-first search and
breadth-first search algorithms.

GraphDB [125,33] (2005) (formerly known as OWLIM)
stores RDF graphs using a mix of triple and quad tables.
In the most recent version, indexes are built for two triple
permutations (POS and PSO) as well as a quad permutation
(GPSO). Predicate lists (SP and OP) can also be indexed in
order to quickly find the predicates associated with a given
subject or object. Terms are dictionary encoded. Joins are re-
ordered according to cardinality estimations. SPARQL 1.1 is
supported, along with a wide range of other features, includ-
ing spatial features, full-text indexing, inference, semantic
similarity, integration with MongoDB, and more besides.

Mulgara [243,161] (2005), a fork of an earlier RDF store
known as Kowari, implements native RDF storage in the
form of quads tables using AVL trees. Dictionary encoding
based on 64-bit longs is used. Support for transactions is
provided using immutable arrays that store quads on disk
in compressed form, with skiplists enabling fast search; in-
sertions and deletions lead to a new immutable array being
generated on disk. Indexing is based on six permutations of
quads (which is sufficient to efficiently evaluate all sixteen
possible quad patterns). Joins are evaluated pairwise and re-
ordered (possibly on-the-fly) based on cardinality estima-
tions. Queries are expressed in the iTQL language, where
SPARQL support was added later.

RAP [172] (2005) is a general-purpose PHP-based API for
RDF that includes an RDF store. Two forms of storage are
provided. An in-memory store collects triples in an array,
with three indexes provided on S, P and O to find triples by
a given term and position. Alternatively, persistent storage
is supported through database backends, where triples are
stored in a triple table in raw form (i.e., as RDF terms). Early
versions of RAP supported RDQL queries. To evaluate such
queries over the in-memory store, individual triple patterns
are first evaluated and their results joined. If persistent stor-
age is rather used, the query is rewritten in full to SQL and
evaluated by the underlying database. Later versions would
include support for SPARQL.

https://jena.apache.org/documentation/tdb/
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RDF_MATCH [55] (2005) is an RDF store that uses the Or-
acle RDBMS as an underlying database. It stores RDF data
in two different tables: a dictionary table, and a quads table.
Indexes are defined based on B-trees. Queries are evaluated
as self-joins over the quads table, which is further joined
with the dictionary. Materialized views can further be used
to index S–S, S–P, S–O, P–P, P–O and O–O joins on-demand,
as well as selected property tables. Support for Datalog-style
rules is also provided. Queries are expressed in an SQL-style
syntax, with functions used to express graph patterns, which
in turn are interpreted and evaluated by Oracle.

YARS [93] (2005) is a native RDF store that indexes quad ta-
bles in B+trees using dictionary encoded terms. It uses four
types of indexes: dictionary indexes, keyword indexes, quad
indexes (with six permutations), and cardinality indexes that
count occurrences of quad patterns. YARS implements pair-
wise (nested-loop) joins that are reordered by cardinality.
Basic graph patterns in Notation3 (N3) syntax are supported.

ARC [171] (2006) was first proposed as a general-purpose
PHP library for processing RDF, but would be extended in
subsequent years with a variety of additional features, in-
cluding RDF storage and querying. These features are im-
plemented on top of an underlying relational store, with sup-
port for persistent storage through MariaDB and MySQL,
and in-memory storage with SQLite. Data are stored as triple
or quad tables. A fragment of the SPARQL standard is sup-
ported, including some selected features from SPARQL 1.1.

RDFBroker [212] (2006) is an RDF store that follows a
property table approach. For each subject in the graph, its
signature (equivalent to the notion of characteristic sets that
would come later) is extracted, with a property table de-
fined for each signature, including a column for the subject,
and a column for each property in the signature. Support
for RDFS reasoning is also described. An index over signa-
tures is proposed based on a lattice that models set contain-
ment between signatures. Given a signature extracted from
the query, the lattice can be used to find tables correspond-
ing to signatures that subsume that of the query. A prototype
based on in-memory storage is described, implementing typ-
ical relational query optimizations such as join reordering.

Virtuoso [69] (2006) stores RDF data as a quad table, where
in the most recent version, by default, the quad table in-
cludes five indexes: PSOG (for P, PS, PSO and PSOG pre-
fixes), POGS (for PO and POG), SP (for S), OP (for O), and GS

(for G). The table is sorted by the primary key PSOG. If only
the subject or object are known, the SP/OP index can be used
to identify predicates, allowing the PSOG/POGS index to be
subsequently used. In the case that only the graph is known,
the GS index is joined with SP and then with PSOG. Subjects,
predicates and graph names are dictionary encoded; objects

are stored in raw form (for fast filtering). Configurations for
row-wise and column-wise storage are provided. Query exe-
cution is based on translating SPARQL queries into SQL to
be executed on a custom underlying database.

GRIN [228] (2007) is an RDF store based on a structural
index (see Section 5.6). This index is a binary tree, where
the root refers to all the nodes of the graph, and both chil-
dren divide the nodes of its parents based on a given distance
from a given node in the graph. The leaves can then be seen
as forming a partition of the triples in the graph induced by
the nodes in its division. The structural index is used to find
small subgraphs that may generate results for a query, over
which an existing subgraph matching algorithm is applied.

SW-Store [2,1] (2007) is an RDF store based on vertical
partitioning. SW-Store relies on a column-oriented DBMS
called C-store [216], which is shown to pair well with ver-
tical partitioning in terms of performance (e.g., the object
column of a foaf:age table will have integers in an inter-
val [0, 150], which are highly compressible). Each table is
indexed by both subject and object. An “overflow” triple ta-
ble is used for inserts alongside the compressed, vertically
partitioned tables. Jena ARQ is used to translate SPARQL
queries into SQL for evaluation over C-Store. Pairwise joins
are used, preferring merge joins when data are sorted appro-
priately, otherwise using index nested-loop joins. Material-
ization of S–O joins is also discussed.

Blazegraph [224] (2008), formerly known as BigData, is a
native RDF store supporting SPARQL 1.1. Blazegraph al-
lows for either indexing triples to store RDF graphs, or quads
to store SPARQL datasets. Three index permutations are
generated for triples, and six permutations are generated for
quads; indexes are based on B+trees. Both row and col-
umn data storage models are supported, which can be saved
both in-memory or on-disk. Dictionary encoding with 64-
bit integers is used for compressed representation of RDF
triples. Two query optimization strategies are available: the
default approach uses static analysis and cardinality estima-
tion; the second approach uses runtime sampling of join
graphs. Supported joins include hash joins, index nested-
loop joins, merge joins, and multiway star joins.

Hexastore [238] (2008) is an in-memory RDF store based
on adjacency lists similar to Figure 8. Six indexes are built
for all 3! = 6 permutations of the elements of a triple.
For example, in the SPO index, each subject s is associated
with an ordered vector of predicates, wherein each p in turn
points to an ordered vector of objects. In the PSO index, each
p points to a vector of subjects, wherein each s points to
the same vector of objects as used for sp in the SPO index.
Terms are dictionary encoded. Having all six index orders
allows for (pairwise) merge joins to be used extensively.
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RDF-3X [166,167,168] (2008) stores RDF graphs as triple
tables in compressed indexes, which are based on clustered
B+trees whose values are delta-encoded to reduce space.
Triples are indexed in all six possible ways. RDF-3X also
indexes counts for all triple patterns with one or two (dis-
tinct) constants; thus, it can find the exact number of triples
matching, for example, (s,p,o), (s,p,o), etc. Counts are also
maintained for frequent path and star joins. Join reorder-
ing is based on a dynamic programming procedure, which
uses the aforementioned counts as cardinality statistics, and
leverages the complete indexing of all six permutations to
enable merge joins, further evaluating multiway joins in the
case of star patterns. A later extension adds sideways infor-
mation passing strategies [167] in order to filter intermediate
results based on global heuristics.

BitMat [21,20] (2009) considers a one-hot encoding of an
RDF graph, i.e., a 3-dimensional bit array (or matrix/ten-
sor) of dimension |S| × |P | × |O|, where S, P , O, indicate
the set of subjects, predicates and objects of the graph; and
where index s, p, o contains a 1 if the corresponding (dic-
tionary encoded) triple (s, p, o) exists, or 0 otherwise. The
system stores slices of this array (called BitMats), where for
each predicate, SO and OS BitMats are stored; for each sub-
ject, a PO BitMat is stored; and for each object, a PS Bit-
Mat is stored. Each BitMat is a 2-dimensional bit array; e.g.,
the OS matrix of a given predicate p enables finding all ob-
jects matching o in (s, p,o) or all subjects matching s in
(s, p, o). Though OP and SP BitMats could be indexed for
subjects and objects, resp., the authors argue they would be
rarely used. BitMats also store the count of 1’s (triples) they
contain, a row vector indicating which columns contain a
1, and a column vector indicating which rows contain a 1.
In total, 2|P ||S||O| BitMats are generated, gap compressed,
stored on disk, and loaded in memory as needed. Bitwise
AND/OR/NOT operators are used for multiway joins.

DOGMA [41] (2009) is a graph-based RDF store, where an
RDF graph is first decomposed into subgraphs using a graph
partitioning algorithm. These subgraphs are indexed as the
leaves of a balanced binary tree stored on disk. Each non-
leaf node in this tree encodes the k-merge of its two chil-
dren, which is a graph with k nodes that is isomorphic to a
quotient graph (see Section 5.6) of both children. DOGMA
proposes a variety of algorithms for evaluating basic graph
patterns with constant predicates. The basic algorithm gen-
erates a set of candidate results for each individual variable
node based on its incoming and outgoing edges; starting
with the node with the fewest candidates, the algorithm then
proceeds to check the edges between them in a depth-first
manner (similar to wco joins). Further algorithms prune the

sets of candidates based on their distance from the candi-
dates of other nodes in the query based on the distance be-
tween nodes in the subgraphs in the leaves of the binary tree.

LuposDate [77] (2009) stores RDF in a triple table. Seven
hash indexes are added for S, P, O, SP, SO, PO, SPO, enabling
efficient evaluation of all eight triple patterns. Triples are
also annotated with their rank (position in the order) with
respect to the six permutations of the triple; for example, the
OPS rank indicates the position of the triple when the graph
is sorted in OPS order. These ranks are used for fast sorting
of intermediate results when applying sort-merge joins.

Parliament [126] (2009) stores RDF graphs in three tables:
a resource table encoding details of individual terms, a state-
ment table encoding triples, and a dictionary table. These
tables are stored as linked lists. For each RDF term, the
resource table stores the first triple containing the term in
the statement table; the number of triples that use it in the
subject, predicate and object position; a pointer to its entry
in the dictionary; and a bitvector encoding metadata about
the term. The statement table contains eight components: a
statement identifier; three identifiers for the subject, predi-
cate, and object of the triple; three statement identifiers point-
ing to the next triple with the same subject, predicate, and
object; and a bitvector for encoding metadata of the state-
ment. This storage scheme avoids the need for multiple or-
ders and enables fast lookups when triple patterns have one
constant; for triple patterns with multiple constants, how-
ever, the most selective constant is looked up, with filters
run to check the other constants. SPARQL query processing
is enabled through existing libraries, such as Jena ARQ.

RDFJoin [152] (2009) stores RDF graphs using three types
of tables. Two dictionary tables are used to encode and de-
code subjects/objects and predicates. Three triple tables are
used, where each has two positions of the triple as the pri-
mary key, and the third position is encoded as a bit vector;
for example, in the PO table, predicate and object are used
as a primary key, and for each predicate–object pair, a bit
vector of length |so(G)| is given, with a 1 at index k en-
coding a triple with the subject identifier k for the given
predicate and object. Join tables store the results of S–S, O–
O, and S–O joins, encoded with the two predicates of both
triples as primary key (joins using the same predicate twice
are excluded), and a bit vector to encode the join terms for
that predicate pair (the subject/object that matches the join
variable). MonetDB and LucidDB are used as underlying
databases. SPARQL is supported, where joins are evaluated
using the join indexes and pairwise algorithms. Inference
would later be added in the extended RDFKB system [153].



34 Ali et al.

System Π [245] (2009) is a graph-based RDF store. Nodes
of the graph are indexed with an identifier, value and type,
while edges are indexed as triples, with their subject, predi-
cate and object identifiers. Nodes are then linked to their in-
ward and outward edges, which enables lookups for triples
with a given subject or object. A more compressed version
where outward edges only store the predicate and object, or
inward edges only store the subject and predicate, is also
proposed. Edges are then grouped by their vertex (outward
edges by subject, inward edges by object). The compressed
variant is thus similar to an adjacency list. Indexes are built
for three triple permutations and for reachability queries on
a single predicate (PLSD; see Section 5.4). SPARQL (1.0)
queries are supported over the proposed indexes using pair-
wise joins, with the PLSD index used to support entailment
over transitive properties.

HPRD [139] (2010) is an RDF store based on three types of
index over the dictionary-encoded graph. Triple indexes are
based on B+trees and cover three triple permutations: SPO,
PO, OS. A path index is built using suffix arrays, and is used
only to cache paths that are commonly accessed in queries;
the paths are indexed by their predicates. Context indexes
are based on B+Trees and are used to support temporal data,
versioning, or named graphs; six permutations are covered,
namely CSPO, SPO, POC, OCS, CP and SO. Cardinality statis-
tics are further stored for triple patterns, and used for greedy
join reordering. RDQL queries supported.

Stardog 10 (2010) is a commercial RDF store built upon the
RocksDb key-value store. Stardog indexes quads in vari-
ous permutations using RocksDB. Different types of pair-
wise joins – such as hash join, bind join, merge join etc.
– are used. Stardog supports SPARQL 1.1, full-text search
through Lucene, ACID transactions, versioning, and a vari-
ety of other features, including support for property graphs.

StrixDB 11 (2010) is a native RDF store with transactional
support. Storage is built upon the kernel of Gigabase, which
is an object-relational embedded database. One write trans-
action is supported in combination with multiple read trans-
actions. Triples are indexed in B-trees under three permu-
tations: SPO, POS and OSP. SPARQL queries are translated
into executable byte-code. Rules in Datalog or Turtle-like
syntax are supported though a variant of SLG resolution.

dipLODocus [250] (2011) is an RDF store based on the
notion of a “molecule”, which is a subgraph surrounding
a particular “root” node. The root nodes are defined based
on matching triple patterns provided by the administrator.
The molecule of a root node is then the subgraph formed by

10 https://docs.stardog.com/
11 http://opoirel.free.fr/strixDB/

expanding outward in the graph until another root node is
encountered. Dictionary encoding is used. Indexes are fur-
ther built that map nodes and the values of properties indi-
cated by the administrator to individual molecules. SPARQL
is supported through the Rasqal query library, with joins
pushed within individual molecules where possible; other-
wise hash joins are used. Aggregate queries are pushed to
the indexes on values of individual properties (which offers
benefits similar to column-wise storage).

gStore [263] (2011) is a graph-based RDF store. The RDF
graph is stored using adjacency lists (see Section 4.5) where
each node is associated with a bit vector – which serves
as a vertex signature (see Section 5.2) – that encodes the
triples where the given node is the subject. gStore then in-
dexes these signatures in a vertex signature tree (VS-tree)
that enables multi-way joins. The leaves of the VS-tree en-
code signatures of nodes, and non-leaf nodes encode the bit-
wise OR of their children; the leaves are further connected
with labeled edges corresponding to edges between their
corresponding nodes in the graph. Basic graph patterns can
then be encoded in a similar manner to the graph, where
gStore then evaluates the pattern by matching its signature
with that of the indexed graph.

SpiderStore [164] (2011) is an in-memory graph store based
on adjacency lists. Specifically, for each node in the RDF
graph, an adjacency list for incoming and outgoing edges is
stored. Likewise, for each predicate, a list of subject nodes
is stored. Rather than storing the constants directly in these
lists, pointers are stored to the location of the term (with the
adjacency lists for the node or the subjects of the predicate).
Alongside these pointers, cardinality metadata are stored.
(Though SPARQL queries with basic graph patterns and fil-
ters are evaluated in the experiments, the types of join algo-
rithms used are not described.)

SAINT-DB [186] (2012) is an RDF store with a structural
index that organizes triples in the graph according to the type
of join that exists between them (S–S, P–O, etc.). The in-
dex itself is then a directed edge-labeled graph whose nodes
represent a set of triples from the graph, edges indicate that
some pair of triples in both nodes are joinable, and edge la-
bels indicate the type of join that exists (which makes the
graph directed as S–O differs from O–S). The nodes of the
index then form a partition of the graph: no triple appears
in more than one node, and their union yields the graph.
This index can range from a single node with all triples in
the graph (with loops for each type of join present), to sin-
gleton nodes each with one triple of the graph. A condition
based on semi-joins is used to strike a balance, minimizing
the intermediate results generated for individual triple pat-
terns. Given a basic graph pattern, each triple pattern is then

https://docs.stardog.com/
http://opoirel.free.fr/strixDB/
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mapped to nodes in the structural index, where the triple pat-
terns it joins with must match some triple in a neighbor on
an edge whose label corresponds to the type of join.

Strabon [130] (2012) is an RDF store that supports custom
features for indexing and querying geospatial data (specifi-
cally in the form of stRDF [129] data). Strabon is built upon
Sesame/RDF4J, which is chosen as an open-source solution
that can easily integrate with PostGIS: a DBMS with spatial
features. Strabon then stores RDF using a vertical partition-
ing scheme with dictionary encoding; an identifier for each
triple is also included. B+tree indexes are built for the three
columns of each table (subject, predicate, identifier). Stra-
bon supports an extension of SPARQL, called stSPARQL
[129], for querying stRDF based datasets, with spatial fea-
tures supported through PostGIS.

BrightstarDB 12 (2013) is a persistent RDF store that in-
dexes dictionary-encoded RDF datasets using B-trees and/or
B+trees. Two types of persistence are supported: in append-
only mode, writes are made to pages at the end of the index
files, while in rewritable mode, writes are made to copies of
index pages that are made active upon a commit. The sys-
tem further supports querying over multiple named graphs.
SPARQL 1.1 queries are processed over BrightstarDB’s stor-
age using dotNetRDF’s Leviathan library, which supports
hash joins and uses a heuristic-based join reordering based
on which elements of the triple patterns are constant.

DB2RDF [36] (2013) uses a relational schema similar to
property tables to store RDF data. However, rather than hav-
ing a column for each property/predicate associated with a
given subject, DB2RDF uses a “primary hash” table with
columns S, P1, O1, . . . , Pk, Ok, where each Pi, Oi pair of
columns indicates the ith predicate–object pair associated
with the subject listed in the S column. A binary “spill” col-
umn is added, with a 1 indicating that a subject has more
than k triples, in which case it will occupy more than one
row of the table. Rows for subjects with fewer than k triples
are completed with NULLs. A second table is used to deal
with multi-valued properties, where if a subject s has multi-
ple values for the property p – say o1, . . . , on – then a sin-
gle fresh value v is used in the primary hash table, which
is mapped to o1, . . . , on (as a binary relation) in the second
table. Two orders are indexed: in the second order, subjects
and objects are reversed. IBM DB2 is used as the underly-
ing database for experiments, with SPARQL queries being
optimized and translated to SQL.

12 https://brightstardb.readthedocs.io/_/downloads/en/l
atest/pdf/

OntoQuad [187] (2013) is an RDF store that extends the
triple-based representation of Hexastore to additionally sup-
port quads. A structure similar to a trie is used, where the
top layer is a vector of values for S, P, O, G; the second level
encodes SP, . . . , GO, etc., with three children for each parent
in the top layer (e.g., SP, SO, SG for S); the third layer has
two children for each parent in the second layer encoding
SPO, . . . , GOP; the fourth layer has one child for each parent
in the third layer, completing the quad permutation. B-trees
are then used for indexing. Both pairwise and multiway joins
are supported using zig-zag joins that seek forward to the
maximum compatible join value across the triple patterns.
Cardinality estimates and query rewriting rules are used to
optimize SPARQL query plans.

OSQP [225] (2013) is an RDF store based on a structural in-
dex using various notions of bisimulation, where two nodes
in the graph are bisimilar if they cannot be distinguished
from their paths. The nodes of the graph are then partitioned
into sets that are pairwise bisimilar. The index is then based
on a quotient graph, where supernodes correspond to a set
of bisimilar nodes in the input graph. In order to reduce
index sizes, a parameter corresponding to path lengths is
added, such that bisimulation only considers paths within a
bounded region of the graph rather than the entire graph. A
basic graph pattern is then matched over the quotient graph
(kept in-memory), where the triples corresponding to each
matched node are retrieved (from the disk) and used to com-
pute the final results. Custom optimizations are considered
for triples with unprojected variables, whose triple patterns
can be definitively “satisfied” and thus pruned based on the
index; and selective triple patterns, which are evaluated di-
rectly over the RDF graph.

Triplebit [256] (2013) represents a dictionary-encoded RDF
graph as a compressed 2-dimensional bit matrix. Each col-
umn of the matrix represents a triple, and each row rep-
resents a subject/object node. The subject and object rows
are assigned 1 for the corresponding column of the triple.
Columns are sorted by predicate, where a range of columns
corresponds to the triples for that predicate. The columns
for triples are sparse (at most two 1’s) and thus the two iden-
tifiers for subjects and objects are used, rather than storing
1’s; two orders are maintained for SO and OS (thus effec-
tively covering PSO and POS orders). Two auxiliary indexes
are used in TripleBit. Given a subject or object node and a
predicate node, the first index (called ID-Chunk) supports
lookups for finding the range for the unspecified object or
subject. Given a subject or object node alone, the second in-
dex (called ID-predicate) finds predicates associated with
that subject or object. Basic graph patterns are evaluated
using multiway merge-joins for star joins, with semi-joins
used to reduce the number of intermediate results across star
joins. Join ordering uses a greedy strategy on selectivity.

https://brightstardb.readthedocs.io/_/downloads/en/latest/pdf/
https://brightstardb.readthedocs.io/_/downloads/en/latest/pdf/
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R3F [123,124] (2014) is an extension of RDF-3X with path-
based indexes and novel join processing techniques. The
first addition is the “RP-index”, which indexes all nodes
with a given incoming path expression up to a certain length;
for example, the incoming path expression pqr (of length
3) indexes all nodes z such that there exists w, x, y, such
that (w, p, x), (x, q, y), (y, r, z) are all triples of the graph.
The RP-index is structured as a trie indexing the prefixes
of the incoming path expressions, whose leaves are the list
of nodes (which are dictionary encoded, sorted and delta
encoded). Virtual inverse predicates are added to the RDF
graph to support paths in both directions. The second exten-
sion is a modification to the sideways information passing
strategy of RDF-3X to incorporate information about paths
for filtering additional intermediate results.

RQ-RDF-3X [135] (2014) is an extension of RDF-3X to-
wards support for quads. The extension follows the same
principles and techniques for RDF-3X, but the extension
to quads requires covering additional permutations. Indexes
are built for all 4! = 24 quad permutations, similar to how
RDF-3X indexes all 3! = 6 triple permutations; having all
permutations enables reading the results for any variable
of any triple pattern in sorted order, which in turn enables
merge joins. The delta encoding used by RDF-3X is ex-
tended to the fourth element. Like in RDF-3X, counts are
indexed for all quad patterns with 1, 2, or 3 constants, re-
quiring 4, 12 and 24 indexes, respectively (40 in total). Join
and query processing use RDF-3X’s techniques. RQ-RDF-
3X then offers optimized support for reification using named
graphs/triple identifiers.

SQBC [262] (2014) is a graph store – with support for RDF
graphs – inspired by existing subgraph matching techniques
for efficiently finding subgraph isomorphisms.13 In order to
index the graph, codes are extracted for each node that cap-
ture structural information about it, including its label, the
largest clique containing it, the degrees of its neighbours,
etc. Given a basic graph pattern, candidates are identified
and filtered for variable nodes. If the basic graph pattern
has no cliques, degree information is used; otherwise clique
sizes can be used to filter candidate matches.

WaterFowl [61] (2014) is a compact RDF store based on
succinct data structures. The RDF graph is dictionary en-
coded and sorted in SPO order, and represented as a trie: the
first layer denotes subjects, connected to their predicates in
a second layer, connected to their objects in the third layer.
This trie structure is encoded in a compact representation

13 The evaluation of basic graph patterns in SPARQL is defined in
terms of homomorphisms, rather than subgraph isomorphisms as sup-
ported by SQBC, with the difference being that two or more variables
in a basic graph pattern can match one node in the RDF graph.

using a combination of bit strings that indicate the num-
ber of children for a parent (e.g., for predicates, 100101 . . .
tells us that the first subject has three children (unique pred-
icates) and the second has two); and wavelet trees that en-
code the sequence of terms themselves (e.g., the sequence
of predicates). Pairwise joins are evaluated in terms of left-
deep plans, with further support for SPARQL (1.0) features.
RDFS inference is also supported.

GraSS [142] (2015) is an RDF store that is based on decom-
posing basic graph patterns into subgraph patterns forming
star joins (considering S–S, S–O, or O–O joins). An “FFD-
index” for star joins is proposed, where for each node, a bit-
string signature is computed that encodes its incoming and
outgoing edges, i.e., the triples in which it appears as subject
or object. A neighbourhood table is constructed: each row
denotes a node, which is associated with its signature and
edges. Five triple permutations are further indexed (cover-
ing SP*, OP*, S*, P*, O*), where in the SP* permutation,
for example, (s, p) pairs are mapped to a list of objects and
their degrees. A basic graph pattern is then decomposed into
sub-patterns forming star joins, which are evaluated using
the available indexes.

k2-triples [13] (2015) is a compact in-memory RDF store
based on k2 trees. The RDF graph is first dictionary en-
coded. For each predicate, a k2 tree is used to index its
subjects and objects. In order to support variable predicates
in triple patterns, SP and OP indexes are used to map sub-
jects and objects, respectively, to their associated predicates;
these indexes are encoded using compressed predicate lists.
For processing basic graph patterns, S–S, S–O, O–S and O–
O index nested-loop joins and merge joins are supported.
A sideways information passing optimization is supported
where two k2 trees involved in a join can be descended in a
coordinated fashion to filter intermediate results.

RDFCSA [40,39] (2015) is a compact in-memory RDF store
based on text indexes. Specifically, triples of the RDF graph
are dictionary encoded and considered to be strings of length
3. The graph is thus sorted and encoded as a string of length
3n, where n is the number of triples. This string is indexed
in a compressed suffix array (CSA): a compact data struc-
ture commonly used for indexing text. The CSA is modified
by shifting elements so that instead of indexing a string of
3n elements, triples cycle back on themselves, giving n cir-
cular strings of length 3. Thus in an SPO permutation, after
reading the object of a triple, the next integer will refer to
the subject of the same triple rather than the next one in the
order. With cyclical strings, one triple permutation is suffi-
cient to support all triple patterns; SPO is in fact equivalent to
POS and OSP. Merge joins, sort–merge joins and a variant of
index nested-loop joins (called “chain joins”) are supported.
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RDFox [164] (2015) is an in-memory RDF engine that sup-
ports Datalog reasoning. The RDF graph is stored as a triple
table implemented as a linked list, which stores identifiers
for subject, predicate and object, as well as three pointers in
the list to the next triple with the same subject, predicate and
object (similar to Parliament [126]). Four indexes are built:
a hash table for three constants, and three for individual con-
stants; the indexes for individual constants offer pointers to
the first triple in the list with that constant, where patterns
with two constants can be implemented by filtering over this
list, or (optionally) by using various orderings of the triple
list to avoid filtering (e.g., a triple list ordered by SPO can
be used to evaluate patterns with constant subject and pred-
icate without filtering). These in-memory indexes support
efficient parallel updates, which are key for fast materializa-
tion. According to the implementation, (index) nested-loop
joins are supported; optionally join plans can be generated
based on tree decompositions. SPARQL 1.1 is further sup-
ported over the engine.

TurboHOM++ [122] (2015) is an in-memory, graph-based
RDF store. The RDF graph is stored as the combination of
adjacency lists for incoming and outgoing triples (see Sec-
tion 4.5), and an index that allows for finding nodes of a par-
ticular type (based on rdf:type). Evaluation of basic graph
patterns is then conducted by generating candidates for an
initial node of the query graph based on local information
(intersecting adjacency lists and type information in order
to match all triple patterns that the node appears in), where
the neighbors of the candidates are explored recursively in
the graph guided by the graph pattern, generating candidates
for further query nodes (in a manner akin to DOGMA [41]).
A number of optimizations are included, including a multi-
way join that can check if a new candidate is connected to
the candidates of multiple query nodes in one operation in a
way that satisfies the query.

ClioPatria [240] (2016) is an RDF store based on SWI-
Prolog. RDF quads are stored in SWI-Prolog’s main mem-
ory store. Nine custom hash-based indexes are defined using
S, P, O, SP, PO, SPO, G, SG and PG as keys. Persistence is en-
abled though on-disk journal files. SPARQL queries are sup-
ported through rewriting to Prolog, and evaluated using SLD
resolution. Inference can also be supported through transla-
tion of rules to Prolog.

LevelGraph [145] (2016) is an RDF store that can be used
client-side (in-the-browser) with, for example, Node.js ap-
plications. LevelDB is used for underlying storage. Triples
are stored and indexed in all six permutations – namely SPO,
SOP, PSO, POS, OSP and OPS – which are stored in a sorted
key–value store. LevelGraph also provides adapters to work
with external NoSQL stores, such as DynamoDB, Redis,

MongoDB, and MySQL. A query optimizer supports merge
joins (on star-shared patterns) and nested loop joins, which
are used to evaluate basic graph graphs.

RIQ [120] (2016) provides a layer on top of an existing
RDF store that indexes similar named graphs in a SPARQL
dataset. A bit vector – called a “pattern vector” – is com-
puted for each named graph in the dataset. The pattern vec-
tor consists of seven vectors for S, P, O, SP, SO, PO and
SPO, where, e.g., the SP vector hashes all subject–predicate
pairs in the named graph. An index over the pattern vectors
(PV-index) is constructed by connecting similar pattern vec-
tors (based on locality-sensitive hashing) into a graph; each
connected component of the graph forms a group of similar
graphs. The union of the graphs in each group is further en-
coded into Bloom filters. In order to evaluate a basic graph
pattern, a pattern vector is computed combining the triple
patterns (e.g., a triple pattern (s, p,o) will generate a single
SP sub-vector). The PV-index is then used to optimize an in-
put query by narrowing down the candidate (named) graphs
that match particular basic graph patterns before evaluating
the optimized query over the underlying SPARQL store.

axonDB [154] (2017) uses two dictionary-encoded triple ta-
bles to store RDF graphs. In the first table, each triple is ad-
ditionally associated with the characteristic set (CS) of its
subject (see Section 5.3). The CS is assigned a unique iden-
tifier and one-hot encoded, i.e., represented by a bit vector
with an index for each property that carries a 1 if the prop-
erty is part of the CS, or a 0 otherwise. Triples are then sorted
by their CS, grouping subjects with the same CS together. A
second triple table stores each triple, along with the corre-
sponding extended characteristic set (ECS; again see Sec-
tion 5.3). The ECS is encoded with a unique identifier, and
the identifiers for the subject and object CSs. The triple ta-
ble is sorted by ECS. When evaluating a basic graph pattern,
its analogous CSs and ECSs are extracted, along with the
paths that connect them. The CSs and ECSs are matched
with those of the graph, enabling multiway joins; binary
hash joins are used to join the results of multiple CSs/ECSs.

HTStore [138] (2017) uses hash-based indexes to build an
RDF store. The RDF graph is indexed in a hash tree whose
top layer forms a hash table over the nodes of the graph. The
hash tree is based on a sequence of prime numbers. When
hashing a node, the first prime number is used, and if no
collision is detected, the node is inserted in the first layer.
Otherwise the second prime number is used, and if no colli-
sion is detected, it is inserted in that layer as a child of the
bucket of the first layer that caused the collision. Otherwise
the third prime number is used, and so forth. Nodes in the
hash tree then point to their adjacency lists in the graph. To
evaluate queries, constant nodes in the query are hashed in
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the same manner in order to retrieve the data for the node.
SPARQL queries are supported, though details about join
and query processing are omitted.

Ontop [46] (2017) is a open source Ontology-Based Data
Access (OBDA) system based on relational (and potentially
decentralised) storage. The underlying data are mapped to
RDF graphs and/or ontologies using languages such as the
R2RML standard. SPARQL queries are rewritten to SQL
queries following such mappings, which are evaluated over
the underlying database; a more recent version rather trans-
lates SPARQL into an intermediate algebraic query that is
subsequently optimised and translated into SQL [251]. En-
tailment for RDFS and OWL 2 QL are additionally sup-
ported through query rewriting techniques that expand the
given query to capture solutions over entailments.

Quadstore 14 (2017) is a client-side RDF store that can be
used with Node.js for in-browser management of RDF quads.
The system also supports a variety of underlying storage op-
tions through the Level-down interface, such as LevelDB
and RocksDB for persistent storage, and MemDown for in-
memory storage. By default, indexes are generated for six
quad permutations, namely SPOG, OGSP, GSPO, OSPG, POGS

and GPOS, though these indexes are configurable by the user.
SPARQL 1.1 queries and updates are supported.

AMBER [105] (2018) stores RDF graphs in a “multigraph”
representation, where IRIs form nodes, whereas predicate–
literal pairs form “attributes” on nodes. All nodes, predicates
and attributes are dictionary encoded. AMBER then gener-
ates three indexes: the first stores the set of nodes for each at-
tribute, the second stores vertex signatures that encode meta-
data about the triples where a given node is subject or ob-
ject, and the third stores adjacency lists. Basic graph patterns
are evaluated by classifying query nodes with degree greater
than one as core nodes, and other nodes as satellite nodes.
Core nodes are processed first, where candidates are pro-
duced for each query node based on the available indexes,
recursively producing candidates for neighbors; the algo-
rithm starts with the core query node with the most satel-
lite nodes attached, or the highest degree. For each solution
over the code nodes, each satellite node is then evaluated
separately as they become disconnected once the core nodes
are bound to constants.

TripleID-Q [49] (2018) is an RDF store that uses a com-
pact representation called TripleID for RDF graphs such that
query processing can be conducted on GPUs. The TripleID
representation is based on a dictionary-encoded triple table.
Rather than indexing the triple table, chunks of the table can

14 https://github.com/beautifulinteractions/node-quadst
ore

be loaded into GPUs, which, given a particular triple pat-
tern, will scan the triple table in parallel looking for match-
ing triples in the RDF graph. Other operators such as union,
join, filter, distinct, etc., are then implemented on top of this
GPU search; specifically, these operators are translated into
functions that are executed in the GPU over the results of
the search. RDFS entailment is further supported.

Jena-LTJ [99] (2019) extends the Jena TDB RDF store with
the ability to perform worst-case optimal (wco) joins (see
Section 6.3). Specifically, Jena TDB is extended with an al-
gorithm similar to Leapfrog TrieJoin (LTJ), which is adapted
from a relational setting for the RDF/SPARQL settings. The
algorithm evaluates basic graph patterns variable-by-variable
in a manner that ensures that the overall cost of enumerating
all of the results is proportional to the number of results that
it can return in the worst case. In order to reach wco guaran-
tees, the three-order index of Jena TDB – based on B+trees
– is extended to include all six orders. This ensures that for
any triple pattern, the results for any individual variable can
be read in sorted order directly from the index, which in
turn enables efficient intersection of the results for individ-
ual variables across triple patterns. Thus Jena-LTJ uses twice
the space of Jena TDB, but offers better query performance,
particularly for basic graph patterns with cycles.

MAGiQ [109] (2019) is an RDF store that can use a variety
of compressed sparse matrix/tensor representations for RDF
graphs in order to translate basic graph patterns into lin-
ear algebra operations. These representations include com-
pressed sparse column, doubly compressed sparse column,
and coordinate list encodings of the graph as a matrix/ten-
sor. Basic graph patterns are then translated into operations
such as matrix multiplication, scalar multiplication, transpo-
sition, etc., over the associated matrices/tensor, which can
be expressed in the languages provided by libraries such as
GraphBLAS, Matlab, CombBLAS, and ultimately evaluated
on CPUs and GPUs for hardware acceleration.

BMatrix [38] (2020) is a compact in-memory RDF store,
where the RDF graph is first dictionary encoded and sorted
by predicate. Two binary matrices are created: an s× n ma-
trix called ST and an o × n matrix called OT, where s, o
and n are the number of unique subjects, objects and triples
respectively. The ST/OT matrix contains a 1 in index i, j

if the subject/object of the jth triple corresponds to the ith

term (or a 0 otherwise). Both matrices are indexed with k2-
trees, while a bit string of length n encodes predicate bound-
aries with a 1, i.e., in which columns of the matrix (de-
noting triples sorted or grouped by predicate) the predicate
changes. These indexes are sufficient to cover all eight pos-
sible triple patterns. Further compression can be applied to
the leaf matrices of the k2.tree in order to trade space for
time. The authors mention that joins can be supported in a
similar fashion as used for RDFCSA and k2-triples.

https://github.com/beautifulinteractions/node-quadstore
https://github.com/beautifulinteractions/node-quadstore
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Tentris [31] (2020) is an in-memory RDF store wherein an
RDF graph is viewed as a one-hot encoded 3-order tensor
(equivalent to the 3-dimensional array used in BitMat [20]),
which in turn is viewed as a trie of three levels for S, P and
O. However, rather than storing tries for all permutations, a
hypertrie is used with three levels. The leaves in the third
level correspond to all possible combinations of two con-
stants in a triple: for each triple (s, p, o), there exists a leaf
that maps (s, p, ?) to the set of all objects that replace ? in the
graph (including o), with analogous leaves for (?, p, o) and
(s, ?, o). The second level refers to single constants, where
three nodes are present for (s, ?, ?), (?, p, ?), (?, ?, o) such
that (s, ?, ?) will map to the leaves for (s, p, ?) and (s, ?, o),
and likewise for (?, p, ?) and (?, ?, o). Finally, the top level
– the root, representing zero constants – maps to all the sec-
ond level elements. Basic graph patterns (with projection)
are translated into tensor operations that can be evaluated on
the hypertrie using a worst-case optimal join algorithm.

Ring [19] (2021) is an in-memory RDF store that uses FM-
indexes (a text-indexing technique) in order to represent and
index RDF graphs in a structure called a “ring”. Specifically,
a dictionary-encoded RDF graph is sorted lexicographically
by subject-predicate-object; then the triples are concatenated
to form a string s1p1o1 . . . snpnon, where (si, pi, o1) in-
dicates the ith (dictionary-encoded) triple in the order and
n = |G|. A variant of a Burrows–Wheeler Transform is ap-
plied over this string, which allows for finding triples given
any constant and position (or sequence of constants and po-
sitions), and for traversing to other elements of a triple in
any direction. The result is a bidirectional circular index that
covers all triple permutations with one index that encodes
the graph and requires sub-linear space additional to the
graph. For basic graph pattern queries, a variant of Leapfrog-
Trie Join is implemented, offering worst-case optimal joins.

A.2 Distributed RDF Engines

We now survey distributed RDF stores. Table 5 summarizes
the surveyed systems and the techniques they use. We fur-
ther indicate the type of underlying storage used, where ital-
icized entries refer to local stores. Some systems that appear
in the following may have appeared before in the local dis-
cussion if they are commonly deployed in both settings.

YARS2 [94] (2007) is an RDF store based on similar prin-
ciples to YARS (see local stores) but for a distributed envi-
ronment. The index manager in YARS2 uses three indexes
namely a quad index, keyword index, and a join index for
evaluating queries. The quad indexes cover six permutations
of quads. The keyword index is used for keyword lookups.

The join indexes help speed up query execution for com-
mon joins. The core index on quads is based on hashing the
first element of the permutation, except in the case of predi-
cates (e.g., for a POGS permutation), where hashing creates
skew and leads to imbalance, and where random distribu-
tion is thus used. Indexed nested loop joins are used, with
triple patterns being evaluated on one machine where pos-
sible (based on hashing), or otherwise on all machines in
parallel (e.g., for constant predicates or keyword searches).
Dynamic programming is used for join reordering in order
to optimize the query.

Clustered TDB [173] (2008) is a distributed RDF store based
on Jena TDB storage (a local system). The system is based
on a master–slave architecture where the master receives
and processes queries, and slaves index parts of the graph
and can perform joins. Hash-based partitioning is used to al-
locate dictionary-encoded triples to individual slaves based
on each position of the triple; more specifically, distributed
SPO, POS and OSP index permutations are partitioned based
on S, P and O, respectively. An exception list is used for very
frequent predicates, which are partitioned by PO instead of
P. Index-nested loop joins are supported and used to evaluate
SPARQL basic graph patterns.

Virtuoso EE [69] (2008) is a local RDF store whose enter-
prise edition also offers support for indexing over a cluster
of machines. Recalling that Virtuoso stores RDF graphs as a
quads table in a custom relational database, the most recent
version of Virtuoso offers three options for each table: parti-
tioned, replicated or local. Partitioning is based on partition
columns specified by the administrator, which are used for
hash-based partitioning; partitions can also be replicated, if
specified. Replication copies the full table to each machine,
which can be used for query-based partitioning, or to store a
global schema that is frequently accessed by queries. Local
tables are only accessible to the individual machine, and are
typically used for local configuration.

4store [91] (2009) stores quads over a cluster of machines,
where subject-based hash partitioning is used. Three types
of indexes are used in 4Store namely R, M, and P indexes.
The R index is a hash table that dictionary encodes and
stores meta-data about individual RDF terms (called “re-
sources”). The M index is a hash table that maps graph names
(called “models”) to the corresponding triples in the named
graph. The P Indexes consist of radix tries, with two for each
predicate (similar to vertical partitioning): one for SOG order
and another for OSG order. Joins are pushed, where possible,
to individual machines. Join reordering uses cardinality es-
timations. SPARQL queries are supported.
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Table 5: Categorization of distributed RDF Engines.
Storage: T = Triple Table, Q = Quad Table, V = Vertical Partitioning, P = Property table, G = Graph-based, E = Matrix/Tensor-based, M = Miscellaneous
Indexing: T = Triple, Q = Quad, E = Entity, P = Property, N = Path/Navigational, J = Join, S = Structural, M = Miscellaneous
Join P.: P = Pairwise, M = Multiway, W = Worst case optimal, L = Linear algebra
Query P.: R = Relational, N = Paths/Navigational, Q = Query rewriting
Partitioning: S = Statement (Triple/Quad)-based, G = Graph-based, Q = Query-based, R = Replication

Storage Indexing Join P. Query P. PartitioningEngine Year T Q V P G E M T Q E P N J S M P M W L R N Q S G Q R Store

YARS2 [94] 2007 3 3 3 3 3 Custom
Clustered TDB [173] 2008 3 3 3 3 Jena TDB
Virtuoso EE [69] 2008 3 3 3 3 3 3 3 3 3 3 Custom
4store [91] 2009 3 3 3 3 3 Custom
Blazegraph 2009 3 3 3 3 3 3 3 3 3 3 Custom
SHARD [195] 2009 3 3 3 3 3 HDFS
Allegrograph 2010 3 3 3 3 3 3 3 Custom
GraphDB [125,33] 2010 3 3 3 3 3 3 3 3 Custom
AnzoGraph 2011 3 3 3 3 3 Custom
CumulusRDF [131] 2011 3 3 3 3 3 3 3 3 Cassandra
H-RDF-3X [104] 2011 3 3 3 3 3 3 3 RDF-3X
PigSPARQL [202] 2011 3 3 3 3 3 3 HDFS
Rapid+ [193] 2011 3 3 3 3 3 3 HDFS
AMADA [17] 2012 3 3 3 3 3 SimpleDB
H2RDF(+) [178] 2012 3 3 3 3 3 3 HBase
Jena-HBase [121] 2012 3 3 3 3 3 3 3 HBase
Rya [189] 2012 3 3 3 3 3 3 Accumulo
Sedge [254] 2012 3 3 3 3 3 Pregel
chameleon-db [11] 2013 3 3 3 3 3 3 3 Custom
D-SPARQ [160] 2013 3 3 3 3 3 3 3 MongoDB
EAGRE [261] 2013 3 3 3 3 3 3 3 3 HDFS
MR-RDF [64] 2013 3 3 3 3 3 3 RDF-3X
SHAPE [134] 2013 3 3 3 3 3 RDF-3X
Trinity.RDF [258] 2013 3 3 3 3 3 3 3 Trinity
TripleRush [220] 2013 3 3 3 3 Signal/Collect
WARP [103] 2013 3 3 3 3 3 3 RDF-3X
AKZ14 [6] 2014 3 3 3 3 3 3 3 3 3 3 HBase
Partout [73] 2014 3 3 3 3 3 RDF-3X
P-LUPOSDATE [79] 2014 3 3 3 3 3 3 3 HBase
RDF-3X-MPI [54] 2014 3 3 3 3 3 3 RDF-3X
Sempala [203] 2014 3 3 3 3 3 3 HDFS
SemStore [244] 2014 3 3 3 3 3 3 TripleBit
SparkRDF [51] 2014 3 3 3 3 3 3 HDFS/Spark
TriAD [86] 2014 3 3 3 3 3 3 Custom
CK15 [53] 2015 3 3 3 3 3 3 Custom
CliqueSquare [75] 2015 3 3 3 3 3 HDFS
DREAM [88] 2015 3 3 3 3 3 RDF-3X
AdPart [89] 2016 3 3 3 3 3 Custom
DiploCloud [248] 2016 3 3 3 3 3 3 3 Custom
Dydra [15,14] 2016 3 3 3 3 3 Custom
gStore-D [182] 2016 3 3 3 3 3 3 gStore
Halyard [213] 2016 3 3 3 3 3 3 3 3 HBase
JARS [192] 2016 3 3 3 3 3 Custom
S2RDF [204] 2016 3 3 3 3 3 3 HDFS
S2X [201] 2016 3 3 3 3 3 Spark
SPARQLGX [76] 2016 3 3 3 3 HDFS
Wukong [211] 2016 3 3 3 3 DrTM-KV
CM-Well [30] 2017 3 3 3 3 3 3 3 3 Cassandra/ElasticS.
Koral [112] 2017 3 3 3 3 3 Custom
MarkLogic 2017 3 3 3 3 3 3 Custom
SANSA [136] 2017 3 3 3 3 3 HDFS
Spartex [5] 2017 3 3 3 3 GSP/Custom
Stylus [96] 2017 3 3 3 3 3 3 3 3 Trinity
Neptune [27] 2018 3 3 3 3 3 3 Custom
PRoST [60] 2018 3 3 3 3 3 3 3 HDFS
RDFox-D [188] 2018 3 3 3 3 RDFox
WORQ [146] 2018 3 3 3 3 Spark
Wukong+G [235] 2018 3 3 3 3 3 Wukong
Akutan 2019 3 3 3 3 3 3 3 RocksDB
DiStRDF [239] 2019 3 3 3 3 3 3 HDFS
gStore-D2 [181] 2019 3 3 3 3 3 3 Custom
Leon [83] 2019 3 3 3 3 3 3 Custom
SPT+VP [95] 2019 3 3 3 3 3 3 Spark
StarMR [236] 2019 3 3 3 3 HDFS
DISE [107] 2020 3 3 3 3 3 3 Spark
DP2RPQ [237] 2020 3 3 3 Spark
Triag [162] 2020 3 3 3 3 3 3 Spark
WISE [84] 2020 3 3 3 3 3 3 3 3 Leon
gSmart [52] 2021 3 3 3 3 3 3 Custom
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Blazegraph [224] (2009), discussed previously as a local
store, also features partitioning in the form of key-range
shards that allow for partitioning B+tree indexes, potentially
across multiple machines. An alternative replication cluster
is supported that indexes the full RDF graph or SPARQL
dataset on each machine, allowing queries to be evaluated
entirely on each machine without network communication.

SHARD [195] (2009) is a distributed, Hadoop-based RDF
store. It stores an RDF graph in flat files on HDFS such
that each line presents all the triples associated with a given
subject resource of the RDF triple, which can be seen as
an adjacency list. The graph is hash partitioned, so that ev-
ery partition contains a distinct set of triples. As the fo-
cus is on batch processing of joins, rather than evaluating
queries in real-time, there is no specific indexing employed
in SHARD. Query execution is performed through MapRe-
duce iterations: first, it collects the results for the subqueries,
which are joined and finally filtered according to bound vari-
ables and to remove redundant (duplicate) results.

AllegroGraph (2010), discussed previously as a local store,
offers a distributed version where data are horizontally par-
titioned into shards, which are indexed locally on each ma-
chine per the local version. Alongside these shards, “knowl-
edge bases” can be stored, consisting of triples that are often
accessed by all shards (e.g., schema or other high level data),
such that queries can be evaluated (in a federated manner)
over one shard, and potentially several knowledge bases.

GraphDB [125,33] (2010), also a local store, offers an en-
terprise edition that can store RDF graphs on a cluster of ma-
chines using a master–slave architecture, where each clus-
ter has at least one master node that manages one or more
worker nodes, each replicating the full database copy, thus
allowing for queries to be evaluated in full on any machine.
Updates are coordinated through the master.

AnzoGraph 15 (2011) is an in-memory, massively parallel
processing (MPP) RDF store based on a master–slave archi-
tecture. The system indexes named graphs, where partition-
ing and replication are also organized by named graphs. By
default, all triples involving a particular term are added into
a named graph for that term. A dictionary is provided to map
terms to named graphs. The query is issued at a master node,
which features a query planner that decides the type of join
(hash or merge joins are supported) or aggregation needed.
Individual operations are then processed over the slaves in
parallel, generating a stream of intermediate results that are
combined on the master.

15 https://docs.cambridgesemantics.com/anzograph/userdo
c/features.htm

CumulusRDF [131] (2011) works on top of Apache Cas-
sandra: a distributed key-value store with support for tabular
data. Three triple permutations – SPO, POS, OSP – and one
quad permutation – GSPO – are considered. A natural idea
would be to index the first element as the row key (e.g., S for
SPO), the second (e.g., P) as the column key, and the third
(e.g., O) as the cell value, but this would not work in multi-
valued cases as columns are unique per row. Two other data
storage layouts are thus proposed. Taking SPO, the “hierar-
chical layout” stores S as the row key (hashed and used for
partitioning), P as the supercolumn key (sorted), O as the col-
umn key (sorted), with the cell left blank. An alternative that
outperforms the hierarchical layout is a “flat layout”, where
for SPO, S remains the row key, but PO is concatenated as
the column key, and the cell is left blank. In the POS permu-
tation, the P row key may create a massive row; hence PO is
rather used as the row key, with P being indexed separately.
Join and query processing is enabled though Sesame.

H-RDF-3X [104] (2011) is a Hadoop-based RDF store that
uses RDF-3X on a cluster of machines. A graph-based par-
titioning (using the METIS software package) is used to
distribute triples among multiple worker nodes. It also em-
ploys a k-hop guarantee, which involves replicating nodes
and edges that are k hops away from a given partition, thus
increasing the locality of processing possible, and reducing
communication costs. Local joins are optimized and evalu-
ated on individual machines by RDF-3X, while joins across
machines are evaluated using Hadoop. The use of Hadoop
– which involves expensive coordination across machines,
and heavy use of the disk – is minimized by leveraging the
k-hop guarantee and other heuristics.

PigSPARQL [202] (2011) is a Hadoop-based RDF store that
uses a vertical partitioning strategy. Data are stored on HDFS
without indexes, and thus the focus is on batch process-
ing. SPARQL queries are translated into PigLatin: an SQL-
inspired scripting language that can be compiled into Hadoop
tasks by the Pig framework. The Jena ARQ library is used
to parse SPARQL queries into an algebra tree, where opti-
mizations for filters and selectivity-based join reordering are
applied. The tree is traversed in a bottom-up manner to gen-
erate PigLatin expressions for every SPARQL algebra oper-
ator. The resulting PigLatin script is then translated to – and
run as – MapReduce jobs on Hadoop.

Rapid+ [193] (2011) is a Hadoop-based system that uses a
vertical partitioning strategy for storing RDF data. Without
indexing, the system targets batch processing. Specifically,
Pig is used to generate and access tables under a vertical par-
titioning strategy. In order to translate SPARQL queries into
PigLatin scripts, user-defined-functions are implemented that
allow for optimizing common operations, such as loading

https://docs.cambridgesemantics.com/anzograph/userdoc/features.htm
https://docs.cambridgesemantics.com/anzograph/userdoc/features.htm


42 Ali et al.

and filtering in one step. Other optimizations include sup-
port for star joins using grouping, and a look-ahead heuristic
that reduces and prepares intermediate results for operations
that follow; both aim to reduce the number of Hadoop tasks
needed to evaluate a query.

AMADA [17] (2012) is an RDF store based on the Amazon
Web Services (AWS) cloud infrastructure. Indexes for the
RDF graph are built using Amazon SimpleDB: a key-value
storage solution that supports a subset of SQL. SimpleDB
offers several indexing strategies, where “attribute indexing”
can be used to create three indexes for the three elements of a
triple. In AMADA, a query is submitted to a query process-
ing module running on EC2, which in turn evaluates triple
patterns using the SimpleDB-based indexes.

H2RDF(+) [178,177] (2012) stores RDF graphs using the
HBase distributed tabular NoSQL store. Three triple permu-
tations (SPO, POS, and OSP) are created over HBase tables in
the form of key-value pairs. A join executor module creates
the query plan, which decides between the execution of joins
in a centralized (local) and distributed (Hadoop-based) man-
ner. It further reorders joins according to selectivity statis-
tics. Multiway (sort-)merge joins are run in Hadoop.

Jena-HBase [121] (2012) (also known as HBase-RDF16) is
a distributed RDF store using HBase as its back-end. Jena-
HBase supports three basic storage layouts for RDF graphs
in HBase namely “simple”: three triple tables, the first in-
dexed and partitioned by S, the second by P, the third by
O; “vertical partitioning”: two tables for each predicate, one
indexed by S, the other by O; “indexed”: six triple tables
covering all permutations of a triple. Hybrid layouts are also
proposed that combine the basic layouts, and are shown to
offer better query times at the cost of additional space. Jena
is used to process joins and queries.

Rya [189] (2012) is a distributed RDF store that employs
Accumulo – a key-value and tabular store – as its back-end.
However, it can also use other NoSQL stores as its stor-
age component. Rya stores three index permutations namely
SPO, POS, and OSP. Query processing is based on RDF4J,
with index-nested loop joins being evaluated in a MapRe-
duce fashion. The count of the distinct subjects, predicates,
and objects is maintained and used during join reordering
and query optimization.

Sedge [254] (2012) is an RDF store based on Pregel: a dis-
tributed (vertex-centric) graph processing framework. Pregel
typically assumes a strict partition of the nodes in a graph,

16 https://github.com/castagna/hbase-rdf

where Sedge relaxes this assumption to permit nodes to co-
exist in multiple partitions. A complementary graph parti-
tioning approach is proposed involving two graph partition-
ings, where the cross-partition edges of one are contained
within a partition of the other, reducing cross-partition joins.
Workload-aware query-based partitioning is also proposed,
where commonly accessed partitions and frequently-queried
cross-partition “hotspots” are replicated. The store is imple-
mented over Pregel, where indexes are built to map parti-
tions to their workloads and to their replicas, and to map
nodes to their primary partitions.

chameleon-db [11] (2013) is a distributed RDF store using
custom graph-based storage. Partitioning is graph-based and
is informed by the queries processed, which may lead to
dynamic repartitioning to optimize for the workload being
observed. An incremental indexing technique – using a de-
cision tree – is used to keep track of partitions relevant to
queries. It also uses a hash-table to index the nodes in each
partition, and a range-index to keep track of the minimum
and maximum values for literals of each distinct predicate
in each partition. The evaluation of basic graph patterns is
delegated to a subgraph matching algorithm over individ-
ual partitions, whose results are then combined in a query
processor per the standard relational algebra. Optimizations
involve rewriting rules that preserve the equivalence of the
query but reduce intermediate results.

D-SPARQ [160] (2013) is a distributed RDF store built on
top of MongoDB: a NoSQL store for JSON-like documents.
D-SPARQ partitions the RDF graph by subject. Partial data
replication is used whereby selected triples are replicated
across partitions to increase parallelism when executing (sub-
)queries. Indexes are built for SP and PO permutations. D-
SPARQ optimizes multiway S–S (star) joins, taking advan-
tage of the locality offered by the S-based partitioning; se-
lectivity estimates are used to reorder joins.

EAGRE [261] (2013) stores RDF data on HDFS, where data
are pre-processed using Hadoop to extract entities and their
classes, thereafter applying graph-based data partitioning us-
ing METIS. For each entity class, EAGRE adopts a space-
filling curve technique (see Section 5.2): an in-memory in-
dex structure that is used to index high-dimensional data,
and more specifically in this case, to decide where the data
for a given entity should be stored. Joins are pushed to indi-
vidual nodes where possible, with multiway joins between
nodes being evaluated using Hadoop. A strategy similar to a
distributed form of sideways-information-passing is used to
reduce network traffic, where nodes share information about
the possible ranges of constants matching individual vari-
ables, filtering intermediate results outside those ranges be-
fore they are sent over the network.

https://github.com/castagna/hbase-rdf
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MR-RDF [64] (2013) is a distributed RDF store that uses
RDF-3X for local storage, and Hadoop for join processing.
A partition is generated for each characteristic set, where a
triple is added to the partition for the characteristic set of
its subject. Given that this may give rise to a large num-
ber of partitions, similar characteristic sets are clustered to-
gether to form larger partitions corresponding to the number
of machines available. The larger partition is then described
by the union of the characteristic sets it contains, which can
be used for matching star joins (with constant predicates) to
partitions. Star joins are evaluated locally by RDF-3X, and
their results are joined over Hadoop.

SHAPE [134] (2013) uses RDF-3X to store and index RDF
triples on a distributed cluster of machines. Triples are par-
titioned using a semantic hash partitioning scheme that is
based on the IRI prefix hierarchy: triples with the same sub-
ject or object prefixes are identified and are placed in the
same partition. The intuition is that such triples are more
likely to be queried together. A distributed query execution
planner coordinates the intermediate results from different
nodes, which are joined using Hadoop.

Trinity.RDF [258] (2013) is an RDF store implemented on
top of Trinity: a distributed memory-based key-value stor-
age system. A graph-based storage scheme is used, where
an inward and outward adjacency list is indexed for each
node. Hash-based partitioning is then applied on each node
such that the adjacency lists for a given node can be re-
trieved from a single machine; however, nodes with a num-
ber of triples/edges exceeding a threshold may have their
adjacency lists further partitioned. Aside from sorting adja-
cency lists, a global predicate index is also generated, cov-
ering the POS and PSO triple permutations. Queries are pro-
cessed through graph exploration, with dynamic program-
ming over cardinality estimates used to choose a query plan.

TripleRush [220] (2013) is based on the Signal/Collect dis-
tributed graph processing framework [219]. In this frame-
work, TripleRush considers an in-memory graph with three
types of nodes. Triple nodes embed an RDF triple with its
subject, predicate, and object. Index nodes embed a triple
pattern. Query nodes coordinate the query execution. The
index graph is formed by index and triple nodes, which are
linked based on matches. A query execution is initialized
when a query node is added to a TripleRush graph. The
query vertex emits a query particle (a message) which is
routed by the Signal/Collect framework to index nodes for
matching. Partitioning of triples and triple patterns is based
on the order S, O, P, where the first constant in this order is
used for hash-based partitioning. Later extensions explored
workload-aware query-based partitioning methods [226].

WARP [103] (2013) uses RDF-3X to store triples in parti-
tions among a cluster of machines. Like H-RDF-3X, graph-
based partitioning is applied along with a replication strat-
egy for k-hop guarantees. Unlike H-RDF-3X, WARP pro-
poses a query-based, workload-aware partitioning, whereby
the value of k is kept low, and selective replication is used to
provide guarantees specifically with respect to the queries of
the workload, reducing storage overheads. Sub-queries that
can be evaluated on one node are identified and evaluated lo-
cally, with custom merge joins (rather than Hadoop, as in the
case of H-RDF-3X) used across nodes. Joins are reordered
to minimize the number of single-node subqueries.

AKZ14 [6] (2014) is a distributed RDF store based on the
HBase tabular store. A property table storage scheme is im-
plemented over HBase, which is built based on clustering
entities with similar properties. A secondary triple table is
used for multi-valued properties and (infrequent) properties
that do not appear in the clusters. Property tables are used
to solve subject-based star joins, with other joins being eval-
uated over Hadoop by translating SPARQL queries to Hive
(an SQL-like language for Hadoop). Metadata for the HBase
tables are stored in a relational database (MySQL).

Partout [73] (2014) is a distributed store that uses RDF-3X
for underlying storage on each machine. The RDF graph is
partitioned using a workload-aware query-based partition-
ing technique, aiming to group together triples that are likely
to be queried together. Each partition is indexed using stan-
dard RDF-3X indexing. The SPARQL query is issued to a
query processing master, which uses RDF-3X to generate
a suitable query plan according to a global statistics file.
The local execution plan of RDF-3X is transformed into a
distributed plan, which is then refined by a distributed cost
model that assigns subqueries to partitions. This query plan
is executed by slave machines in parallel, whose results are
combined in the master.

P-LUPOSDATE [79] (2014) is a distributed RDF store built
on HBase. Triples are distributed according to six triple per-
mutations – partitioning on S, P, O, SP, SO, PO – enabling
lookups for any triple pattern. In order to reduce network
communication, Bloom filters are pre-computed for each in-
dividual variable of each triple pattern with at least one con-
stant and one variable that produces some result; e.g., for
SP, a Bloom filter is generated encoding the objects of each
subject–predicate pair; for S, a Bloom filter is generated for
each subject encoding its predicates, and optionally, another
Bloom filter is generated for its objects. These Bloom fil-
ters are sent over the network in order to compute approx-
imate semi-join reductions, i.e., to filter incompatible re-
sults before they are sent over the network. SPARQL (1.0)
queries are evaluated by translating them to PigLatin, which
are compiled into Hadoop jobs by Pig.
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RDF-3X-MPI [54] (2014) is a distributed RDF store build
on top of RDF-3X and a Message Passing Interface (MPI).
After dictionary-encoding the triples, they are initially par-
titioned based on hashes on graph nodes, where the parti-
tions are extended to ensure an n-hop guarantee: i.e., that
any node reachable in n-hops from a node assigned to that
partition will also be available on the same partition. The
partitions are stored in RDF-3X on each machine, and basic
graph patterns are evaluated independently on each partition
(it is assumed that the value of n is sufficient to enable this,
with other queries left for future work).

Sempala [203] (2014) stores RDF triples in a distributed
setting, using the columnar Parquet format for HDFS that
supports queries for specific columns of a given row (with-
out having to read the full row). In this sense, Parquet is
designed for supporting a single, wide (potentially sparse)
table and thus Sempala uses a single “unified property ta-
ble” for storing RDF triples with their original string val-
ues; multi-valued properties are stored using additional rows
that correspond to a Cartesian product of all values for the
properties of the entity. SPARQL queries are translated into
SQL, which is executed over the unified property table using
Apache Impala: a massively parallel processing (MPP) SQL
engine that runs over data stored in HDFS.

SemStore [244] (2014) is a distributed RDF store with a
master–slave architecture. A custom form of graph parti-
tioning is used to localize the evaluation of subqueries of
particular patterns – star, chain, tree, or cycle – that form the
most frequent elements of basic graph patterns. A k-means
partitioning algorithm is used to assign related instances of
patterns to a particular machine, further increasing locality.
The master creates a global bitmap index over the partitions
and collects global cardinality-based statistics. Slave nodes
use the TripleBit local RDF engine for storage, indexing
and query processing. The master node then generates the
query plan using dynamic programming and global cardinal-
ity statistics, pushing joins (subqueries) to individual slave
nodes where possible.

SparkRDF [51] (2014) is a Spark-based RDF engine that
distributes the graph into subgraphs using vertical partition-
ing, adding tables for classes as well as properties. SparkRDF
then creates indexes over the class and property tables, and
further indexes class–property, property–class, and class–
property-class joins. These indexes are loaded into an in-
memory data structure in Spark (a specialized RDD) that
implements query processing functionalities such as joins,
filters, etc. Class information is used to filter possible results
for individual variables, where a greedy selectivity-based

strategy is used for reordering joins. Joins themselves are
evaluated in a MapReduce fashion.

TrIAD [86] (2014) is a in-memory distributed RDF store
based on a master–slave architecture. The master maintains
a dictionary of terms, a graph summary that allows for prun-
ing intermediate results, as well as global cardinality-based
statistics that allow for query planning. The graph summary
is a quotient graph using METIS’ graph partitioning: each
partition forms a supernode, and labeled edges between su-
pernodes denote triples that connect nodes in different par-
titions; the graph summary is indexed in two permutations:
PSO and POS. The triples for each partition are stored on
a slave; triples connecting two partitions are stored on both
slaves. Each slave indexes their subgraph in all six triple per-
mutations. Given a basic graph pattern, the graph summary
is used to identify relevant partitions, which are shared with
the slaves and used to prune results; dynamic programming
uses the global statistics to optimize the query plan. Along-
side distributed hash and merge joins, an asynchronous join
algorithm using message passing is implemented.

CK15 [53] (2015) is a distributed in-memory RDF store that
combines two types of partitioning: triple-based partitioning
and query-based partitioning. The graph is initially divided
over the machines into equal-size chunks and dictionary-
encoded in a distributed manner (using hash-based partition-
ing of terms). The encoded triples on each machine are then
stored using a vertical partitioning scheme, where each ta-
ble is indexed by hashing on subject, and on object, pro-
viding P → SO, PS → O and PO → S lookups. Parallel
hash joins are proposed. Secondary indexes are then used
to cache intermediate results received from other machines
while processing queries, such that they can be reused for
future queries. These secondary indexes can also be used
for computing semi-join reductions on individual machines,
thus reducing network traffic.

CliqueSquare [75] (2015) is a Hadoop-based RDF engine
used to store and process massive RDF graphs. It stores
RDF data in a vertical partitioning scheme using semantic
hash partitioning, with the objective of enabling co-located
or partitioned joins that can be evaluated in the map phase
of the MapReduce paradigm. CliqueSquare also maintains
three replicas for fast query processing and increased data
locality. In order to evaluate SPARQL queries, CliqueSquare
uses a clique-based algorithm, which works in an iterative
way to identify cliques in a query–variable graphs and to
collapse them by evaluating joins on the common variables
of each clique. The process will then terminate when the
query–variable graph consists of only one node.
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DREAM [88] (2015) is a distributed store using RDF-3X
for its underlying storage and indexing. The entire RDF graph
is replicated on every machine, with standard RDF-3X in-
dexing and query processing being applied locally. To re-
duce communication, dictionary-encoded terms are shared
within the cluster. In the query execution phase, the SPARQL
query is initially represented as a directed graph, which is
divided into multiple subqueries to be evaluated by differ-
ent machines. The results of subqueries are combined using
hash joins and eventually dictionary-decoded.

AdPart [89] (2016) is a distributed in-memory RDF store
following a master–slave architecture. The master initially
performs a hash-based partitioning based on the subjects
of triples. The slave stores the corresponding triples using
an in-memory data structure. Within each slave, AdPart in-
dexes triples by predicate, predicate–subject, and predicate–
object. Each slave machine also maintains a replica index
that incrementally replicates data accessed by many queries;
details of this replication are further indexed by the mas-
ter machine. Query planning then tries to push joins locally
to slaves (hash joins are used locally), falling back to dis-
tributed semi-joins when not possible. Join reordering then
takes communication costs and cardinalities into account.

DiploCloud [248] (2016) is a distributed version of the lo-
cal RDF store dipLODocus. The store follows a master–
slave architecture, where slaves store “molecules” (see the
previous discussion on dipLODocus). The master provides
indexes for a dictionary, for the class hierarchy (used for in-
ference), as well as an index that maps the individual values
of properties selected by the administrator to their molecule.
Each slave stores the molecule subgraphs, along with an
index mapping nodes to molecules, and classes to nodes.
Query processing pushes joins where possible to individual
slaves; if intermediate results are few, the master combines
results, or otherwise a distributed hash join is employed.
Molecules can be defined as a k-hop subgraph around the
root node, based on input from an administrator, or based on
a given workload of queries.

Dydra [15,14] (2016) is an RDF store that can leverage
both local and remote storage, and provides support for ver-
sioned RDF graphs. In terms of local storage, RDF data are
dictionary encoded and indexed in six permutations of quad
tables – namely GSPO, GPOS, GOSP, SPOG, POSG, OPSG –
using on-disk B+trees. These B+trees offer support for both
static and streaming data, and further capture information
about revisions, enabling versioned queries and other RDF
archival features. Support for replication through convergent
replicated data types (CvRDTs) is also proposed [14]. A
SPARQL query processor is layered on top of storage, pro-
viding support for SPARQL 1.1 queries and updates. Dydra
further offers a multi-tenant cloud-based storage service.

gStore-D [182] (2016) is a distributed RDF store that uses
a variation of the local gStore RDF engine for local storage
and indexing (it uses adjacency lists and vertex signatures,
as discussed previously). A graph partitioning algorithm is
applied over the RDF graph, with the subgraphs induced by
each partition being assigned to individual machines. Edges
that connect distinct partitions are indexed within the sub-
graphs of both partitions. Where possible, joins are then
pushed to the individual subgraphs. Joins across subgraphs
can be evaluated in a central (i.e., by a single master) or
distributed (i.e., by several slaves) manner. Support for the
relational features of SPARQL (1.0) is described.

Halyard [213] (2016) is a distributed RDF store that com-
bines RDF4J with underlying HBase storage. MapReduce
(Hadoop) is used to perform a bulk load of RDF quads into
HBase tables. Sorted hash-based indexes are built in six per-
mutations – SPO, POS, OSP, GSPO, GPOS, GOSP – enabling
efficient lookups for any quad pattern. HBase is connected
with RDF4J as a Storage and Inferencing Layer (SAIL), en-
abling support for SPARQL 1.1. Nested-loop joins are used,
and various optimizations are implemented for distributed
evaluation, including push-based physical operators, priority
queues for parallelizing operations, etc. Inferencing is sup-
ported by materializing entailments and bulk-loading them
into HBase using the MapReduce framework.

JARS [192] (2016) is a distributed RDF store that combines
triple-based and query-based partitioning. The graph is par-
titioned by hashing on subject, and hashing on object, con-
structing two distributed triple tables. The subject-hashed
table is indexed on the POS, PSO, OSP and SPO permuta-
tions, while the object-hashed table is indexed on POS, PSO,
SOP and OPS. Specifically, by hashing each triple on sub-
ject and object, the data for S–S, O–O and S–O are on one
machine; the permutations then allow for such joins to be
supported as merge joins on each machine. Basic graph pat-
terns are then decomposed into subqueries answerable on a
single machine, with a distributed hash join applied over the
results. Jena ARQ is used to support SPARQL.

S2RDF [204] (2016) is a distributed RDF store based on
HDFS (with Parquet). The storage scheme is based on an
extended version of vertical partitioning with semi-join re-
ductions (see Section 4.3). This scheme has a high space
overhead, but ensures that only data useful for a particular
(pairwise) join will be communicated over the network. In
order to reduce the overhead, semi-join tables are not stored
in cases where the selectivity of the join is high; in other
words, semi-join tables are stored only when many triples
are filtered by the semi-join (the authors propose a threshold
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of 0.25, meaning that at least 75% of the triples must be fil-
tered by the semi-join for the table to be included). SPARQL
queries are optimized with cardinality-based join reordering,
and then translated into SQL and evaluated using Spark.

S2X [201] (2016) runs SPARQL queries over RDF graphs
using GraphX: a distributed graph processing framework
built on the top of Spark. The triples are stored in-memory
on different slave machines with Spark (RDDs), applying a
hash-based partitioning on subject and objects (per GraphX’s
default partitioner). S2X does not maintain any custom in-
dexing. For SPARQL query processing, graph pattern match-
ing is combined with relational operators (implemented in
the Spark API) to produce solution mappings.

SPARQLGX [76] (2016) stores RDF data on HDFS per a
vertical partitioning scheme. A separate file is created for
each unique predicate in the RDF graph, with each file con-
taining the subjects and objects of that triple. No indexes
are provided, and thus the system is intended for running
joins in batch-mode. SPARQL queries are first optimized by
applying a greedy join reordering based on cardinality and
selectivity statistics; the query plan is then translated into
Scala code, which is then directly executed by Spark.

Wukong [211] (2016) stores RDF graphs in DrTM-KV: a
distributed key–value store using “remote direct memory ac-
cess” (RDMA), which enables machines to access the main
memory of another machine in the same cluster while by-
passing the remote CPU and OS kernel. Within this store,
Wukong maintains three kinds of indexes: a node index that
maps subjects or (non-class) objects to their corresponding
triples; a predicate index, which returns all subjects and ob-
jects of triples with a given predicate; and a type index,
which returns the class(es) to which a node belongs. Hash-
based partitioning is used for the node index, while pred-
icate and type indexes are split and replicated to improve
balancing. A graph-traversal mechanism is used to evaluate
basic graph patterns, where solutions are incrementally ex-
tended or pruned. For queries involving fewer data, the data
are fetched from each machine on the cluster and joined
centrally; for queries involving more data, subqueries are
pushed in parallel to individual machines. A work-stealing
mechanism is employed to provide better load balancing
while processing queries.

CM-Well [30] (2017) is a distributed RDF store developed
by Thomson Reuters (Refinitiv) that combines Cassandra
and ElasticSearch for underlying storage, further using Akka
and Kafka for coordination and communication. RDF triples
are grouped by node (subject), and stored in Cassandra, with
inverted indexes for each node indexed by ElasticSearch.
In order to process queries, two modes are considered. In

sub-graph mode, candidate nodes are identified using Elas-
ticSearch, and their associated triples are loaded in Jena in
order to process. In full-graph mode, queries are translated
directly to ElasticSearch operators.

Koral [112] (2017) is a distributed RDF store based on a
modular master–slave architecture that supports various op-
tions for each component of the system. Among these al-
ternatives, various triple-based and graph-based partitioning
schemes are supported. In order to evaluate basic graph pat-
terns, joins are processed in an analogous way to TrIAD,
using asynchronous execution, which makes the join pro-
cessing strategy independent of the partitioning chosen. The
overall focus of the system is to be able to quickly evaluate
different alternatives for individual components – particu-
larly partitioning strategies – in a distributed RDF store.

MarkLogic 17 (2017) is a multi-model distributed store with
support for XML, JSON and RDF. Originally focusing on
the storage and querying of XML documents, support for
RDF and SPARQL was added in 2017 with the release of
MarkLogic Server v.7.0, with SPARQL 1.1 support added in
v.8.0. MarkLogic stores dictionary-encoded RDF triples in 4
kilobyte blocks, over which an LRU cache is implemented.
Indexes are built for three permutations: PSO, SOP and OPS.
SPARQL 1.1 is supported, as well as rule-based inferenc-
ing implemented using backward chaining. Distribution is
enabled through “evaluator nodes” that perform query pro-
cessing, and “data nodes” that store and index data.

SANSA [136] (2017) is a Spark-based distributed RDF store.
RDF data are stored on HDFS, where triple-based partition-
ing – such as predicate-based vertical partitioning – is em-
ployed. Queries are transformed into Spark (or Flink) pro-
grams, using Sparklify [214]: a query engine for SPARQL-
to-SQL translations, which can be run on Spark. SANSA is
part of a larger stack that supports RDF-based inferencing
and machine learning in a distributed environment.

Spartex [5] (2017) is a distributed RDF store with analytical
capabilities. An extension of SPARQL queries is proposed
with user-defined procedures for analytics (e.g., PageRank),
among other features. The system is built on top of GPS: an
open-source implementation of Pregel’s distributed, vertex-
centric graph processing framework. A master–slave archi-
tecture is employed. The master is responsible for query
planning and manages global statistics. The RDF graph is
partitioned among its slaves; namely each (subject/object)
node and its incident edges (triples) is assigned to a slave.
Each slave stores and indexes its subgraph in-memory using
PS and PO permutations. Basic graph patterns are then eval-
uated using graph traversals in GSP, with nodes (vertexes)

17 https://docs.marklogic.com/guide/semantics

https://docs.marklogic.com/guide/semantics
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sharing intermediate results as messages, which are joined
with local data. Optimizations are based on minimizing du-
plicate traversals involving (non-Eulerian) cycles, as well as
traditional cardinality estimates.

Stylus [96] (2017) is a distributed RDF store using Trinity: a
graph engine based on an in-memory key–value store. Terms
of the RDF graph are dictionary encoded. Each subject and
object node is associated with a dictionary identifier and its
characteristic set. A sorted adjacency list (for inward and
outward edges) is then stored for each node that also encodes
an identifier for the characteristic set of the node. Schema-
level indexes for characteristic sets are replicated on each
machine. Hash-based partitioning is employed on the data
level. Indexes are used to efficiently find characteristic sets
that contain a given set of properties, as well as to evalu-
ate common triple patterns. Given a basic graph pattern, the
characteristic sets are used to prune intermediate results on
star joins, where candidates are kept for each variable node
in the query. Cardinality-based join reordering is applied.
Relational features of SPARQL (1.0) are supported.

Neptune [27] (2018) is an RDF store that is hosted as a ser-
vice on Amazon’s S3 cloud storage infrastructure. Neptune
stores SPARQL datasets in the form of quads with three in-
dex permutations: SPOG, POGS and GSPO; this is sufficient
to cover 9 out of 16 possible quad patterns. Neptune makes
use of cardinality estimations and static analysis to rewrite
queries. Partitioning is not supported, where Neptune rather
offers up to 16 replicas of the full graph to increase query
throughput; a primary replica is nominated to receive and
coordinate updates. Graphs in Neptune can be queried (and
processed) through the SPARQL 1.1, Apache TinkerPop and
Gremlin languages.

PRoST [60] (2018) is a distributed RDF store using HDFS
storage and Spark query processing. The storage scheme
uses a combination of vertical partitioning and property ta-
bles that aims to leverage the strengths and minimize the
weaknesses of both schemes. Like Sempala, the property
table is stored in the column-wise Parquet format; multi-
valued properties are supported by adding lists of values.
Star joins on a common subject variable are evaluated on the
property table, while other patterns and joins are addressed
with the vertical partitioning tables. Selectivity-based heuris-
tics are used to reorder joins. Queries are then rewritten into
SQL for execution with Spark.

RDFox-D [188] (2018) is a distributed in-memory RDF store
based on RDFox that uses distributed index nested loop joins.
A global index is built mapping the terms of the RDF graph
to the partitions it appears in. The graph is partitioned by a
weighted graph-based partitioning scheme, where nodes are

weighted by the number of triples they appear in as subject.
The partitioning minimizes cross-partition edges while bal-
ancing the sum of the node weights in each partition. Triples
with a subject in the same partition are sent to the same ma-
chine; the weights used for partitioning then help to ensure
more even balancing. Joins are evaluated in a pairwise man-
ner, where each machine extends solutions asynchronously,
without central coordination, based on its partition of the
graph; it then sends the extended partial solution to the ma-
chines that can potentially extend it further (based on the
global index). Termination occurs when all partial solutions
have been forwarded. Various optimizations are discussed.
Joins are reordered based on cardinalities.

WORQ [146] (2018) is a distributed RDF store that uses a
workload-aware approach to partition data. In order to re-
duce the number of intermediate results, Bloom filters are
used to index the constants matching the variable of a given
triple pattern, which are shared and used to filter results for
that variable elsewhere. Bloom filters provide an approxi-
mate membership function (i.e., they may yield false posi-
tives), and thus a distributed join algorithm must be applied
over the (reduced) intermediate results. Further Bloom fil-
ters can be computed for multiway joins, analogous to an ap-
proximate form of semi-join reduction (as used by S2RDF).
These reductions can be cached for later re-use, where they
are partitioned across machines based on the join element.
WORQ is implemented over Spark.

Wukong+G [235] (2018) extends the distributed RDF store
Wukong [211] in order to additionally exploit GPUs (as well
as CPUs) for processing queries in a distributed environ-
ment. One of the main design emphases of the system is to
ensure that large RDF graphs can be processed efficiently
on GPUs by ensuring effective use of the memory avail-
able, noting in particular that the local memory of GPUs has
a much higher bandwidth for reading data into the GPU’s
cores, but a much lower capacity than typical for CPU RAM.
Wukong+G thus employs a range of memory-oriented opti-
mizations involving prefetching, pipelining, swapping, etc.,
to ensure efficient memory access when processing queries
on the GPU. A graph partitioning algorithm is further em-
ployed to distribute storage, where lower-cost queries are
processed on CPU (as per Wukong), but heavier loads are
delegated to GPUs, where (like Wukong) efficient commu-
nication is implemented using RDMA primitives, allowing
more direct access to remote CPU and GPU memory.

Akutan 18 (2019) (formerly known as Beam) is a distributed
RDF store developed by eBay. Triple storage is implemented
on top of RocksDB, with indexes provided on SP → O and

18 https://tech.ebayinc.com/engineering/akutan-a-distri
buted-knowledge-graph-store/

https://tech.ebayinc.com/engineering/akutan-a-distributed-knowledge-graph-store/
https://tech.ebayinc.com/engineering/akutan-a-distributed-knowledge-graph-store/
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OP→ S. Triples are additionally associated with triple iden-
tifiers. Transactional logging is implemented using Apache
Kafka, which coordinates read and write requests across ma-
chines. A SPARQL(-like) query processor is then layered
on top of the underlying storage layer, which includes an
optimizer that leverages statistics about the data to reorder
joins. Hash joins and nested-loop joins are supported, and
selected, as appropriate, by the query planner. Queries are
then processed in streams and/or batches. A limited form of
inference based on transitive closure is also supported.

DiStRDF [239] (2019) is a massively parallel processing
(MPP) RDF store based on Spark with support for spatio-
temporal queries. A special dictionary-encoding mechanism
is used where the identifier concatenates a bit-string for spa-
tial information, a bit-string for temporal information, and a
final bit-string to ensure that the overall identifier is unique.
Thus spatial and temporal processing can be applied directly
over the identifiers. Storage based on both a triple table and
property tables is supported, where range-based partitioning
is applied to the triples (based on the spatio-temporal infor-
mation). Data is stored on HDFS in CSV or Parquet formats.
Query processing is implemented in Spark. Distributed hash
joins and sort–merge joins are supported; selections and pro-
jections are also supported. Three types of query plans are
proposed that apply RDF-based selections, spatio-temporal
selections and joins in different orders.

gStore-D2 [181] (2019) is a distributed RDF store using
workload-aware graph partitioning methods. Frequently ac-
cessed (subgraph) patterns are mined from the workload,
where all subjects and objects are mapped to variables. Sub-
graphs that instantiate these patterns are assigned DFS codes
that are indexed as a tree, and associated with various meta-
data, including identifiers for queries that use the pattern,
cardinality estimations, partition identifiers, etc. Three parti-
tioning methods are based on these patterns, with partitions
stored locally in gStore. “Vertical partitioning” indexes all
instances of a given pattern on the same machine. “Hori-
zontal partitioning” distributes instances of the same pattern
across various machines based on its constants. “Mixed par-
titioning” combines the two. Basic graph patterns are de-
composed into frequent sub-patterns, where the join order
and algorithms are selected to reduce communication costs.

Leon [83] (2019) is an in-memory distributed RDF store
based on a master–slave architecture. Triples are partitioned
based on the characteristic set of their subject; the character-
istic sets are ordered in terms of the number of triples they
induce, and assigned to machines with the goal of keeping
a good balance. Indexes (similar to those of Stylus [96]) are

built, including a bidirectional index between subjects and
their characteristic sets, an index to find characteristic sets
that contain a given set of properties, and indexes to evaluate
certain triple patterns. A multi-query optimization technique
is implemented where, given a workload (a set) of queries,
the method searches for an effective way to evaluate and
share the results for common subqueries – in this case, based
on characteristic sets – across queries.

SPT+VP [95] (2019) is a distributed RDF store based on the
principle of combining two partitioning techniques. First, a
modified property table scheme is used for storage, where
one table is maintained with a column for subject and all
properties in the RDF graph; instead of storing multi-valued
properties in multiple rows, as in Sempala’s unified prop-
erty table, such values are stored as lists nested in the given
row. The property table is then split (vertically) into multi-
ple tables, similar to a clustering-based definition of a prop-
erty table, but where a subject may appear in multiple ta-
bles. This “subset property table” approach is combined,
secondly, with vertical partitioning storage. Given a SPARQL
query, joins are reordered based on global statistics, with the
property tables used for S–S joins and vertical partitioning
used for other joins. The query is then translated into Spark
SQL for execution.

StarMR [236] (2019) is a distributed RDF store that cen-
ters around optimizations for star joins. A graph-based stor-
age scheme is employed, where for each node in the graph,
its outward edges are represented in an adjacency list; this
then supports efficient evaluation for S–S star joins. No in-
dexing is provided, where the system targets batch-based
(e.g., analytical) processing. A basic graph pattern is then
decomposed into (star-shaped) sub-patterns, which are eval-
uated and joined. Hadoop is then used to join the results of
these individual sub-patterns. Optimizations include the use
of characteristic sets to help filter results, and the postpone-
ment of Cartesian products, which are used to produce the
partial solutions for star joins including the non-join vari-
ables; these partial solutions are not needed if the corre-
sponding join value is filtered elsewhere.

DISE [107] (2020) is an in-memory, distributed RDF store
that conceptualizes an RDF graph as a 3-dimensional binary
tensor, similar to local approaches such as BitMat; how-
ever, physical representation and storage is based on dictio-
nary encoded triples. Partitioning is based on slicing the ten-
sor, which is equivalent to a triple-based partitioning. Joins
are evaluated starting with the triple pattern with the fewest
variables. SPARQL queries are supported through the Jena
(ARQ) query library and evaluated using Spark.
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DP2RPQ [237] (2020) is an RDF store built on a distributed
graph processing framework with support for regular path
queries (RPQs), which form the core of SPARQL’s property
paths. Unlike the standard RPQ semantics, the evaluation
returns the “provenance” of the path, defined to be the sub-
graph induced by matching paths. Automata are used to rep-
resent the states and the potential transitions of paths while
evaluating the RPQ, and are thus used to guide a navigation-
based evaluation of the RPQ implemented by passing mes-
sages between nodes in the framework. Optimizations in-
clude methods to filter nodes and edges that cannot partici-
pate in the solutions to the RPQ, compression techniques on
messages, as well as techniques to combine multiple mes-
sages into one. DP2RPQ is implemented on Spark’s GraphX.

Triag [162] (2020) is a distributed RDF store that optimizes
for triangle-based (sub)-patterns in queries. Two types of
triangular RDF subgraphs are extracted using Spark: cyclic
ones (e.g., (a, p, b), (b, q, c), (c, r, a)) and (directed) acyclic
ones (e.g., (a, p, b), (b, q, c), (a, r, c)). The predicates of such
subgraphs are extracted, ordered, hashed, and indexed in a
distributed hash table using the predicate-based hash as key
and the three nodes (e.g., a, b, c) as value. An encoding is
used to ensure that the ordering of predicates is canonical
for the pattern (assuming that nodes are variables) and that
the subgraph can be reconstructed from the node ordering.
Parallel versions of hash joins and nested loop joins are sup-
ported, where triangular subqueries can be pushed to the
custom index. Queries are executed over Spark. Support for
inferencing is also described.

WISE [84] (2020) is a distributed RDF store using workload-
aware query-based partitioning. The system follows a master–
slave architecture. Queries processed by the master are also
analyzed in terms of workload: common sub-patterns are
extracted from a generalized version of the queries where
constant subject and object nodes are first converted to vari-
ables. Query-based partitioning is applied so that common
sub-patterns can be pushed to individual machines. Parti-
tioning is dynamic, and may change as queries are received.
A cost model is thus defined for the dynamic partitioning,
taking into account the benefits of the change in partition-
ing, the cost of migrating data, and potential load imbalances
caused by partition sizes; a greedy algorithm is then used to
decide on which migrations to apply. The system uses Leon
– an in-memory distributed RDF store discussed previously
– for underlying storage and indexing.

gSmart [52] (2021) is a distributed RDF store that is ca-
pable of leveraging both GPUs and CPUs in a distributed
setting. In order to take advantage of faster access for GPU
memory despite its limited capacity, the LSpM storage sys-
tem is used, which allows for loading compressed matrices
for particular predicates and edge directions, as relevant for

the query; matrices are encoded row-wise and column-wise,
representing edge direction, in a compressed format, and can
be partitioned for parallel computation. “Heavy queries” in-
volving triple patterns with variable subjects and objects are
then delegated to GPU computation, while “light queries”
are run on CPU, where intermediate results are then com-
bined to produce the final results on the CPU. Basic graph
patterns are compiled into linear algebra operations that are
efficiently computable on GPUs, with additional optimiza-
tions applied to process multi-way star joins.

A.3 Trends

We remark on some general trends based on the previous
survey of local and distributed systems.

In terms of local systems, earlier approaches were based
on underlying relational stores given that their implementa-
tions were already mature when interest began to coalesce
around developing RDF stores. Thus, many of these ear-
lier stores could be differentiated in terms of the relational
schema (triple table, vertical partitioning, property tables,
etc.) used to represent and encode RDF graphs. Systems
that came later tended to rather build custom native storage
solutions, optimizing for specific characteristics of RDF in
terms of its graph structure, its fixed arity, etc.; relating to the
fixed arity, for example, native stores began to develop com-
plete indexes, by default, that would allow efficient lookups
for any triple pattern possible. Also, many engines began
to optimize for star-joins, which are often used to recon-
struct n-ary relations from RDF graphs. Engines would soon
start to explore graph-inspired storage and indexing tech-
niques, including structural indexes, compressed adjacency
lists, etc. A more recent trend – likely following develop-
ments in terms of hardware – has been an increased focus on
in-memory stores using compact representations and com-
pressed tensor-based representations of graphs that enable
GPU-based hardware acceleration. Another recent develop-
ment has been the application of worst-case optimal join al-
gorithms for evaluating basic graph patterns, as well as tech-
niques for translating queries into operations from linear al-
gebra that can be efficiently evaluated on GPUs.

With respect to distributed RDF stores, in line with an
increased demand for managing RDF graphs at very large
scale, proposals began to emerge around 2007 regarding ef-
fective ways to store, index and query RDF over a cluster
of machines.19 Initial proposals were based on existing na-
tive stores, which were extended with triple/quad-based par-
titioning and distributed join processing techniques to ex-
ploit a cluster of machines. A second trend began to leverage

19 We highlight that decentralized proposals for managing RDF
graphs existed before this, including federated systems, P2P systems,
etc., but are not considered in-scope here.
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the maturation and popularity of “Big Data” platforms, in-
cluding distributed processing frameworks like Hadoop and
later Spark, and distributed NoSQL stores like Cassandra,
HBase, MongoDB, etc., in order to build distributed RDF
stores. During this time, graph-based and later query-based
partitioning methods began to emerge. Like in the local case,
more and more in-memory distributed RDF stores began to
emerge. Another trend was to explore the use of distributed
graph processing frameworks – that offer a vertex-based com-
putation and messaging paradigm – for evaluating queries
over RDF. A very recent trend is towards using both CPUs
and GPUs in a distributed environment in order to enable
hardware acceleration on multiple machines.

While proposed solutions have clearly been maturing
down through the years, and much attention has been given
to evaluating basic graph patterns over RDF, some aspects
of SPARQL query processing have not gained much atten-
tion. Most stores surveyed manage triples rather than quads,
meaning that named graphs are often overlooked. A key fea-
ture of SPARQL – and of graph query languages in general
– is the ability to query paths of arbitrary length, where op-
timizing property paths in SPARQL has not received much
attention, particularly in the distributed setting. Many works
also focus on a WORM (write once, read many) scenario,
with relatively little attention paid (with some exceptions)
to managing dynamic RDF graphs.

A final aspect that is perhaps not well-understood is the
trade-off that exists between different proposals, what pre-
cisely are their differences on a technical level (e.g., between
relational- and graph-based conceptualizations), and which
techniques perform better or worse in which types of set-
tings. In this regard, a number of benchmarks have emerged
to try to compare RDF stores in terms of performance; we
will discuss these in the following section.

B SPARQL Benchmarks for RDF Stores

We now discuss a variety of SPARQL benchmarks for RDF
stores. We speak specifically of SPARQL benchmarks since
benchmarks for querying RDF either came after the stan-
dardization of SPARQL (and thus were formulated in terms
of SPARQL), or they were later converted to SPARQL for
modern use. The discussion herein follows that of Saleem et
al. [200], who analyze different benchmarks from different
perspectives. We first discuss the general design principles
for benchmarks, and then survey specific benchmarks.

B.1 SPARQL Benchmark Design

SPARQL query benchmarks consist of three elements: RDF
graphs (or datasets), SPARQL queries, and performance mea-
sures. We first discuss some design considerations regarding
each of these elements.

Datasets The RDF graphs and datasets proposed for use in
SPARQL benchmarks are of two types: real-world and syn-
thetic. Both have strengths and weaknesses.

Real-world graphs reflect the types of graphs that one
wishes to query in practice. Graphs such as DBpedia, Wiki-
data, YAGO, etc., tend to be highly complex and diverse;
for example, they can contain hundreds, thousands or tens of
thousands of properties and classes. Presenting query perfor-
mance over real-world graphs is thus a relevant test of how a
store will perform over RDF graphs found in practice. Cer-
tain benchmarks may also include a number of real-world
graphs for the purposes of distributed, federated or even de-
centralized (web-based) querying [205].

Synthetic graphs are produced using specific generators
that are typically parameterized, such that graphs can be pro-
duced at different scales, or with different graph-theoretic
properties. Thus synthetic graphs can be used to test perfor-
mance at scales exceeding real-world graphs, or to under-
stand how particular graph-theoretic properties (e.g., num-
ber of properties, distributions of degrees, cyclicity, etc.) af-
fect performance. Synthetic graphs can also be constructed
to emulate certain properties of real-world graphs [65].

A number of measures have been proposed in order to
understand different properties of benchmark graphs. Obvi-
ous ones include basic statistics, such as number of nodes,
number of triples, number of properties and classes, node
degrees, etc. [198,65]. Other (less obvious) proposals of mea-
sures include structuredness [65], which measures the de-
gree to which entities of the same class tend to have similar
characteristic sets; relationship specialty [191], which indi-
cates the degree to which the multiplicity of individual prop-
erties varies for different nodes, etc. Observations indicate
that the real-world and synthetic graphs that have been used
in benchmarks tend to vary on such measures, with more
uniformity seen in synthetic graphs [65,191,200]. This may
affect performance in different ways; e.g., property tables
will work better over graphs with higher structuredness and
(arguably) lower relationship specialty.

SPARQL Queries The second key element of the bench-
mark is the queries proposed. There are three ways in which
the queries for a benchmark may be defined:

– Manually-generated: The benchmark designer may man-
ually craft queries against the RDF graph, trying to bal-
ance certain criteria such as query features, complexity,
diversity, number of results, etc.

– Induced from the graph: The queries may be induced
from the RDF graph by extracting sub-graphs (e.g., us-
ing some variation on random walks), with constants in
the sub-graphs replaced by variables to generate basic
graph patterns.
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– Extracted from logs: The queries to be used may be ex-
tracted from real-world SPARQL logs reflecting realistic
workloads; since logs may contain millions of queries, a
selection process is often needed to identify an interest-
ing subset of queries in the log.

Aside from concrete queries, benchmarks may also define
query templates, which are queries where a subset of vari-
ables are marked as placeholders. These placeholders are re-
placed by constants in the data, typically so that the resulting
partially-evaluated query still returns results over the RDF
graph. In this way, each template may yield multiple con-
crete queries for use in the benchmark, thus smoothing vari-
ance for performance that may occur for individual queries.

Queries can vary in terms of the language considered
(SPARQL 1.0 vs. SPARQL 1.1) and the algebraic features
used (e.g., projection, filters, paths, distinct, etc.), but also in
terms of various measures of the complexity and diversity
of the queries – and in particular, the basic graph patterns –
considered. Some basic measures to characterize the com-
plexity and diversity of queries in a benchmark include the
number of queries using different features, measures for the
complexity of the graph patterns considered (e.g., number
of triple patterns, number of variables, number of joins vari-
ables, number of cyclic queries, mean degree of variables,
etc.), etc. Calculating such measures across the queries of
the benchmark, a high-level diversity score can be computed
for a set of queries [200], based on the average coefficient
of variation (dividing the mean by the standard deviation)
across the measures.

Performance Measures The third key element of a bench-
mark is the performance measures used. Some benchmarks
may be provided without a recommended set of measures,
but at the moment in which a benchmark is run, the mea-
sures to be used must be selected. Such measures can be
divided into four categories [200]:

– Query Processing Related: The most important dimen-
sion relating to query processing relates to runtimes. A
benchmark usually contains many queries, and thus re-
porting the runtime for each and every query is often
too fine-grained. Combined results can rather be pre-
sented with measures like Query Mix per Hour (QMpH),
Queries per Second (QpS), or measures over the distri-
butions of runtimes (max, mean, percentile values, stan-
dard deviation, etc.). Other statistics like the number of
intermediate results generated, disk/memory reads, re-
source usage, etc., can be used to understand lower-level
performance issues during query processing load [206].

– Data Storage Related: This category includes measures
like data loading time, storage space, index sizes, etc.
Often there is a space–time trade-off inherent in different
approaches, where more aggressive indexing can help

to improve query runtimes but at the cost of space and
more expensive updates. Hence these measures help to
contextualize query-processing related measures.

– Result Related: Some systems may produce partial re-
sults for a query based on fixed thresholds or timeouts.
An important consideration for a fair comparison be-
tween two RDF engines relates to the results produced
in terms of correctness and completeness. This can of-
ten be approximately captured in terms of the number of
results returned, the number of queries returning empty
results (due to timeouts), the recall of queries, etc.

– Update Related: In real-world scenarios, queries are of-
ten executed while the underlying data are being up-
dated in parallel. While the previous categories consider
a read-only scenario, benchmarks may also record mea-
sures relating to updates [68,56]. Measures may include
the number of insertions or deletions per second, the
number of read/write transactions processed, etc.

Often a mix of complementary measures will be pre-
sented in order to summarize different aspects of the per-
formance of the tested systems.

B.2 Synthetic Benchmarks

We now briefly survey the SPARQL benchmarks that have
been proposed and used in the literature, and that are avail-
able for download and use. We start with benchmarks based
on synthetic data.

LUBM (Lehigh) [85] (2005) creates synthetic RDF graphs
that describe universities, including students, courses, pro-
fessors, etc. The number of universities described by the
graph is a parameter that can be changed to increase scale.
The benchmark includes 14 hand-crafted queries. LUBM
further includes an OWL ontology to benchmark reasoning,
though often the benchmark is run without reasoning.

BSBM (Berlin) [35] (2009) is based on an e-commerce
use-case describing entities in eight classes relating to prod-
ucts. The number of products can be varied to produce RDF
graphs of different scales. A total of 12 query templates are
defined with a mix of SPARQL features. The benchmark is
also given in SQL format, allowing to compare RDF stores
with RDBMS engines.

SP2Bench [206] (2009) creates synthetic RDF graphs that
emulate an RDF version of the DBLP bibliographic database.
Various distributions and parameters from the DBLP data
are extracted and defined in the generator. A total of 17
queries are then defined for the benchmark in both SPARQL
and SQL formats.
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BowlognaBench [62] (2012) creates synthetic RDF graphs
inspired by the Bologna process of reform for European uni-
versities. The dataset describes entities such as students, pro-
fessors, theses, degrees, etc. A total of 13 queries are defined
that are useful to derive analytics for the reform process.

WatDiv [12] (2014) provides a data generator that produces
synthetic RDF graphs with an adjustable value of structured-
ness, and a query template generator that generates a speci-
fied number of query templates according to specified con-
straints. The overall goal is to be able to generate diverse
graphs and queries.

LDBC-SNB [68] (2015) is a benchmark based on synthet-
ically generated social networking graphs. Three workloads
are defined: interactive considers both queries and updates
in parallel; business intelligence considers analytics that may
touch a large percentage of the graph; algorithms considers
the application of graph algorithms.

TrainBench [222] (2018) is a synthetic benchmark inspired
by the use-case of validating a railway network model. The
graph describes entities such as trains, switches, routes, sen-
sors, and their relations. Six queries are defined that reflect
validation constraints. TrainBench is expressed in a num-
ber of data models and query languages, including RDF/S-
PARQL and SQL.

B.3 Real-World Benchmarks

Next we survey benchmarks that are based on real-world
datasets and/or queries from real-world logs.

DBPSB (DBpedia) [159] (2011) clusters queries from the
DBpedia logs, generating 25 query templates representative
of common queries found. These queries can then be evalu-
ated over DBpedia, where a dataset of 153 million triples is
used for testing, though smaller samples are also provided.

FishMark [24] (2012) is based on the FishBase dataset and
is provided in RDF and SQL formats. The full RDF graph
uses 1.38 billion triples, but a smaller graph of 20 million
triples is used for testing. In total, 22 queries from a log of
real-world (SQL) queries are converted to SPARQL.

BioBenchmark [247] (2014) is based on queries over five
real-world RDF graphs relating to bioinformatics – Allie,
Cell, DDBJ, PDBJ and UniProt – with the largest dataset
(DDBJ) containing 8 billion triples. A total of 48 queries are
defined for the five datasets based on queries generated by
real-world applications.

FEASIBLE [199] (2015) generates SPARQL benchmarks
from real-world query logs based on clustering and feature
selection techniques. The framework is applied to DBpe-
dia and Semantic Web Dog Food (SWDF) query logs and
used to extract 15–175 benchmark queries from each log.
The DBpedia and SWDF datasets used contain 232 million
and 295 thousand triples, respectively.

WGPB [100] (2019) is a benchmark of basic graph patterns
over Wikidata. The queries are based on 17 abstract pat-
terns, corresponding to binary joins, paths, stars, triangles,
squares, etc. The benchmark contains 850 queries, with 50
instances of each abstract pattern mined from Wikidata us-
ing guided random walks. Two Wikidata graphs are given:
a smaller one with 81 million triples, and a larger one with
958 million triples.

B.4 Benchmark Comparison and Results

For a quantitative comparison of (most of) the benchmarks
mentioned here, we refer to the work by Saleem et al. [200],
which provides a detailed comparison of various measures
for SPARQL benchmarks. For benchmarks with results com-
paring different RDF stores, we refer to the discussion for
(italicizing non-RDF/SPARQL engines):

– BSBM [35] (2009) with results for Jena, RDF4J, Virtu-
oso and MySQL;

– SP2Bench [206] (2009) including results for Kowari, Jena,
RDF4J, Redland and Virtuoso.

– DBPSB [159] (2011) with results for GraphDB, Jena,
RDF4J and Virtuoso;

– BowlognaBench [62] (2012) with results for 4store, dip-
LODocus, RDF-3X and Virtuoso.

– FishMark [24] (2012) with results for Virtuoso, MySQL
and Quest;

– BioBench [247] (2014) with results for 4store, Blaze-
graph, GraphDB, Kowari and Virtuoso.

– WatDiv [12] (2014) with results for 4store, gStore, RDF-
3X, Virtuoso and MonetDB;

– FEASIBLE [199] (2015) with results for GraphDB, Je-
na, RDF4J and Virtuoso;

– LDBC-SB [68] (2015), with results for SparkSee and
Virtuoso;

– TrainBench [222] (2018) with results for Jena, RDF4J,
Neo4j and SQLite, among others.

For a performance comparison of eleven distributed RDF
stores (SHARD, H2RDF+, CliqueSquare, S2X, S2RDF, Ad-
Part, TriAD, H-RDF-3x, SHAPE, gStore-D and DREAM)
and two local RDF stores (gStore and RDF-3X) over vari-
ous benchmarks (including LUBM and WatDiv), we refer to
the experimental comparison by Abdelaziz et al. [3].
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